JPS63270373A - Ceramic superconductor - Google Patents

Ceramic superconductor

Info

Publication number
JPS63270373A
JPS63270373A JP62106720A JP10672087A JPS63270373A JP S63270373 A JPS63270373 A JP S63270373A JP 62106720 A JP62106720 A JP 62106720A JP 10672087 A JP10672087 A JP 10672087A JP S63270373 A JPS63270373 A JP S63270373A
Authority
JP
Japan
Prior art keywords
superconductor
protective layer
air
mgo
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106720A
Other languages
Japanese (ja)
Inventor
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Susumu Yoshimura
吉村 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62106720A priority Critical patent/JPS63270373A/en
Publication of JPS63270373A publication Critical patent/JPS63270373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • H10N60/0716Passivating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To form a protecting layer of IIa element oxide on the surface of a ceramic superconductor to enable it to be deteriorated by moisture in air or an acidic gas such as carbon dioxide. CONSTITUTION:A protecting layer of a IIa element oxide such as MgO or BaO is formed on the surface of a ceramic superconductor such as Y-Ba-Cu-O. The IIa element oxide in the protecting layer becomes a strong base to absorb acidic gases in air such as carbon dioxide, further fine particles of IIa element oxide can absorb some 30-40wt.% of moisture based on its own weight. When MgO is heated at some 400 deg.C in air or at about 300 deg.C in vacuum, the moisture, carbon dioxide or NOx can be removed and the MgO can be used repeatedly.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高温で電気抵抗がほとんどゼロになり高効率
電力貯蔵、強磁場発生、高効率送電等に利用できるセラ
ミックス超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ceramic superconductor that has almost zero electrical resistance at high temperatures and can be used for highly efficient power storage, strong magnetic field generation, highly efficient power transmission, etc.

従来の技術 従来の超電導体としては、ニオブ3スズ(18K)、ニ
オブ3ガリウム(20K)、ニオブ3ゲルマニウム(2
4K)等の合金系があり、これら合金系超電導体のほと
んどが液体ヘリウムを必要とするものであった。しかし
、1986年4月IBMチューリッヒ研究所のに、A、
  ミュラーとJ、G、ベドノルツ両博士によってLa
−Ba−Cu−0系セラミツクスの高温における超電導
現象の示唆があって以来、種々検討され、La−Ba−
Cu−0系(30K)、La−3r−Cu−0系(54
K)、Y−Ba−Cu−0系(98K)  、  Y−
Ba−Cu  −○系 (123K)  、  5c−
Ba−Cu−0系(175K)とセラミックス超電導体
の臨界温度はますます高くなってきており、その応用研
究も盛んに行われている。
Conventional technology Conventional superconductors include niobium tritin (18K), niobium trigallium (20K), and niobium trigermanium (20K).
4K), and most of these alloy-based superconductors require liquid helium. However, in April 1986, at the IBM Zurich Research Institute, A.
La by Dr. Muller and Dr. J.G.
-Since the suggestion of superconductivity in Ba-Cu-0 ceramics at high temperatures, various studies have been conducted, and La-Ba-
Cu-0 series (30K), La-3r-Cu-0 series (54
K), Y-Ba-Cu-0 system (98K), Y-
Ba-Cu -○ system (123K), 5c-
The critical temperature of Ba-Cu-0 system (175K) and ceramic superconductors is becoming higher and higher, and applied research is being actively conducted.

発明が解決しようとする問題点 セラミックス超電導体は、空気中の水分、または二酸化
炭素ガス等の酸性ガスに対して非常に弱く、特に水分と
酸性ガスの共存する雰囲気ではその劣化が著しい。
Problems to be Solved by the Invention Ceramic superconductors are extremely sensitive to moisture in the air or acidic gases such as carbon dioxide gas, and their deterioration is particularly significant in an atmosphere where moisture and acidic gas coexist.

問題点を解決するための手段 本発明は、上記の問題点を解決するためセラミックス超
電導体の表面に■a族元素の酸化物を含む保護層をもう
ける。
Means for Solving the Problems In order to solve the above problems, the present invention provides a protective layer containing an oxide of a group a element on the surface of a ceramic superconductor.

作用 本発明によるセラミックス超電導体では、表面保護層中
のIla族元素の酸化物が強い塩基となり空気中の二酸
化炭素ガス等の酸性ガスを吸収するとともに、特に、微
細なIla族元素の酸化物では自重の30〜40Lit
%の水分を吸収することができる。また、MgOでは、
吸収した水分、二酸化炭素ガス、または、二酸化窒素ガ
スを脱離させるには、空気中では約400℃、真空減圧
雰囲気では約300℃程度の低温で充分に再生すること
ができる。
Function: In the ceramic superconductor according to the present invention, the oxide of the Ila group element in the surface protective layer becomes a strong base and absorbs acidic gases such as carbon dioxide gas in the air. 30-40 liters of own weight
% of water can be absorbed. Also, in MgO,
In order to desorb absorbed moisture, carbon dioxide gas, or nitrogen dioxide gas, sufficient regeneration can be performed at a low temperature of about 400° C. in air and about 300° C. in a vacuum reduced pressure atmosphere.

実施例 以下本発明の実施例について説明する。Example Examples of the present invention will be described below.

(実施例1) Y:Ba:Cu=1:2:3のモル比で各金属硝酸塩を
含む水溶液を撹拌し、pH計でpH値を確認しながらグ
アニジン炭酸塩水溶液を添加した。本実施例では、pH
8を終点としてグアニジン炭酸塩の添加を止め、静置後
、濾過し室温で予備乾燥させた後、アルミナルツボに入
れ空気中700℃で仮焼した。 仮焼後、混合播潰機で
粉砕混合し、アルミナルツボに入れ空気中900℃で焼
成し、セラミックス超電導体粉末を得た。
(Example 1) An aqueous solution containing each metal nitrate at a molar ratio of Y:Ba:Cu=1:2:3 was stirred, and a guanidine carbonate aqueous solution was added while checking the pH value with a pH meter. In this example, pH
The addition of guanidine carbonate was stopped at the end point of 8, and after being allowed to stand, the mixture was filtered, pre-dried at room temperature, and then placed in an alumina crucible and calcined in air at 700°C. After calcination, the mixture was pulverized and mixed using a mixer and crusher, placed in an alumina crucible, and fired at 900°C in air to obtain ceramic superconductor powder.

合成したセラミックス超電導体粉末を1)2/cnt以
上で加圧成型し、空気中900℃で焼成した後、ダイヤ
モンドカッターで2IIIII角の棒状に切り出して試
料を作成した。
The synthesized ceramic superconductor powder was pressure-molded at 1)2/cnt or more, fired at 900° C. in air, and then cut into a 2III square rod shape with a diamond cutter to prepare a sample.

その試料に電極を取り付けた後、表面にMgOの保護層
を設けた。MgO保護層は、マグネシウムエトキシドよ
り作成した水酸化マグネシウムを減圧雰囲気下150〜
200℃で処理し、ドライエア、またはドライネ活性ガ
ス例えば窒素、アルゴンガス等を流したドライボックス
内で粉砕混合し、エバール樹脂(セキスイ商標)をモレ
キュラシーブで脱水処理したトルエンを溶剤として混合
しペースト状にしたものをセラミックス超電導体試料表
面に塗布した後、酸素気流中400℃で処理して形成し
た。
After attaching the electrode to the sample, a protective layer of MgO was provided on the surface. The MgO protective layer is made of magnesium hydroxide made from magnesium ethoxide and heated to 150~
Processed at 200°C, pulverized and mixed in a dry box flushed with dry air or dry active gas such as nitrogen, argon gas, etc. Eval resin (Sekisui trademark) dehydrated with a molecular sieve and toluene mixed as a solvent to form a paste. This was applied to the surface of a ceramic superconductor sample, and then treated at 400° C. in an oxygen stream to form a sample.

焼成直後と25℃、二酸化炭素10*、相対湿度50零
の雰囲気下に三日間放置した後のMgO保護層を設けた
試料とMgO保護層のない試料のそれぞれの電気抵抗の
温度特性を測定した。その結果を第1図に示した。その
結果、MgO保護層のない試料では、焼成直後に比べて
臨界温度が40に程度低くなった。これに対してMgO
保護層を設けた試料では、焼成直後と同様100に付近
で臨界温度を示し劣化がほとんどなかった。
The temperature characteristics of the electrical resistance of the sample with the MgO protective layer and the sample without the MgO protective layer were measured immediately after firing and after being left in an atmosphere of 25°C, carbon dioxide 10*, and relative humidity 50 zero for three days. . The results are shown in Figure 1. As a result, the critical temperature of the sample without the MgO protective layer was about 40 degrees lower than that immediately after firing. On the other hand, MgO
In the sample provided with the protective layer, the critical temperature was around 100° C., similar to that immediately after firing, and there was almost no deterioration.

(実施例2) n−ブチルアミン2倍希釈の水溶液を氷で冷やして二酸
化炭素ガスを送りn−ブチルアミン炭酸塩を含む水溶液
を作成した。次に、共沈物の組成比をY:Ba:Cu=
1:2:3のモル比にするためにBaとCuの量を多く
した各金属硝酸塩を含む水溶液を作成した。n−ブチル
アミン炭酸塩を含む水溶液を撹拌し、pH計でpH値を
確認しながら各金属硝酸塩を含む水溶液を添加して共沈
を行った。各金属硝酸塩を含む水溶液の添加はpH7付
近で止め撹拌を行いながら加温、あるい減圧処理と希硝
酸水溶液によるpH値の調整を行い共沈物の組成比がY
 : B a : Cu = 1 : 2 : 3にな
っていることを確認して、濾過し室温で予備乾燥した後
、アルミナルツボに入れ空気中700℃で仮焼した。
(Example 2) An aqueous solution containing n-butylamine carbonate was prepared by cooling an aqueous solution of n-butylamine twice diluted with ice and supplying carbon dioxide gas. Next, the composition ratio of the coprecipitate is determined as Y:Ba:Cu=
An aqueous solution containing each metal nitrate with increased amounts of Ba and Cu was prepared to achieve a molar ratio of 1:2:3. An aqueous solution containing n-butylamine carbonate was stirred, and while checking the pH value with a pH meter, an aqueous solution containing each metal nitrate was added to perform coprecipitation. The addition of the aqueous solution containing each metal nitrate is stopped at around pH 7, and the composition ratio of the coprecipitate is Y
After confirming that: B a : Cu = 1: 2: 3, it was filtered and pre-dried at room temperature, then placed in an alumina crucible and calcined in air at 700°C.

仮焼後、混合描潰機で粉砕混合し、アルミナルツボに入
れ空気中900℃で焼成してセラミックス超電導体粉末
を得た。この超電導体粉末にエバール樹脂1.0重量%
をモレキュラシーブで脱水処理したトルエンを溶剤とし
てドライエア、また、ドライネ活性ガスを流したドライ
ボックス内で混合し、トルエンを飛散させた後ローラブ
レスして試料を作成した。
After calcining, the mixture was pulverized and mixed using a mixer and crusher, placed in an alumina crucible, and fired at 900°C in air to obtain a ceramic superconductor powder. This superconductor powder contains 1.0% by weight of EVAL resin.
Toluene, which had been dehydrated with a molecular sieve, was mixed in a dry box in which dry air or dry active gas was flowed as a solvent, and after the toluene was scattered, a sample was prepared by roller pressing.

この試料に電極を取り付けた後実施例1で用いたMgO
保護層のシート間にはさみローラブレスした。、比較試
料としてはエバール樹脂のみを表面に被覆した試料を用
いた。これらの試料の作成直後と25℃、二酸化炭素1
0%、相対湿度50%の雰囲気下に三日間放置したちの
それぞれの電気抵抗の温度特性を測定した。
After attaching an electrode to this sample, the MgO used in Example 1
It was sandwiched between the sheets of the protective layer and roller pressed. As a comparative sample, a sample whose surface was coated only with Eval resin was used. Immediately after preparing these samples and at 25°C, carbon dioxide 1
The temperature characteristics of each electrical resistance were measured after being left in an atmosphere of 0% relative humidity and 50% relative humidity for three days.

その結果を第2図に示した。どちらの試料も作成直後で
は100K付近で電気抵抗が急激に減少したが、25℃
、二酸化炭素10%、相対湿度50%の雰囲気下で三日
間放置したエバール樹脂のみで被覆した試料では30に
程度低下した温度で電気抵抗が急激に減少した。これに
対して、Mg0で被覆した試料では作成直後と同411
00に付近で電気抵抗の急激な減少が起こり劣化はほと
んどなかった。
The results are shown in Figure 2. For both samples, the electrical resistance decreased rapidly at around 100K immediately after preparation, but at 25℃
In a sample coated only with EVAL resin, which was left in an atmosphere of 10% carbon dioxide and 50% relative humidity for three days, the electrical resistance suddenly decreased at a temperature of about 30%. On the other hand, the sample coated with Mg0 had the same 411
A sharp decrease in electrical resistance occurred near 00, and there was almost no deterioration.

(実施例3) シュウ酸水溶液にn−ブチルアミンを加えpH約10の
n−ブチルアミンシュウ酸塩を含む水溶液を作成した。
(Example 3) n-Butylamine was added to an oxalic acid aqueous solution to create an aqueous solution containing n-butylamine oxalate having a pH of about 10.

次に、共沈物の組成比をLa;Sr:cu=1.2:0
.8: 1のモル比にするためSrとCuの量を多(し
た各金属硝酸塩を含む水溶液を作成した。n−ブチルア
ミンシュウ酸塩を含む水溶液を撹拌し、pH計でpH値
を確認しながら各金属硝酸塩を含む水溶液を添加して共
沈を行った。各金属硝酸塩を含む水溶液の添加は、pH
8付近で止め、La:Sr:Cu=1.2:o、s:i
になっていることを確認して濾過した。
Next, the composition ratio of the coprecipitate is La; Sr: cu = 1.2:0
.. An aqueous solution containing each metal nitrate was prepared by increasing the amount of Sr and Cu to achieve a molar ratio of 8:1.The aqueous solution containing n-butylamine oxalate was stirred, and while checking the pH value with a pH meter. Co-precipitation was carried out by adding an aqueous solution containing each metal nitrate.Addition of the aqueous solution containing each metal nitrate
Stop around 8, La:Sr:Cu=1.2:o, s:i
I checked that it was and filtered it.

室温で予備乾燥させた後、アルミナルツボに入れ空気中
500℃で仮焼した。仮焼後、混合襦潰機で粉砕混合し
、アルミナルツボに入れて空気中800℃で焼成し、セ
ラミックス超電導体粉末を得た。この超電導体粉末にエ
バール樹脂1.0重量%をモレキュラシーブで脱水処理
したトルエンを溶剤としてドライエア、または、ドライ
ネ活性ガスを流したドライボックス内で混合し、トルエ
ンを飛散させた後、ローラブレスしてシート状にし、空
気中800℃で焼成した。
After preliminary drying at room temperature, it was placed in an aluminum crucible and calcined in air at 500°C. After calcining, the mixture was pulverized and mixed using a mixing crusher, placed in an alumina crucible, and fired at 800°C in air to obtain ceramic superconductor powder. This superconductor powder is mixed with 1.0% by weight of Eval resin and toluene, which has been dehydrated using a molecular sieve, in a dry box with dry air or dry active gas flowing through it as a solvent, and after scattering the toluene, roller pressing is performed. It was formed into a sheet and fired in air at 800°C.

この試料に電極を取り付は実施例1と同様の操作でMg
O保護層を設けた。MgO保護層を設けた試料とMgO
保護層のない試料の作成直後と25℃、二酸化炭素10
%、相対湿度50%の雰囲気下に三日間放置した試料の
それぞれの電気抵抗の温度特性を測定した。
Electrodes were attached to this sample in the same manner as in Example 1.
An O protective layer was provided. Sample with MgO protective layer and MgO
Immediately after preparation of the sample without protective layer and 25℃, carbon dioxide 10
%, and the temperature characteristics of the electrical resistance of each sample were measured after being left in an atmosphere of 50% relative humidity for three days.

その結果を第3図に示した。作成直後はどちらの試料も
40に付近で電気抵抗の急激な減少がみられ、電気抵抗
がゼロになったが、25℃、二酸化炭素10%、相対湿
度50%の雰囲気下で三日間放置したMgO保護層の、
ない試料では30に付近で臨界温度を示すとともに臨界
温度付近で電気抵抗がゼロにならずテーリングを起こし
た。これに対して、MgO保護層を設けた試料では、4
0に付近で臨界温度を示すとともに電気抵抗はゼロにな
りほとんど劣化は認められなかった。
The results are shown in Figure 3. Immediately after creation, both samples showed a rapid decrease in electrical resistance around 40°C and reached zero electrical resistance, but after being left in an atmosphere of 25°C, 10% carbon dioxide, and 50% relative humidity for three days. MgO protective layer,
In the case of a sample with no tungsten, it showed a critical temperature around 30, and the electrical resistance did not become zero near the critical temperature, causing tailing. On the other hand, in the sample provided with the MgO protective layer, 4
The critical temperature was reached near 0, and the electrical resistance became zero, with almost no deterioration observed.

(実施例4) Sc:Ba:Cu=1:2:3のモル比で各金属硝酸塩
を含む水溶液を撹拌し、pH計でpH値を確認しながら
グアニジン炭酸塩水溶液を添加した。本実施例ではpH
8を終点としてグアニジン炭酸塩水溶液の添加を止め、
静置後、濾過し室温で予備乾燥させた後、アルミナルツ
ボに入れ空気中700℃で仮焼した。仮焼後、混合襦潰
機で粉砕混合し、アルミナルツボに入れ空気中900℃
で焼成してセラミックス超電導体粉末を得た。
(Example 4) An aqueous solution containing each metal nitrate at a molar ratio of Sc:Ba:Cu=1:2:3 was stirred, and a guanidine carbonate aqueous solution was added while checking the pH value with a pH meter. In this example, the pH
Stop adding the guanidine carbonate aqueous solution at the end point of 8,
After standing still, it was filtered and pre-dried at room temperature, then placed in an aluminium crucible and calcined in air at 700°C. After calcining, the mixture is pulverized using a mixing crusher, placed in an aluminum crucible, and heated to 900°C in air.
Ceramic superconductor powder was obtained by firing.

この超電導体粉末にスチレン−ブタジェンラバー (S
BR)1.0重量%をモレキュラシーブで脱水処理した
トルエンを溶剤としてドライエア、または、ドライネ活
性ガスを流したドライボックス内で混合し、トルエンを
飛散させた後、ローラブレスしてシート状にし、空気中
900℃で焼成した。この試料に電極を取り付は実施例
1と同様の操作でバリウムエトキシドを用いてBaOペ
ーストを作成し、これを塗布しトルエンを飛散させてB
aO保護層を形成した。
This superconductor powder is coated with styrene-butadiene rubber (S
BR) 1.0% by weight of toluene dehydrated with a molecular sieve is mixed in a dry box with dry air or dry active gas flowing as a solvent, and after scattering the toluene, it is rolled into a sheet by roller pressing, and air It was fired at 900°C. To attach electrodes to this sample, use barium ethoxide to create a BaO paste in the same manner as in Example 1, apply this, and scatter toluene.
An aO protective layer was formed.

BaO保護層を設けた試料とBaO保護層のない試料の
作成直後と25℃、二酸化炭素10%。
A sample with a BaO protective layer and a sample without a BaO protective layer were prepared immediately after preparation at 25°C and 10% carbon dioxide.

相対湿度50%の雰囲気下に三日間放置した試料のそれ
ぞれの電気抵抗の温度特性を測定した。その結果を第4
図に示した。作成直後はどちらの試料も100K付近で
臨界温度を示し電気抵抗が急激に減少して電気抵抗がゼ
ロになったが、25℃、二酸化炭素10%、相対湿度5
0%の雰囲気下で三日間放置したBaO保護層のない試
料では70に付近で臨界温度を示し電気抵抗がゼロにな
った。これに対してBaO保護層を設けた試料では作成
直後と同様100にで臨界温度を示し電気抵抗がゼロに
なった。
The temperature characteristics of the electrical resistance of each sample were measured after being left in an atmosphere of 50% relative humidity for three days. The result is the fourth
Shown in the figure. Immediately after preparation, both samples showed a critical temperature around 100 K and the electrical resistance rapidly decreased to zero, but at 25° C., carbon dioxide 10%, and relative humidity 5.
A sample without a BaO protective layer that was left in a 0% atmosphere for three days showed a critical temperature around 70°C, and the electrical resistance became zero. On the other hand, in the sample provided with the BaO protective layer, the critical temperature was reached at 100° C. and the electrical resistance became zero, just as it was immediately after preparation.

以上のことよりセラミックス超電導体の表面をBaOを
含む保護層で被覆することで空気中の水分や二酸化炭素
等の酸性ガスに対して劣化の少ないセラミックス超電導
体を得ることができる。
From the above, by coating the surface of a ceramic superconductor with a protective layer containing BaO, a ceramic superconductor that is less susceptible to deterioration due to moisture in the air and acidic gases such as carbon dioxide can be obtained.

なお、上記実施例ではIIa族元素の酸化物としてMg
O,BaOのみ述べたが、他の■a族元素の酸化物につ
いても同様の効果を得ることができる。また有機結着剤
としてエバール樹脂、SBRのみ述べたが、もちろんこ
れらに限定されるものではな(同程度以上の性能をもつ
有機結着剤でも同様の効果を得ることができる。さらに
、セラミックス超電導体としてAがSc、Y、La、B
がSr、Baの場合のみを述べたがこれに限らず、Aが
ランタノイド58〜71の元素の場合についても、また
、BがSr、Ba以外のIla族の元素の場合について
も同様の効果を得ることができる。
In addition, in the above example, Mg is used as the oxide of group IIa element.
Although only O and BaO have been described, similar effects can be obtained with oxides of other group (1)a elements. In addition, although only Eval resin and SBR have been described as organic binders, they are of course not limited to these (the same effect can be obtained with organic binders having the same or higher performance.Furthermore, ceramic superconducting As a body, A is Sc, Y, La, B
Although we have described only the case where A is Sr or Ba, the same effect is not limited to this, and the same effect can be obtained when A is an element of the lanthanoids 58 to 71, and when B is an element of the Ila group other than Sr or Ba. Obtainable.

発明の効果 本発明は、セラミックス超電導体の表面にIla族元素
の酸化物を含む保護層を設けることで空気中の水分や二
酸化炭素等の酸性ガスに対して劣化の少ないセラミクス
超電導体を得ることができる。
Effects of the Invention The present invention provides a ceramic superconductor that is less susceptible to deterioration due to moisture in the air and acidic gases such as carbon dioxide by providing a protective layer containing an oxide of a group Ila element on the surface of the ceramic superconductor. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明の異なる実施例に関するもの
であり、第1図はY−Ba−Cu−0の焼成体にMgO
保護層を設けた超電導体の超電導特性図、第2図はY−
Ba−Cu−0に有機結着剤を混合した成型体にMgO
保護層を設けた超電導体の超電導特性図、第3図はLa
−8r−Cu−0の焼成体にMgO保護層を設けた超電
導体の超電導特性図、第4図は有機結着剤を混合し焼成
下5c−Ba−Cu−0の焼成体にBaO保護層を設け
た超電導体の超電導特性図である。 代理人の氏名 弁理士 中尾敏男 ほか1名比鞄貌(n
口〕 c:t    N     〜   Q    へ 己
。 圀 建抵−坑(11c−In)      。 、口 尤ta(ΩCリ   ュ S          −a          (2
”。
FIGS. 1 to 4 relate to different embodiments of the present invention, and FIG. 1 shows MgO in a fired body of Y-Ba-Cu-0.
A superconducting characteristic diagram of a superconductor with a protective layer, Figure 2 is Y-
MgO is added to the molded product made by mixing Ba-Cu-0 with an organic binder.
A superconducting characteristic diagram of a superconductor provided with a protective layer, Figure 3 is La
A superconducting characteristic diagram of a superconductor in which a MgO protective layer is provided on a fired body of -8r-Cu-0. Figure 4 shows a BaO protective layer on a fired body of 5c-Ba-Cu-0 after mixing an organic binder and firing. FIG. 3 is a superconducting characteristic diagram of a superconductor provided with Name of agent: Patent attorney Toshio Nakao and one other person
Mouth] c:t N to Q Self. Kukkentai-Keng (11c-In). , 口尤ta(ΩCRYU S -a (2
”.

Claims (5)

【特許請求の範囲】[Claims] (1)超電導性のペロブスカイト型複合酸化物の表面に
IIa族元素のうち少なくとも一種の元素の酸化物を含む
保護層を設けたことを特徴とするセラミックス超電導体
(1) On the surface of superconducting perovskite-type composite oxide
A ceramic superconductor comprising a protective layer containing an oxide of at least one group IIa element.
(2)複合酸化物として組成比0.5≦(A+B)/C
u≦2.5(AはSc、Y、ランタノイド57〜71元
素のうち少なくとも一種の元素、BはIIa族元素のうち
少なくとも一種の元素)の酸化物を用いたことを特徴と
する特許請求の範囲第1項記載のセラミックス超電導体
(2) Composition ratio 0.5≦(A+B)/C as a composite oxide
A patent claim characterized in that an oxide of u≦2.5 (A is Sc, Y, at least one element among the 57 to 71 lanthanoid elements, and B is at least one element among group IIa elements) is used. Ceramic superconductor according to scope 1.
(3)保護層としてMgOを用いたことを特徴とする特
許請求の範囲第1項または第2項記載のセラミックス超
電導体。
(3) The ceramic superconductor according to claim 1 or 2, characterized in that MgO is used as the protective layer.
(4)超電導体として超電導体粉末に有機結着剤を添加
し成型したものを用いたことを特徴とする特許請求の範
囲第1項、第2項または第3項記載のセラミックス超電
導体。
(4) A ceramic superconductor according to claim 1, 2, or 3, characterized in that the superconductor is made by adding an organic binder to superconductor powder and molding the mixture.
(5)超電導体として超電導体粉末に有機結着剤を添加
し成型後焼成した超電導体を用いたことを特徴とする特
許請求の範囲第1項、第2項、第3項または第4項記載
のセラミックス超電導体。
(5) Claims 1, 2, 3 or 4, characterized in that the superconductor is a superconductor obtained by adding an organic binder to superconductor powder, molding and firing. The ceramic superconductor described.
JP62106720A 1987-04-30 1987-04-30 Ceramic superconductor Pending JPS63270373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106720A JPS63270373A (en) 1987-04-30 1987-04-30 Ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106720A JPS63270373A (en) 1987-04-30 1987-04-30 Ceramic superconductor

Publications (1)

Publication Number Publication Date
JPS63270373A true JPS63270373A (en) 1988-11-08

Family

ID=14440789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106720A Pending JPS63270373A (en) 1987-04-30 1987-04-30 Ceramic superconductor

Country Status (1)

Country Link
JP (1) JPS63270373A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2231337A (en) * 1989-02-18 1990-11-14 Univ Manchester Treating oxide superconductors to prevent degradation by forming oxide film
EP0484010A2 (en) * 1990-11-01 1992-05-06 Hughes Aircraft Company Passivation of thin film oxide super-conductors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2231337A (en) * 1989-02-18 1990-11-14 Univ Manchester Treating oxide superconductors to prevent degradation by forming oxide film
GB2231337B (en) * 1989-02-18 1993-10-06 Univ Manchester Protection of superconductors from degradation
EP0484010A2 (en) * 1990-11-01 1992-05-06 Hughes Aircraft Company Passivation of thin film oxide super-conductors

Similar Documents

Publication Publication Date Title
Huang et al. Bi2O3 Y2O3 CeO2 solid solution oxide-ion electrolyte
JPS63270373A (en) Ceramic superconductor
Pramanik et al. Coprecipitation method for preparation of superconducting YBa2Cu3Ox compounds
JP2618046B2 (en) Oxide superconducting material and its manufacturing method
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JP2593475B2 (en) Oxide superconductor
JP2760999B2 (en) Oxide superconducting sintered body and method for producing the same
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPS63270317A (en) Oxide superconductor
JP3163122B2 (en) Manufacturing method of oxide superconductor
JP3630889B2 (en) Calcinated powder for oxide superconductor with high critical current density
JPH01257159A (en) Oxide superconducting material
JP2752969B2 (en) Oxide superconductor
JPH0248457A (en) Coating for oxide superconductive thick film
JPH04144955A (en) Oxide superconducting substance
JPH04144956A (en) Oxide superconducting substance
JPS63270309A (en) Oxide superconductor
JPS63270340A (en) Production of sintered superconducting oxide ceramics
JPH046147A (en) Oxide superconductor and production thereof
JPS63307110A (en) Oxide superconductor
JPH04193718A (en) Oxide superconductor and its production