JPS59112018A - Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure - Google Patents

Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure

Info

Publication number
JPS59112018A
JPS59112018A JP21843782A JP21843782A JPS59112018A JP S59112018 A JPS59112018 A JP S59112018A JP 21843782 A JP21843782 A JP 21843782A JP 21843782 A JP21843782 A JP 21843782A JP S59112018 A JPS59112018 A JP S59112018A
Authority
JP
Japan
Prior art keywords
fiber
cross
bundle
coefficient
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21843782A
Other languages
Japanese (ja)
Other versions
JPS64482B2 (en
Inventor
Shingo Emi
江見 慎悟
Susumu Norota
野呂田 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP21843782A priority Critical patent/JPS59112018A/en
Publication of JPS59112018A publication Critical patent/JPS59112018A/en
Publication of JPS64482B2 publication Critical patent/JPS64482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:The titled fiber that contains a large amount of a magnetizable fine powder, having certain ranges of the modification factor of the fiber cross section and the fluctuation factor of the cross section area where both of them irregularly changes along the fiber axis and showing practically usable strength and flexibility with a relatively thin fineness. CONSTITUTION:The objective fiber contains 30-95wt% of a magnetizable fine powder, has a not round cross section vertical to the fiber axis where the modification factor D/d (D is the maximum distance between parallel lines tangential at the cross section; D is the minimum distance) is 1.1 or more and irregularly changes along the fiber axis. The cross section area vertical to the fiber axis irregularly changes along the fiber axis and the cross section variation factor [CVF] is in the range from 0.05 to 1.5. As the spinneret, is preferably used a net which is formed by a substance generating heat by application of electricity or a mesh-like porous plate formed by photoetching.

Description

【発明の詳細な説明】 本発明は熱可塑性重合体と磁化性微粉末状物質との混合
体なる繊維、その集束体、その製造法並びにその集束体
を用いた磁性繊維構造体等に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber made of a mixture of a thermoplastic polymer and a magnetic fine powder substance, a bundle thereof, a method for producing the same, and a magnetic fiber structure using the bundle.

更に詳細に言えば繊維軸に垂直な断面の形状が非円形で
あり、且つ、該断面積が軸方向に沼って不規則な変化を
有していることを特徴とする磁化性微粉末状物質を含む
繊維、その集束体ならびにその製造法等に関する。
More specifically, a magnetizable fine powder characterized in that the shape of the cross section perpendicular to the fiber axis is non-circular, and the cross-sectional area varies irregularly in the axial direction. This field relates to fibers containing substances, bundles thereof, and methods for producing the same.

磁化性微粉末物質を含んだ繊維状物に関する従来技術と
しては単に磁石微粉末を配合した繊維やそれを糸でカバ
ーリングしたもの(特開昭53−2654)、磁石粉を
繊維内に完全に埋没させたもの又は糸の表面に磁石粉を
混練された接着層を塗布したもの(特開昭53−111
118)、ゴムひもに磁化せしめる物質を25%混合(
特開昭54−112953 )、ゴム、合成樹脂に硬磁
性利料を含有させた糸を紡糸し編組した後磁化(特開昭
55−30453 )、一部もしくは全体を磁気を帯び
た繊維状物質で形成した編、織地(実開昭55−111
983)、少なくとも0.2wt%の磁性粒子を含有し
た磁性層と保護層とからなる複合された磁気繊維(特開
昭57−167416 )等が提案されている。しかし
、これらの中には磁化性微粉末物質を多量に含みながら
、なお柔軟性にすぐれた性能を有する繊維に関するもの
は見られない。
Conventional technologies related to fibrous materials containing magnetic fine powder include fibers that are simply mixed with magnetic fine powder or covered with thread (Japanese Patent Application Laid-open No. 53-2654), Threads are buried or coated with an adhesive layer mixed with magnetic powder (Japanese Patent Laid-Open No. 53-111)
118), a mixture of 25% of a substance that magnetizes rubber strings (
JP-A-54-112953), magnetized after spinning and braiding yarns made of rubber or synthetic resin containing a hard magnetic compound (JP-A-55-30453), fibrous material partially or entirely magnetic. Knitted and woven fabric formed by
983), a composite magnetic fiber comprising a magnetic layer containing at least 0.2 wt% of magnetic particles and a protective layer (Japanese Patent Application Laid-open No. 167416/1983), etc. have been proposed. However, none of these fibers contain a large amount of magnetic fine powder material and still have excellent flexibility.

又、従来から磁化性微粉末状物質を多針に含んだ細い繊
維は紡糸が困難であり、又、紡糸できても繊維の太さが
かなり大きく、かつ柔軟性に欠けるという欠点を有して
いた。
Furthermore, thin fibers containing many needles of magnetic fine powder have traditionally been difficult to spin, and even if they can be spun, the fibers are quite large in thickness and lack flexibility. Ta.

本発明者らはこれらの点について改善すべく鋭意研究し
た結果本発明に到達した。すなわち本発明は、 熱可塑性重合体と磁化性微粉末状物質との混合物からな
る繊維であって、 (1)  該繊維は、その繊維軸方向に垂直な断面の形
状が非円形であり、その異形係数(D/d)が少なくと
も1.1であり、且つ、該異形係数が繊維軸方向、に潅
って不規則に変化しており、(2)  該繊維は、その
繊維軸に垂直な断面の面積が軸方向に沿って不規則な変
化を有しており、その繊維内断面積変動係数〔CV(F
)〕が0.05〜15の範囲にあり、 (3)  該磁化性微粉末状物質が30〜95重量%の
範囲で含有された、 ことを特徴とする磁化性繊維; 該繊維が着磁により磁化された磁性繊維;熱可塑性重合
体と磁化性微粉末状物質との混合物からなる繊維集束体
であって、 (リ 該集束体を構成する繊維は、その繊維軸方向に垂
直な断面の形状が非円形であり、その異形係数(D/d
)が少なくとも1.1であり、且つ、該異形係数が繊維
軸方向に沿って不規則に変化しており、 (2)  該繊維は、その繊維軸に垂直な断面の面積が
軸方向に沿って不規則な変化を有しており、その繊維内
断面積変動係数(CV(F))が0.05〜1.5の範
囲にあり、 (3)  該集束体の任意の位置で繊維軸に垂直に該集
束体を切断した場合の各繊維の断面積の変動が、集束体
内繊維断面積変動係数CCV(A):]で表わして0.
05〜2.0の範囲であり、(4)  該磁化性微粉末
状物質が、30〜95重量%の範囲で含有された、 ことを特徴とする磁化性繊維集束体; 少なくとも一方の面に凹凸を有する仕切9部材によって
仕切られた多数の細隙を有し、且つ該細隙の成る細隙か
ら押出される溶融液がそれに隣接する他の細隙から押出
される溶融液と該仕切り部材の凹部を通じて互いに往来
し得るように構成されたメツシュ状紡糸口金の該凹凸面
を溶融液の吐出側に向けて溶融した熱可塑性1合体と磁
化性微粉末状物質との懸濁液を押出し、この際、該紡糸
口金の該懸濁液の吐出面及びその近傍に冷却流体を供給
して冷却しながら、該細隙を通じて押出される懸濁液を
引取って該懸濁液を多数の分離された繊維状細流に変換
し、固化することを特徴とする該磁化性繊維集束体の製
造方法; 及び該磁化性繊維集束体を用い、着磁により磁化された
ことを特徴とする磁性繊維構造体である。
The present inventors have conducted intensive research to improve these points, and as a result, have arrived at the present invention. That is, the present invention provides a fiber made of a mixture of a thermoplastic polymer and a magnetizable fine powder substance, comprising: (2) the fiber has a deformation coefficient (D/d) of at least 1.1, and the deformation coefficient varies irregularly along the fiber axis; The area of the cross section has irregular changes along the axial direction, and the coefficient of variation of the cross-sectional area within the fiber [CV (F
)] is in the range of 0.05 to 15, and (3) the magnetizable fine powder substance is contained in the range of 30 to 95% by weight; A fiber bundle made of a mixture of a thermoplastic polymer and a magnetizable fine powder substance; The shape is non-circular, and its irregularity coefficient (D/d
) is at least 1.1, and the deformation coefficient varies irregularly along the fiber axis direction, and (2) the fiber has a cross-sectional area perpendicular to the fiber axis that is (3) The fiber axis changes at any position of the bundle, and the coefficient of variation of cross-sectional area within the fiber (CV(F)) is in the range of 0.05 to 1.5. The variation in the cross-sectional area of each fiber when the bundle is cut perpendicular to is expressed as the intra-bundle fiber cross-sectional area variation coefficient CCV (A): ]0.
05 to 2.0, and (4) the magnetic fine powder substance is contained in a range of 30 to 95% by weight; A molten liquid having a large number of slits partitioned by a partition 9 member having unevenness, and in which the molten liquid extruded from the slit formed by the slits is extruded from other slits adjacent thereto, and the partition member. Extruding a suspension of a melted thermoplastic monomer and a magnetic fine powder substance by directing the concavo-convex surface of a mesh-like spinneret, which is configured so that they can come and go each other through the concave portions, toward the melt discharge side; At this time, cooling fluid is supplied to the suspension discharge surface of the spinneret and its vicinity to cool it, and the suspension extruded through the slits is taken over and separated into multiple separations. A method for producing the magnetizable fiber bundle, which is characterized by converting the magnetic fiber bundle into a fibrous rivulet and solidifying it; and a magnetic fiber structure, which is characterized by being magnetized by magnetization using the magnetizable fiber bundle. It is the body.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の磁化性繊維は、熱可塑性重合体と微粉末状物質
とよりなる混合物より形成されるものであり、その繊維
形状は、それを繊維軸方向に垂直に切断した場合の断面
形状が非円形であり、しかも軸方向に沿って該断面積の
変化を有している点に特徴を有している。
The magnetizable fiber of the present invention is formed from a mixture of a thermoplastic polymer and a fine powder substance, and the fiber shape has a non-uniform cross-sectional shape when cut perpendicularly to the fiber axis direction. It is characterized in that it is circular and its cross-sectional area changes along the axial direction.

ここで断面形状の非円形の程度は、断面における外接2
千行線の最大間隔(D)と、その外接2千行線の最小間
隔(d)との比(D/d)として表わされる異形係数で
示すことができる。本発明のフィラメントはこの異形係
数(D/d)が少なくとも1.1であり、殆んどが少な
くとも1.2である。
Here, the degree of non-circularity of the cross-sectional shape is the circumference 2 of the cross-section.
It can be expressed by an irregularity coefficient expressed as the ratio (D/d) of the maximum interval (D) between 1,000-line lines and the minimum interval (d) between 2,000-line lines circumscribing the line. The filaments of the present invention have a deformation factor (D/d) of at least 1.1, and most have a deformation factor (D/d) of at least 1.2.

さらに、本発明の繊維は、上記の異形係数(D/d)が
該繊維の長さ方向に沿って不規則に変化している。
Furthermore, the fiber of the present invention has the above-mentioned deformation coefficient (D/d) that varies irregularly along the length of the fiber.

本発明の繊維は、その長さ方向に沿って断面積の変化を
有している。この長さ方向における断面積の変化は、繊
維の任意の1箇所の3crnを選び出し、それを1u間
隔毎の断面積の大きさを顕微鏡観察により測定した場合
、実質的に断面積の値に変化が認められるものを言う。
The fibers of the present invention have a variation in cross-sectional area along their length. This change in the cross-sectional area in the length direction can be seen by selecting 3 crn at any one location on the fiber and measuring the size of the cross-sectional area at every 1u interval by microscopic observation. say something that is acceptable.

この場合、約200〜約400倍程度の顕微鏡写真を撮
り、断面積の変化を観察するのが便利である。特に前記
の如くして30個の断面積を測定し、その平均値開と、
30個の断面積の標準偏差(δA)とを求めて、下記式
から算出された断面積変動係数(CV(F))が、0.
05〜1.5の範囲、特に0.08〜1.0の範囲であ
るような変化を有しているのが好ましい。
In this case, it is convenient to take a micrograph at a magnification of about 200 to about 400 times and observe changes in cross-sectional area. In particular, measure 30 cross-sectional areas as described above, calculate the average value,
After determining the standard deviation (δA) of 30 cross-sectional areas, the cross-sectional area variation coefficient (CV(F)) calculated from the following formula is 0.
Preferably, the variation is in the range 0.05 to 1.5, especially in the range 0.08 to 1.0.

δA CV(杓=〜=− 本発明における熱可塑性重合体とは、繊維を形成し得る
重合体の全てを意味し、例えばポリエステル、ポリアミ
ド、ポリオレフィン、ポリアセタール、ポリビニル、ポ
リエーテル、ポリカーボネート、ポリ尿素、ポリウレタ
ン、弗素含有重合体等の合成樹脂及びゴム等が挙げられ
る。
δA CV (Ladle=~=- The thermoplastic polymer in the present invention means all polymers that can form fibers, such as polyester, polyamide, polyolefin, polyacetal, polyvinyl, polyether, polycarbonate, polyurea, Examples include synthetic resins such as polyurethane and fluorine-containing polymers, and rubber.

さらに具体的には、ポリオレフィンまたはポリビニルと
しては、例えばポリエチレン、ポリプロピレン、ポリブ
チレン、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニ
ル、ポリアクリルニトリル、ポリアクリル酸エステル或
はこれらの相互共重合体; ポリアミドとしては、例えばポリε−カプロラクタム、
ポリヘキサメチレンアジパミド、ポリへキサメチレンセ
バカミドの如き脂肪族ポリアミド及びポリパラフェニレ
ンイソフタルアミド、ポリメタフェニレンイソ7タルア
ミド、ポリメタフェニレンテレフタルアミド、ポリ−1
,5−ナフチレンイソフタルアミド、ポリ−3,4′−
ジンエニレンテレフタルアミド、ポリメタキシリレンイ
ンフタルアミドあるいはこれらの共重合体等の芳香族ポ
リアミド; ポリエステルとしては、例えばフタル酸、イソフタル酸
、テレフタル酸、ジフェニルジカルボン酸、′ナフタリ
ンジカルボン酸などの芳香族ジカルボン酸;アジピン酸
、セパチン酸、デカンジカルボン酸などの脂肪族ジカル
ボン酸:またはヘキサヒドロテレフタル酸の如き脂環族
ジカルボン酸を二塩基酸成分とし、エチレングリコール
、プロピレングリコール、トリメチレングリコール、テ
トラメチレングリコール、デカメチレングリコール、ジ
エチレングリコール。
More specifically, polyolefins or polyvinyls include, for example, polyethylene, polypropylene, polybutylene, polystyrene, polyvinyl chloride, polyvinyl acetate, polyacrylonitrile, polyacrylic esters, or mutual copolymers thereof; polyamides include, For example, polyε-caprolactam,
Aliphatic polyamides such as polyhexamethylene adipamide, polyhexamethylene sebacamide, and polyparaphenylene isophthalamide, polymetaphenylene isophthalamide, polymetaphenylene terephthalamide, poly-1
, 5-naphthylene isophthalamide, poly-3,4'-
Aromatic polyamides such as dienylene terephthalamide, polymethaxylylene inphthalamide, or copolymers thereof; Examples of polyesters include aromatic polyesters such as phthalic acid, isophthalic acid, terephthalic acid, diphenyl dicarboxylic acid, and naphthalene dicarboxylic acid. Dicarboxylic acid; aliphatic dicarboxylic acid such as adipic acid, sepatic acid, decanedicarboxylic acid; or alicyclic dicarboxylic acid such as hexahydroterephthalic acid as dibasic acid component, ethylene glycol, propylene glycol, trimethylene glycol, tetramethylene Glycol, decamethylene glycol, diethylene glycol.

2.2−ジメチルプロパンジオールの如き脂肪族グリコ
ール、シクロヘキサンジメタツールの如き脂JJj式グ
リコール、キシリレングリコールの如き芳香脂肪族グリ
コール、レゾルシノール。
2. Aliphatic glycols such as 2-dimethylpropanediol, aliphatic glycols such as cyclohexane dimetatool, aromatic aliphatic glycols such as xylylene glycol, resorcinol.

ハイドロキノンの如き芳香族ジヒドロキシ化合物をグリ
コール成分とするポリエステルまたは全芳香族ポリエス
テル; 弗素含有重合体としては、例えばポリ四弗化エチレン、
ポリ三弗化塩化エチレン、ポリ二弗化ビニリゾ/、ボI
J M弗化エチレン−六弗化グロビレン共重合体、ポリ
四弗化エチレン−パーフルオロアルキルビニルエーテル
共重合体、ポリ弗化エチレン−エチレン共重合体、ポリ
四弗化エチレン−プロピレン共重合体、ポリ弗化ビニル
もしくはポリ三弗化塩化エチレンーエチレン共重合体の
如き弗素含有重合体等: ボリカーボネートとしては、例えば革Φ子x〜    
φ片−4ta)44−寸庫一=くど声七≠=各種ビスフ
ェノールを使用した重合体;ゴムとしては、例えばクロ
ログレンゴム、ブタジェンゴム、インプレンゴム、ブチ
ルゴム。
Polyester or fully aromatic polyester containing an aromatic dihydroxy compound such as hydroquinone as a glycol component; Examples of fluorine-containing polymers include polytetrafluoroethylene,
Polytrifluorochlorinated ethylene, polyvinylizo difluoride/, BoI
JM Fluorinated ethylene-hexafluorinated globylene copolymer, polytetrafluorinated ethylene-perfluoroalkyl vinyl ether copolymer, polyfluorinated ethylene-ethylene copolymer, polytetrafluorinated ethylene-propylene copolymer, polytetrafluorinated ethylene-propylene copolymer, Fluorine-containing polymers such as vinyl fluoride or polytrifluorochloroethylene-ethylene copolymers; Polycarbonates include, for example, leather
φ piece - 4ta) 44-size storage = Kudosei 7≠ = polymer using various bisphenols; examples of rubber include chloroglene rubber, butadiene rubber, imprene rubber, and butyl rubber.

エチレンプロピレンゴム、SBR,ABS、天然ゴム等
があげられる。
Examples include ethylene propylene rubber, SBR, ABS, natural rubber, etc.

前述した熱可塑性重合体は、単独で会ってもよく、また
2種以上の緊密なミクロブレンド混合物であってもよく
、また、本発明者らが先に提案した、2種以上の重合体
が比較的大きな溶融相を成して混合しているようなマク
ロブレンド混合物として使用することもできる(特開昭
57−29610号公報参照)。更に重合体は可塑性や
溶融粘度を増大させるために可塑剤、粘度増加剤などを
含有していてもよい。また前記重合体中には、通常繊維
の添加剤として使用される光安定剤、顔料、熱安定剤、
a燃剤、滑剤等が含有されていてもよい。
The above-mentioned thermoplastic polymers may be used alone or in an intimate microblend mixture of two or more types, or as previously proposed by the present inventors, two or more types of polymers may be combined. It can also be used as a macroblend mixture in which the mixture forms a relatively large molten phase (see JP-A-57-29610). Furthermore, the polymer may contain a plasticizer, a viscosity increaser, etc. to increase plasticity and melt viscosity. In addition, the polymer contains light stabilizers, pigments, heat stabilizers, which are usually used as additives for fibers,
(a) A refueling agent, a lubricant, etc. may be contained.

本発明における磁化性微粉末状物質としては、着磁によ
シ磁性を帯びる物質であれば、いかなる材質のものでも
よい。該材質としては強磁性体及びフェリ磁性体等が好
ましく、例えば、鉄。
The magnetizable fine powder material in the present invention may be of any material as long as it becomes magnetic when magnetized. The material is preferably a ferromagnetic material, a ferrimagnetic material, etc., such as iron.

コバルト、ニッケル等の金属;これらの金属の1種以上
とアルミニウム、チタン、銅、白金。
Metals such as cobalt and nickel; one or more of these metals and aluminum, titanium, copper, and platinum.

炭素等の1種以上からなる合金;酸化鉄、フェライト等
を主成分とする金属酸化物;鉄、コバルト、ニッケル等
と希土類元素との化合物等が挙げられる。これらの中で
も、酸化鉄、ハード・フェライト(マグネトブランバイ
ト型結晶構造をもつ亜鉄酸塩)、コバルトを希土類元素
とノ化合物、ニッケル、アルミニウム、コバルト。
Examples include alloys consisting of one or more types of carbon, etc.; metal oxides containing iron oxide, ferrite, etc. as main components; compounds of rare earth elements with iron, cobalt, nickel, etc.; Among these, iron oxide, hard ferrite (ferrite with a magnetobrambite crystal structure), cobalt in combination with rare earth elements, nickel, aluminum, and cobalt.

チタン、銅、白金、炭素などの1種以上を含む鉄又は鉄
合金(例えばアルニコ磁石)等が特に好ましい。
Particularly preferred are iron or iron alloys (for example, alnico magnets) containing one or more of titanium, copper, platinum, carbon, and the like.

本発明において該微粉末は熱可塑性重合体との接着性を
増す為、カップリング剤等で表面処理されていても良い
In the present invention, the fine powder may be surface-treated with a coupling agent or the like to increase adhesion to the thermoplastic polymer.

該磁化性微粉末状物質は、その90%以上が3μ以下の
粒径、好ましくは2μ以下の粒径を有している。これよ
り荒い粒度では該磁化性微粉木状物質の磁気特性が低下
するので好ましくない。又、粒度分布も狭い方が好まし
い。
More than 90% of the magnetic fine powder material has a particle size of 3 μm or less, preferably 2 μm or less. If the particle size is coarser than this, the magnetic properties of the magnetizable fine wood-like material will deteriorate, which is not preferable. Further, it is preferable that the particle size distribution is narrower.

該微粉末状物質は本発明の繊維において30〜95重量
%、好ましくは50〜90重量%、更に好ましくは60
〜85重量%の範囲で含有される。
The fine powder substance accounts for 30 to 95% by weight, preferably 50 to 90% by weight, more preferably 60% by weight in the fiber of the present invention.
It is contained in a range of 85% by weight.

本発明における繊維は、その平均断面積がI X 10
=〜2×10.Jの範囲にあり、好ましくは2 X 1
0−4〜1×10−である。
The fibers in the present invention have an average cross-sectional area of I x 10
=~2×10. J, preferably 2 x 1
0-4 to 1x10-.

本発明における磁化性繊維集束体は、前記した磁化性繊
維の多数からなる集束体であって、その任意の位置で繊
維軸に垂直に切断した場合の各繊維の断面積の変動が、
集束体内繊維断面積変動係数[0V(A)]T表わしテ
0.05〜2.0の範囲にあることを特徴とするもので
ある。
The magnetizable fiber bundle in the present invention is a bundle consisting of a large number of the above-mentioned magnetizable fibers, and the variation in the cross-sectional area of each fiber when cut perpendicularly to the fiber axis at an arbitrary position is
The coefficient of variation of the cross-sectional area of fibers within the bundle [0V(A)] T expressed as T is in the range of 0.05 to 2.0.

この0V(4)は、該集合体から無作意に100本の部
分集束体を抽出し、その任意の位置における断面を顕微
鏡観察によりその各断面の大きさを測定し、その平均値
開と、その100個の断面積の標準偏差(δA)を求め
て、下記式から算出することができる。本発明における
Cv(4)は、好ましくは0.1〜1.5の範囲にあり
、特に0.2〜1.0の範囲のものが好適である。
This 0V (4) is calculated by randomly extracting 100 partial bundles from the aggregate, measuring the size of each cross section by observing the cross section at an arbitrary position under a microscope, and calculating the average value of the difference. , the standard deviation (δA) of the 100 cross-sectional areas can be found and calculated from the following formula. Cv(4) in the present invention is preferably in the range of 0.1 to 1.5, particularly preferably in the range of 0.2 to 1.0.

即ち、本発明の磁化性繊維集束体は、その任意の位置で
軸方向に垂直に切断した場合の各繊維の断面の大きさお
よび形状が不規則に実質的に異なっていることを特徴と
している。
That is, the magnetizable fiber bundle of the present invention is characterized in that the size and shape of the cross section of each fiber when cut perpendicularly to the axial direction at any position thereof is irregular and substantially different. .

前記の如き磁化性繊維集束体は、本発明者等が先に提案
した熱可塑性重合体の溶融物から繊維を製造する方法、
例えば特開昭56−140110号公報及び特開昭57
−39208号公報に開示された方法において該溶融物
として該磁化性微粉末状物質と熱可塑性重合体とよシな
る混合物を使用することによって製造することができる
The above-mentioned magnetizable fiber bundle can be produced by a method of manufacturing fibers from a thermoplastic polymer melt, which was previously proposed by the present inventors.
For example, JP-A-56-140110 and JP-A-57
It can be produced by using a mixture of the magnetic fine powder material and the thermoplastic polymer as the melt in the method disclosed in Japanese Patent No. 39208.

かかる方法によって、従来のオリスイスによる繊維手段
では得られないか、或いは得ることが極めて困難であっ
た多量の磁化性微粉末状物質を含有する繊維を工業的に
有利に製造することが可能となる。
This method makes it possible to industrially advantageously produce fibers containing a large amount of magnetic fine powder material, which cannot be obtained or is extremely difficult to obtain by conventional fiber means using Oriswiss. .

本発明によれば、前記微粉末状物質を含有する繊維は、
溶融した熱可塑性重合体と固体の磁化性微粉末状物質と
の混合懸濁液を、仕切り部材によって仕切られた多数の
細隙を有する紡糸口金であって、吐出側の隣接する細隙
間に非連続的凸起部が設けられており、該凸部間に存在
する凹部区域を通じて成る細隙から押出される該懸濁液
がそれに隣接する他の細隙から押出される懸濁液と互い
に往来し得るような紡糸口金から押出し、この際該紡糸
口金の懸濁液の吐出面及びその近傍に冷却流体を供給し
て冷却しながら、該細隙を通じて押出される懸濁物を引
取って該懸濁物を多数の分離された繊維状細流に変換し
、固化することにより製造される。
According to the present invention, the fiber containing the fine powder substance is
A mixed suspension of a molten thermoplastic polymer and a solid magnetic fine powder substance is passed through a spinneret having a large number of slits partitioned by partition members, and is placed between adjacent slits on the discharge side. Continuous protrusions are provided, such that the suspension extruded from the slits formed through the concave areas between the ridges can interact with the suspension extruded from other adjacent slits. The suspension is extruded from a spinneret that can be extruded through a spinneret, and while cooling the suspension by supplying a cooling fluid to the suspension discharge surface of the spinneret and its vicinity, the suspension extruded through the slits is taken up and the suspension is extruded. It is produced by converting a suspension into a number of separated fibrous rivulets and solidifying them.

本発明の該集束体製造法において用いられる紡糸口金は
、近接した多数の細隙を有するメツシュ状色賞であり、 α +=          X  100a で表わされる空隙率が約10%以上、好ましくは約25
〜90%であることを特徴としている。
The spinneret used in the method for producing a bundle of the present invention is a mesh-shaped spinneret having a large number of closely spaced pores, and has a porosity expressed by α + = X 100a of about 10% or more, preferably about 25%.
It is characterized by being ~90%.

1だ、本発明において用いられる紡糸口金は、近接した
多数の細隙を有し、且つ隣接する細隙から押出された懸
濁液が互いに往来し得るような構造を有しており、より
安定な紡糸を可能とする構造であることを特徴としてい
る。
First, the spinneret used in the present invention has a structure in which it has a large number of closely spaced slits, and the suspension extruded from the adjacent slits can pass through each other, making it more stable. It is characterized by a structure that allows for flexible spinning.

前記紡糸の際、口金の少なくとも吐出表面は加熱されて
いるのが好ましい。この口金の吐出側表面を加熱するた
めには、該口金表面にエネルギーを供給する必要がある
。その方法は種々存在するが、該口金表面を自己発熱せ
しめる場合、伝熱により加熱する場合、両者を併用する
場合がある。
During the spinning, at least the discharge surface of the spinneret is preferably heated. In order to heat the discharge side surface of this die, it is necessary to supply energy to the die surface. There are various methods for this, including cases where the surface of the die is made to generate heat by itself, cases where it is heated by heat transfer, and cases where both are used in combination.

該口金表面を自己発熱せしめる手段としては、該口金表
面を導電体で構成し、直流又は交流電源と接続して通電
せしめて、該口金表面に発生するジュール熱を利用する
方法(以下通電加熱法と呼ぶ)、該口金表面を導電体で
構成し、それに好適な周波数の誘導磁界を印加し、うず
電流を生成せしめ発熱せしめる、所謂誘導加熱を利用す
る方法、該口金表面を誘電体で構成し、それに好適な周
波数の電界を印加し、誘電体損失を生じせしめ、発熱せ
しめる所謂誘電加熱を利用する方法等がある。それに好
適な周波数の電界を印加し、誘電体損失を生じせしめ発
熱せしめ、所謂誘電加熱を利用する方法等がある。
As a means for self-heating the surface of the cap, the surface of the cap is made of a conductor, and the surface of the cap is connected to a DC or AC power supply to supply electricity, thereby utilizing the Joule heat generated on the surface of the cap (hereinafter referred to as the energization heating method). A method that utilizes so-called induction heating, in which the surface of the cap is made of a conductor and an induced magnetic field of a suitable frequency is applied to it to generate eddy current and generate heat; There is a method using so-called dielectric heating, in which an electric field of a suitable frequency is applied thereto to cause dielectric loss and heat generation. There is a method of applying an electric field at a suitable frequency to generate dielectric loss and generating heat, which utilizes so-called dielectric heating.

通電加熱法及び誘電加熱法に使用可能な材料としては白
金、金、銀、銅、チタン、バナジウム、タングステン、
イリジウム、モリブデン。
Materials that can be used in the electrical heating method and dielectric heating method include platinum, gold, silver, copper, titanium, vanadium, tungsten,
Iridium, molybdenum.

ハラシウム、鉄、ニッケル、クローム、コバルト+ 鉛
、 亜s、ビスマス、スズ、アルミニウム等ノ金属単体
、ステンレススチール、ニクロム。
Single metals such as halasium, iron, nickel, chromium, cobalt + lead, sulfur, bismuth, tin, aluminum, stainless steel, nichrome.

タンタル、しんちゅう、りん青銅、ジュラルミン等の合
金、黒鉛、シリコーン、ゲルマニウム。
Alloys such as tantalum, brass, phosphor bronze, and duralumin, graphite, silicone, and germanium.

セV7. 酸化スズ、酸化インジウム、酸化鉄。SeV7. Tin oxide, indium oxide, iron oxide.

酸化ニッケル等の主として半導体の性質を呈する無機化
合物、ポリアセチレン、ポリフェニレン等の半導体の性
質を呈する有機化合物等、104〜1090備程度の比
抵抗を有する物質を上記紡糸態様の口金に形成したもの
が有利に使用される。
It is advantageous to form a material having a resistivity of about 104 to 1090 in the spinneret of the above spinning mode, such as an inorganic compound exhibiting mainly semiconductor properties such as nickel oxide, or an organic compound exhibiting semiconductor properties such as polyacetylene or polyphenylene. used for.

本発明の方法において紡糸口金として、通電により発熱
する物質より形成された網(金網)あるいはフォトエツ
チングにより成形されたメツシュ状多孔板等を用いるの
が好適である。網の口開は、繊維の太さなどによって決
められる。
In the method of the present invention, it is preferable to use, as the spinneret, a mesh made of a material that generates heat when energized (wire mesh) or a mesh-like perforated plate formed by photoetching. The opening of the net is determined by the thickness of the fibers.

本発明方法は、前記の如き特徴を有する紡糸口金を使用
するた°めに、この紡糸口金の吐出面を上方に向けるこ
とにより、吐出面上に押出された該懸濁液が細流として
の引取り方向と逆方向に重力が作用し、吐出面上の細隙
間での懸濁液の往来がより容易となり、それによって各
細隙への懸濁液の供給も一層安定化されることになる。
In the method of the present invention, in order to use a spinneret having the above-mentioned characteristics, by orienting the discharge surface of the spinneret upward, the suspension extruded onto the discharge surface is drawn as a trickle. Gravity acts in the opposite direction to the taking direction, making it easier for the suspension to flow through the narrow gaps on the discharge surface, thereby further stabilizing the supply of the suspension to each narrow gap. .

即ち、本発明における集束体の製造は、該紡糸口金の吐
出面を上方に向けて、吐出面の法線ベクトルが重力と逆
方向のベクトルと方向が全く一致するか、はずれても数
度程度の範囲である、所謂−上方紡糸によることが望筐
しい。
That is, in the production of the bundle in the present invention, the discharge surface of the spinneret is directed upward, and the normal vector of the discharge surface is completely aligned with the vector in the opposite direction to gravity, or even if it deviates by only a few degrees. It is preferable to use so-called upward spinning, which is in the range of .

この様に多数の細隙を有する紡糸口金を用い、上方紡糸
を行なう本発明の製造法においては、紡糸口金に負荷さ
れる圧力を小さくすることが出来、それによって紡糸口
金の機械的強度、例えば紡糸口金の厚さを極めて薄いも
のとすることが可能となった。この極めて薄い紡糸口金
を用いることによって、供給された懸濁液があたかも紡
糸口金の仕切部材で単に裁断されるが如く細流化される
ため、吐出時における圧力損失が小さくすることが出来
、それ故に本発明の如き固体の微粉末状物質を高濃度に
含有した懸濁液を用いた紡糸が安定に行なうことが可能
となった。特に従来のオリフィス紡糸によっては極めて
困難とされていた固体微粉末状物質の高濃度含有液から
の比較的細い繊維、あるいは極細の繊維の紡糸が本発明
法によってはじめて可能となった。即ち、本発明により
磁化性微粉末状物質の含有量が高いことが必要とされる
磁化性繊維の製造が可能である。
In the manufacturing method of the present invention in which upward spinning is performed using a spinneret having a large number of slits as described above, the pressure applied to the spinneret can be reduced, thereby improving the mechanical strength of the spinneret, e.g. It has become possible to make the thickness of the spinneret extremely thin. By using this extremely thin spinneret, the supplied suspension is made into a trickle as if it were simply cut by the partition member of the spinneret, so the pressure loss during discharge can be reduced, and therefore It has become possible to stably perform spinning using a suspension containing a high concentration of a solid fine powder substance as in the present invention. In particular, the method of the present invention has made it possible for the first time to spin relatively thin fibers or ultra-fine fibers from a solution containing a high concentration of solid fine powder substances, which was extremely difficult to achieve by conventional orifice spinning. That is, according to the present invention, it is possible to produce magnetic fibers that require a high content of magnetic fine powder substances.

また、本発明法においては、吐出直後の冷却効果を大き
くすることが出来、一層短い距離とより短い時間で紡糸
口金を離れた細流の温度を急激に低下せしめることが可
能となるだめ、より一層配向の進んだ未延伸繊維を安定
に製造することが容易となる。これまでオリフィス紡糸
により試みられた高濃度の磁化性微粉末状物質を含有j
7た繊維は強度の点で実用上問題であったけれども、配
向の進みやすい本発明法によって実用に耐え得る強度を
有する高濃度磁化性微粉末状物質含有繊維が得られる様
になり、これまで得られなかった比較的細い該繊維、さ
らには極細の繊維も得ることが可能である。
Furthermore, in the method of the present invention, the cooling effect immediately after discharge can be increased, and the temperature of the trickle that has left the spinneret can be rapidly lowered in a shorter distance and in a shorter time. It becomes easy to stably produce highly oriented undrawn fibers. Containing a high concentration of magnetic fine powder material that has been tried so far by orifice spinning
However, using the method of the present invention, which facilitates orientation, it has become possible to obtain fibers containing a highly concentrated magnetic fine powder substance that has a strength that can withstand practical use. It is possible to obtain the relatively thin fibers that were not obtained, and even ultra-fine fibers.

また、前記の如き特徴を有する本発明の集束体の製造法
によれば、繊維軸方向に沼ってその断面形状及び断面積
が不規則に変化している等の前記%徴ある磁化性繊維及
びその集束体を得ることができる。該繊維及び繊維集束
体は、その断面形状及び断面形状によって、従来の磁化
性繊維では得られなかった柔軟性に富み、且つ、磁化性
微粉末状物質を多葉に含有するものである。
Further, according to the method for producing a bundle of the present invention having the above-mentioned characteristics, the magnetizable fibers having the above-mentioned characteristics such as being swamped in the fiber axis direction and whose cross-sectional shape and cross-sectional area change irregularly. and a bundle thereof can be obtained. The fibers and fiber bundles have a high degree of flexibility due to their cross-sectional shape and cross-sectional shape, which cannot be obtained with conventional magnetic fibers, and contain a large number of magnetic fine powder substances.

本発明の集束体製造法において、吐出速度に比して細流
の引取り速度を大きくすることにより、断面形状及び断
面積の変化がより大きく、配向がより進んだ、即ち、よ
り柔軟性に富み、強度もより高い磁化性繊維が得やすい
In the method for manufacturing a bundle of the present invention, by increasing the take-up speed of the trickle compared to the discharge speed, the change in cross-sectional shape and cross-sectional area is larger, and the orientation is more advanced, that is, it is more flexible. , it is easy to obtain magnetic fibers with higher strength.

さらに本発明の磁化性繊維及びその集束体は、その断面
形状が非円形であり、その不規則な変化を有しており、
場合によっては種々の特殊な断面形状、例えば、三角、
星形、T型等の断面形状をとることも出来ることから、
表面積が大きいヨ特徴を有している。それ故に繊維表面
を利用する用途、例えば磁性フィルター等においてはそ
の特徴がいかんなく発揮される。
Furthermore, the magnetizable fibers and bundles thereof of the present invention have a non-circular cross-sectional shape and have irregular changes,
In some cases, various special cross-sectional shapes, e.g. triangular,
Since it can also have cross-sectional shapes such as star-shaped or T-shaped,
It has a large surface area. Therefore, its characteristics are fully exhibited in applications that utilize the fiber surface, such as magnetic filters.

本発明の磁化性繊維は、単繊維として用いることも出来
、磁化性繊維集束体は、フィラメント状態又は切断した
ステーブル状で巻縮した状態あるいは巻縮しない状態で
用いることが出来る。その形態としては、例えば、糸あ
るいは編物、織物、グエブ、不織布、その他の繊維構造
体を挙げることができる。これらの構造体において必要
に応じて、通常の繊維を混合して用いることも可能であ
る。
The magnetizable fiber of the present invention can be used as a single fiber, and the magnetizable fiber bundle can be used in the form of a filament or a cut stable in a crimped or uncrimped state. Examples of its form include yarn, knitted fabric, woven fabric, woven fabric, nonwoven fabric, and other fibrous structures. It is also possible to mix and use ordinary fibers in these structures, if necessary.

さらに、本発明の磁化性繊維またはその集合体あるいは
それを用いた繊維構造体に着磁する方法としては、公知
のいかなる方法を用いてもよく、例えば繊維あるいは集
束体の状態で磁場中に保つ方法、繊維構造体とした後に
磁場中に保持する方法等があげられる。冑、紡糸時に着
磁することも可能であり、脱磁と着磁を組み合わせるこ
ともできる。
Furthermore, any known method may be used to magnetize the magnetizable fibers of the present invention, their aggregates, or fiber structures using the same, such as keeping the fibers or bundles in a magnetic field. method, and a method in which the fiber structure is formed into a fiber structure and then held in a magnetic field. It is also possible to magnetize during spinning, and it is also possible to combine demagnetization and magnetization.

かくして、本発明によって得られる磁性繊維及び磁性繊
維構造体の用途としでは、広範囲にわたって期待され、
例えば磁性ファスナー、磁性フィルター、磁性シート(
車カッ(−用シート等)、健康衣料、磁気テープ、ワイ
ヤメモリー。
Thus, the magnetic fibers and magnetic fiber structures obtained by the present invention are expected to have a wide range of applications.
For example, magnetic fasteners, magnetic filters, magnetic sheets (
Car accessories (- seats, etc.), health clothing, magnetic tape, wire memory.

磁性粉体等の検出素子、布状磁石等を用いた玩具等が挙
げられる。
Examples include toys using detection elements such as magnetic powder, cloth magnets, and the like.

以下、実施例をあげて本発明を詳述するが、本発明はこ
れらに伺等限定を受けるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these examples.

なお、実施例中の1部」は重量部をあられす。In addition, "1 part" in the examples refers to parts by weight.

実施例1 熱可塑性重合体としてポリプロピレン(宇部興産社製8
115M)20部に粒径的1μの微粉末状のバリウム・
フェライト80部を混合し、50φエクストルーダーで
230〜270℃の温度で混練し、紡糸口金に平織30
メツシユの金網(日本フィルコン社製)を用いて該紡糸
口金に2■、50Aの電流を通し自己発熱させながら急
冷し、引取り速度sm/分でフィラメント状繊維集束体
を得た。該繊維は断面形状が非円形であり、長さ方向に
対し断面積の変化を有しておシ、該集束体のCV(ト)
は0.6であり、そのうちの1本の繊維の〔CV(F)
〕は0.5であり、D/dは1.6であった。該フィラ
メント状繊維集束体は非常にしなやかであった。
Example 1 Polypropylene (manufactured by Ube Industries, Ltd. 8) was used as a thermoplastic polymer.
115M) 20 parts of barium in the form of fine powder with a particle size of 1μ.
Mix 80 parts of ferrite, knead with a 50φ extruder at a temperature of 230 to 270°C, and apply 30 parts of plain weave to the spinneret.
A current of 50 A was passed through the spinneret using a mesh wire mesh (manufactured by Nippon Filcon Co., Ltd.) to rapidly cool the spinneret while causing self-heating, and a filamentary fiber bundle was obtained at a take-up speed of sm/min. The fibers have a non-circular cross-sectional shape, and the cross-sectional area changes in the longitudinal direction, and the CV (g) of the bundle
is 0.6, and the [CV (F)
] was 0.5, and D/d was 1.6. The filamentary fiber bundle was very pliable.

実施例2 熱可塑性重合体としてポリブテン−1(ゼネラル・サイ
エンスコーポレーション製)2部mに粒径的1μの微粉
末状のSrフェライト(日本弁柄工業■製)80部をニ
ーグーで十分混合して後チップ化した。該チップを30
φエクストルーダーで200〜230℃の温度で溶融懸
濁液化し、紡糸口金に平織30メツシユの金網(日本金
網商工■)を用いて該口金に2V、48Aの電流を流し
、自己発熱させながら吐出せしめた後、急冷し引取り速
度s m7分でフィラメント状繊維集束体を得だ。゛そ
の集束体のCV(5)は0.5であり、そのうちの1本
の繊維の(CV(F))は0.35、D / dは1.
5であった。又、繊維平均断面積は約5X10’wJで
あった。
Example 2 As a thermoplastic polymer, 2 parts of polybutene-1 (manufactured by General Science Corporation) and 80 parts of finely powdered Sr ferrite (manufactured by Nippon Bengara Kogyo ■) with a particle size of 1 μ were thoroughly mixed in a Ni-Goo. It was later made into a chip. 30 chips
It is melted into a suspension using a φ extruder at a temperature of 200 to 230°C, and a 30-mesh plain weave wire mesh (Nippon Kinami Shoko ■) is used as a spinneret, and a current of 2 V and 48 A is passed through the spinneret to generate self-heating while discharging. After cooling, the mixture was rapidly cooled and a filamentary fiber bundle was obtained at a drawing speed of s m for 7 minutes. ``The CV(5) of the bundle is 0.5, the (CV(F)) of one of the fibers is 0.35, and the D/d is 1.
It was 5. Further, the average cross-sectional area of the fibers was approximately 5 x 10'wJ.

又、該フィラメント集束体は非常にしなやかであった。Also, the filament bundle was very pliable.

実施例3 熱可塑性重合体としてポリエチレンテレフタレート(極
限粘度〔η〕=O,64−帝人■製)を用い、エクスト
ルーダの温度を280〜300℃とする以外全て実施例
2と同様の操作を行ない、フィラメント状繊維集束体を
得た。その集束体のCV(4)は0.4であシ、そのう
ちの1本の繊維の[V(F)]は0.25であり、 D
/dは1.4であった。
Example 3 All operations were performed in the same manner as in Example 2, except that polyethylene terephthalate (intrinsic viscosity [η] = O, 64-manufactured by Teijin ■) was used as the thermoplastic polymer, and the extruder temperature was set at 280 to 300°C. A filamentary fiber bundle was obtained. The CV(4) of the bundle is 0.4, and the [V(F)] of one fiber is 0.25, D
/d was 1.4.

実施例4 実施例2で得たフィラメント状繊維集束体をウェブ状に
し、バインダー(アクリル酸エステル)で不織布状に固
定させた後、6000エルステツドの磁場をかけ着磁し
た。該不織布の表面ガウスを測定したところ100ガウ
スであった。
Example 4 The filamentary fiber bundle obtained in Example 2 was formed into a web, fixed in the form of a nonwoven fabric with a binder (acrylic acid ester), and then magnetized by applying a magnetic field of 6000 oersteds. The surface Gauss of the nonwoven fabric was measured and found to be 100 Gauss.

冑、目付けa o o t/−であった。 該不織布は
しなやかでアシ、柔軟性に富んでいた。
The helmet was ao ot/-. The nonwoven fabric was supple, stiff, and highly flexible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁化性繊維の側面を例示する電子顕微
鏡写真(倍率は100)である。
FIG. 1 is an electron micrograph (magnification: 100) illustrating a side view of the magnetizable fiber of the present invention.

Claims (1)

【特許請求の範囲】 1、 熱可塑性重合体と磁化性微粉末状物質との混合物
からなる繊維であって、 (1)  該繊維は、その繊維軸方向に垂直な断面の形
状が非円形であシ、その異形係数(D/d)が少なくと
も1.1であり、且つ、該異形係数が繊維軸方向に沿っ
て不規則に変化しており、 (2)  該繊維は、その繊維軸に垂直な断面の面積が
軸方向に沿って不規則な変化を有しており、その繊維内
断面積変動係数COV (F) ]が0.05〜1.5
の範囲にあり、 (3)  該磁化性微粉末状物質が30〜95重量%の
範囲で含有された、 ことを特徴とする磁化性繊維。 2 該微粉末状物質社、その90%以上が3μ以下の粒
径を有する第1項記載の磁化性繊維。 λ 該微粉末状物質が、強磁性体及びフェリ磁性体の群
から選ばれる少なくとも1種である第1項記載の磁化性
繊維。 覗 該繊維は、その平均断面積がI X 10−’〜2
×lO−の範囲にある第1項記載の磁化性繊維。 & 熱可塑性重合体と磁化性微粉末状物質との混合物か
らなる繊維であって、 (1)  該繊維は、その繊維軸方向に垂直な断面の形
状が非円形であり、その異形係数(D/d)が少々くと
も1.1であり、且つ、該異形係数が繊維軸方向に?6
つて不規則に変化しており、 (2)  該繊維は、その繊維軸に垂直な断面の面積が
軸方向に沿って不規則な変化をイしており、その繊維内
断面積変動係数[CV(F)]が0.05〜1.5の範
囲にあり、 (3)  該磁化性微粉末状物質が30〜95重量俤の
範囲で含有されており、 (4)  着磁により磁化された ことを特徴とする磁性繊維。 α 熱可塑性重合体と磁化性微粉末状物質との混合物か
らなる繊維集束体であって、 (1)  該集束体を構成する繊維は、その繊維軸方向
に垂直な断面の形状が非円形であり、その異形係数(D
/d)が少なくとも1.1であり、且つ、該異形係数が
繊維軸方向に沿って不規則に変化しており、 (2)  該繊維は、その繊維軸に垂直な断面の面積が
軸方向に沿って不規則な変化を有しており、その繊維内
断面積変動係数[C!V(F))が0,05〜1.5の
範囲にあり、 (3)  該集束体の任意の位置で繊維軸に垂直に該集
束体を切断した場合の各繊維の断面積の変動が、集束体
内繊維断面積変動係数CCV(A)]で表わして0.0
5〜2.0の範囲であり、 (4)  該磁化性微粉末状物質が、30〜95重量%
の範囲で含有された、 ことを特徴とする磁化性繊維集束体。 7、 少なくとも一方の面に凹凸を有する仕切り部材に
よって仕切られた多数の細隙を有し、且つ、該細隙の成
る細隙から押出される溶融液がそれに隣接する他の細隙
から押出される溶融液と該仕切シ部材の凹部を通じて互
いに往来し得るように構成されたメツシュ状紡糸口金の
該凹凸面を溶融液の吐出側に向けて溶融した熱可塑性重
合体と磁化性微粉末状物質との懸濁液を押出し、この際
該紡糸口金の該懸濁液の吐出面及びその近傍に冷却流体
を供給して冷却しながら、該細隙を通じて押出される懸
濁液を引取って該懸濁液を多数の分離された繊維状細流
に変換し、固化することを特徴とする、 の形状が非円形であり、その異形係数(D/d )が少
なくとも1.1であり、且つ、該異形係数が繊維軸方向
に沿って不規則に変化しており、 (3)  該1M、維は、その繊維軸に垂直な断面の面
積が軸方向に活って不規則な変化を有しており、その繊
維内断面積変動係数〔CV(F)]が0,05〜1.5
の範囲にちり、 (4)  該集束体の任意の位置で繊維軸に直角方向に
該集束体を切断した場合の各繊維の断面積の変動が、集
束体内繊維断面積変動係数[V(A):lr表わして0
.05〜2.0の範囲であり、 (5)  該磁化性微粉末状物質が、30〜95重i係
の範囲で含有された、 磁化性繊維集束体の製造方法。 a 熱可塑性重合体と磁化性微粉末状物質との混合物か
らなる繊維集束体を用いた繊維構造 3体であって、該
集束体が (1)  該集束体を構成する繊維は、その繊維軸方向
に垂直な断面の形状が非円形であり、その異形係数(D
/d)が少なくとも1.1であり、且つ、該異形係数が
繊維軸方向に溢って不規則に変化しており、 (2)  該繊維は、その繊維軸に垂直な断面の面積が
軸方向に溢って不規則な変化を有しておシ、その繊維内
断面積変動係数CCV(F)’]が0.05〜1.5の
範囲に壱シ、 (3)  該集束体の任意の位置で繊維軸に垂直に該集
束体を切断した場合の各繊維の断面積の変動が、集束体
内繊維断面積変動係数〔Cv(A)〕で表わしテ0.0
5〜2.0 (7)範囲テあり、 (4)  該磁化性゛微粉末状物質が、30〜95重量
%の範囲で含有された、 ものであり、着磁により磁化されたことを特徴とする磁
性繊維構造体。
[Scope of Claims] 1. A fiber made of a mixture of a thermoplastic polymer and a magnetic fine powder substance, wherein (1) the fiber has a non-circular cross-sectional shape perpendicular to the fiber axis direction; the reeds have a deformation coefficient (D/d) of at least 1.1, and the deformation coefficient varies irregularly along the fiber axis; (2) the fiber has a shape coefficient (D/d) of at least 1.1; The vertical cross-sectional area has irregular changes along the axial direction, and the intrafiber cross-sectional area variation coefficient COV (F)] is 0.05 to 1.5.
(3) A magnetic fiber characterized in that the magnetic fine powder substance is contained in a range of 30 to 95% by weight. 2. The magnetic fiber according to item 1, of which 90% or more has a particle size of 3 μm or less. λ The magnetizable fiber according to item 1, wherein the fine powder substance is at least one selected from the group of ferromagnetic materials and ferrimagnetic materials. The fibers have an average cross-sectional area of I x 10-' to 2
The magnetizable fiber according to item 1, which is in the range of xlO-. & A fiber made of a mixture of a thermoplastic polymer and a magnetic fine powder substance, (1) The fiber has a non-circular cross-sectional shape perpendicular to the fiber axis direction, and has a non-circular shape coefficient (D /d) is at least 1.1, and the irregularity coefficient is in the fiber axis direction? 6
(2) The area of the cross section perpendicular to the fiber axis changes irregularly along the axial direction, and the coefficient of variation of the cross-sectional area within the fiber [CV (F)] is in the range of 0.05 to 1.5, (3) the magnetic fine powder substance is contained in the range of 30 to 95 weight tons, and (4) it is magnetized by magnetization. A magnetic fiber characterized by: α A fiber bundle made of a mixture of a thermoplastic polymer and a magnetic fine powder substance, wherein (1) the fibers constituting the bundle have a non-circular cross-sectional shape perpendicular to the fiber axis direction; Yes, its anomaly coefficient (D
/d) is at least 1.1, and the deformation coefficient varies irregularly along the fiber axis direction, and (2) the fiber has a cross-sectional area perpendicular to the fiber axis that is It has an irregular variation along the fiber cross-sectional area coefficient [C! V(F)) is in the range of 0.05 to 1.5, and (3) the variation in the cross-sectional area of each fiber when the bundle is cut perpendicular to the fiber axis at any position of the bundle is , the fiber cross-sectional area variation coefficient within the bundle CCV (A)] is 0.0
5 to 2.0, and (4) the magnetic fine powder substance is 30 to 95% by weight.
A magnetizable fiber bundle comprising: 7. It has a large number of slits partitioned by partition members having irregularities on at least one surface, and the melt extruded from the slits formed by the slits is extruded from other adjacent slits. A thermoplastic polymer and a magnetic fine powder substance melted with the uneven surface of the mesh spinneret configured to be able to pass through the melt and the concave portion of the partition member toward the discharge side of the melt. At this time, a cooling fluid is supplied to the discharge surface of the spinneret and the vicinity thereof to cool the suspension, and the suspension extruded through the slit is drawn and the suspension is extruded. is non-circular in shape and has a shape factor (D/d) of at least 1.1; The deformation coefficient varies irregularly along the fiber axis direction, and (3) the 1M fiber has an irregular variation in area of a cross section perpendicular to the fiber axis in the axial direction. The fiber internal cross-sectional area coefficient of variation [CV(F)] is 0.05 to 1.5.
(4) The variation in the cross-sectional area of each fiber when the bundle is cut in a direction perpendicular to the fiber axis at any position in the bundle is determined by the fiber cross-sectional area variation coefficient within the bundle [V(A ):lr represents 0
.. 05 to 2.0, and (5) the magnetic fine powder substance is contained in a range of 30 to 95 I. a. A fiber structure using a fiber bundle made of a mixture of a thermoplastic polymer and a magnetic fine powder substance. The shape of the cross section perpendicular to the direction is non-circular, and its irregularity coefficient (D
/d) is at least 1.1, and the deformation coefficient overflows and changes irregularly in the fiber axis direction, (2) the fiber has an area of a cross section perpendicular to the fiber axis (3) The bundle has irregular variations in the direction, and its intrafiber cross-sectional area coefficient of variation CCV(F)' is in the range of 0.05 to 1.5. The variation in the cross-sectional area of each fiber when the bundle is cut perpendicular to the fiber axis at an arbitrary position is expressed as the coefficient of variation of the cross-sectional area of the fibers within the bundle [Cv(A)], which is te 0.0.
5 to 2.0 (7) Within the range (4) The magnetizable fine powder substance is contained in a range of 30 to 95% by weight, and is characterized by being magnetized by magnetization. magnetic fiber structure.
JP21843782A 1982-12-15 1982-12-15 Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure Granted JPS59112018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21843782A JPS59112018A (en) 1982-12-15 1982-12-15 Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21843782A JPS59112018A (en) 1982-12-15 1982-12-15 Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure

Publications (2)

Publication Number Publication Date
JPS59112018A true JPS59112018A (en) 1984-06-28
JPS64482B2 JPS64482B2 (en) 1989-01-06

Family

ID=16719893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21843782A Granted JPS59112018A (en) 1982-12-15 1982-12-15 Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure

Country Status (1)

Country Link
JP (1) JPS59112018A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206606A (en) * 1988-02-15 1989-08-18 Shizuoka Prefecture Thread-like magnet and cloth-like magnet and manufacture thereof
WO1991013558A1 (en) * 1990-03-16 1991-09-19 Kenkichi Tsukamoto Filter-tipped cigarette
JPH06154528A (en) * 1992-08-28 1994-06-03 Korea Advanced Inst Of Sci Technol Magnetic filter and its production
JPH07215779A (en) * 1994-01-27 1995-08-15 Japan Exlan Co Ltd Cyanoethylated ceramic particles, ceramic-containing fiber using same and its production
EP0670172A1 (en) * 1994-02-22 1995-09-06 Korea Institute Of Science And Technology Magnetic filter material
US5851668A (en) * 1992-11-24 1998-12-22 Hoechst Celanese Corp Cut-resistant fiber containing a hard filler
US6162538A (en) * 1992-11-24 2000-12-19 Clemson University Research Foundation Filled cut-resistant fibers
WO2001025514A1 (en) * 1999-10-04 2001-04-12 Insung Powdertech Co., Ltd. Fibre and fabrics with magnetic material
JP2004091932A (en) * 2002-08-29 2004-03-25 Gunze Ltd Method for producing magnetic fiber and magnetic fiber
JP2007190237A (en) * 2006-01-20 2007-08-02 Ishiguro Seisakusho:Kk Raw material-classifiable receiving base for furniture
CN102330176A (en) * 2011-05-25 2012-01-25 高莉萍 Production method for magnetic terylene fiber
JP2017203220A (en) * 2016-05-09 2017-11-16 ユニプラス滋賀株式会社 Magnetizable fiber, method for producing the same, twisted yarn and magnetized fabric

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324402A (en) * 1976-08-12 1978-03-07 Mitsubishi Rayon Co Process for making sheettlike structures
JPS5365424A (en) * 1976-11-22 1978-06-10 Takamatsu Electric Works Ltd Magnetic fiber
JPS54158007U (en) * 1978-04-21 1979-11-02
JPS5598908A (en) * 1979-01-18 1980-07-28 Janome Sewing Machine Co Ltd Stencil
JPS5598909A (en) * 1979-01-24 1980-07-28 Takeshi Naito Fiber and sewn product
JPS55128062A (en) * 1979-03-27 1980-10-03 Teijin Ltd Production of net like fiber bundle
JPS55128662A (en) * 1979-03-23 1980-10-04 Nissan Motor Co Ltd Ignition power distributor for internal combustion engine
JPS56140110A (en) * 1980-03-28 1981-11-02 Teijin Ltd Novel filament like fibers, their collected material, its preparation and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324402A (en) * 1976-08-12 1978-03-07 Mitsubishi Rayon Co Process for making sheettlike structures
JPS5365424A (en) * 1976-11-22 1978-06-10 Takamatsu Electric Works Ltd Magnetic fiber
JPS54158007U (en) * 1978-04-21 1979-11-02
JPS5598908A (en) * 1979-01-18 1980-07-28 Janome Sewing Machine Co Ltd Stencil
JPS5598909A (en) * 1979-01-24 1980-07-28 Takeshi Naito Fiber and sewn product
JPS55128662A (en) * 1979-03-23 1980-10-04 Nissan Motor Co Ltd Ignition power distributor for internal combustion engine
JPS55128062A (en) * 1979-03-27 1980-10-03 Teijin Ltd Production of net like fiber bundle
JPS56140110A (en) * 1980-03-28 1981-11-02 Teijin Ltd Novel filament like fibers, their collected material, its preparation and device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206606A (en) * 1988-02-15 1989-08-18 Shizuoka Prefecture Thread-like magnet and cloth-like magnet and manufacture thereof
JPH0454363B2 (en) * 1988-02-15 1992-08-31 Shizuokaken
WO1991013558A1 (en) * 1990-03-16 1991-09-19 Kenkichi Tsukamoto Filter-tipped cigarette
JPH06154528A (en) * 1992-08-28 1994-06-03 Korea Advanced Inst Of Sci Technol Magnetic filter and its production
US6162538A (en) * 1992-11-24 2000-12-19 Clemson University Research Foundation Filled cut-resistant fibers
US6159599A (en) * 1992-11-24 2000-12-12 Honeywell International, Inc. Cut-resistant sheath/core fiber
US5851668A (en) * 1992-11-24 1998-12-22 Hoechst Celanese Corp Cut-resistant fiber containing a hard filler
US5976998A (en) * 1992-11-24 1999-11-02 Hoechst Celanese Corporation Cut resistant non-woven fabrics
US6103372A (en) * 1992-11-24 2000-08-15 Hoechst Celanese Corporation Filled cut-resistant fiber
US6126879A (en) * 1992-11-24 2000-10-03 Honeywell International Inc. Method of making a cut-resistant fiber and fabrics, and the fabric made thereby
US6127028A (en) * 1992-11-24 2000-10-03 Hoechst Celanese Corporation Composite yarn comprising filled cut-resistant fiber
US6210798B1 (en) 1992-11-24 2001-04-03 Honeywell International, Inc. Cut-resistant gloves
JPH07215779A (en) * 1994-01-27 1995-08-15 Japan Exlan Co Ltd Cyanoethylated ceramic particles, ceramic-containing fiber using same and its production
EP0670172A1 (en) * 1994-02-22 1995-09-06 Korea Institute Of Science And Technology Magnetic filter material
WO2001025514A1 (en) * 1999-10-04 2001-04-12 Insung Powdertech Co., Ltd. Fibre and fabrics with magnetic material
JP2004091932A (en) * 2002-08-29 2004-03-25 Gunze Ltd Method for producing magnetic fiber and magnetic fiber
JP2007190237A (en) * 2006-01-20 2007-08-02 Ishiguro Seisakusho:Kk Raw material-classifiable receiving base for furniture
CN102330176A (en) * 2011-05-25 2012-01-25 高莉萍 Production method for magnetic terylene fiber
JP2017203220A (en) * 2016-05-09 2017-11-16 ユニプラス滋賀株式会社 Magnetizable fiber, method for producing the same, twisted yarn and magnetized fabric

Also Published As

Publication number Publication date
JPS64482B2 (en) 1989-01-06

Similar Documents

Publication Publication Date Title
US3958066A (en) Conductive synthetic fibers
EP1559815B1 (en) Conductive yarn, method of manufacture and use thereof
US4207376A (en) Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
JPS59112018A (en) Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure
US8017233B2 (en) Fibers having excellent responsiveness to magnetic fields and excellent conductivity, as well as articles made of the same
CN101484621B (en) Conductive sheath-core conjugate fiber and process for producing the same
US5202185A (en) Sheath-core spinning of multilobal conductive core filaments
JP4902545B2 (en) Conductive conjugate fiber and method for producing the same
JP2004143659A (en) Sheath-core fiber having high chemical-resistance, electroconductivity and stain repellency, method for manufacturing the same, and usage of the same
US7094467B2 (en) Antistatic polymer monofilament, method for making an antistatic polymer monofilament for the production of spiral fabrics and spiral fabrics formed with such monofilaments
US5260013A (en) Sheath-core spinning of multilobal conductive core filaments
JP4367038B2 (en) Fiber and fabric
JP4872688B2 (en) Conductive yarn
JP4905373B2 (en) Conductive polyester fiber and brush product comprising the same
JP2000239925A (en) Resin-reinforcing material and composite material
JP2008101314A (en) Conductive polyester fiber and brush product made of the same
JP2009191398A (en) Polyester fiber and fiber product produced by using the same
JPS60444B2 (en) conductive fiber
JP3951010B2 (en) Conductive synthetic resin filament for antistatic, its production method and its use
JP2007247095A (en) Conductive polyester fiber
JP2541215B2 (en) Filiform heating element and manufacturing method thereof
JPS5860015A (en) Preparation of electrically conductive composite fiber
JP2007247094A (en) Conductive polyester fiber
JP2006097145A (en) Fiber composite material and use thereof
JPH01183520A (en) Electrically conductive fiber