JPS63269211A - Servo device - Google Patents

Servo device

Info

Publication number
JPS63269211A
JPS63269211A JP10334487A JP10334487A JPS63269211A JP S63269211 A JPS63269211 A JP S63269211A JP 10334487 A JP10334487 A JP 10334487A JP 10334487 A JP10334487 A JP 10334487A JP S63269211 A JPS63269211 A JP S63269211A
Authority
JP
Japan
Prior art keywords
torque
load torque
motor
drive motor
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10334487A
Other languages
Japanese (ja)
Other versions
JPH0789299B2 (en
Inventor
Atsushi Morita
森田 温
Yoshihito Imai
祥人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10334487A priority Critical patent/JPH0789299B2/en
Publication of JPS63269211A publication Critical patent/JPS63269211A/en
Publication of JPH0789299B2 publication Critical patent/JPH0789299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To reduce the locus error caused by friction torque at the time of inverting the rotating direction of a driving motor, by applying torque, which has the same magnitude as load torque applied to the driving shaft of the driving motor and is opposite to this load torque, to the driving shaft. CONSTITUTION:Estimated load torque except torque due to a moment of inertia of load torque applied to the driving shaft of the driving motor is calculated by a state observer 30. If the change of the rotating direction of the driving motor is detected by a rotating direction detecting means, torque which has the same magnitude as load torque applied to the driving shaft of the driving motor and is opposite to this load torque is applied to the driving shaft through a position controller 2, a speed controller 3, and a current controller 4 by a response compensator 20. Thus, the locus following-up precision at the time of inverting the rotating direction of the driving motor is improved to improve the working precision or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械位置を制御するサーボ装置に関し、さらに
詳しくは機械を駆動する駆動電動機の駆動軸の回転方向
が反転する際に生じる機械の移動軌跡誤差を可能な限り
減少させるサーボ装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a servo device that controls the position of a machine, and more particularly, to a servo device that controls the position of a machine, and more specifically, the present invention relates to a servo device that controls the position of a machine. This invention relates to a servo device that reduces trajectory errors as much as possible.

[従来の技術] 第2図は特公昭81−30514号公報に記載されてい
る従来のサーボ装置のブロック図である。第2図におい
て、(1)はサーボ装置によって位置制御される機械の
位置を示す指令値g を出力する指令「 値発生器、(2)は指令値g と位置検出器(図示「 せず)によって検出される機械の位置に対応する位置検
出値gとの偏差が零になるような速度指令値■ を出力
する位置制御器、(3)は速度指令値「 ■ と速度検出器(図示せず)によって検出され「 る機械の速度に対応する速度検出値Vとの偏差が零にな
るような電流指令値I を出力する速度側御器、(4)
は電流指令値工 と電流検出器(図示せず)によって検
出される直流電動機(図示せず)に流れる電流に対応す
る電流検出値■との偏差が零になるような駆動電圧e 
を出力する電流制御器、(11)は直流電動機及び直流
電動機によって駆動される機械の特性を伝達関数によっ
て表わしたブロックである。ここで、Rは直流電動機の
回路抵抗、Lは直流電動機の回路インダクタンス、Kt
はトルク定数、Jは直流電動機及び負荷の慣性モーメン
トの和、K は誘起電圧定数、(lO)は摩擦トルク等
の回転方向に依存したトルクを発生するトルク発生ブロ
ック、(21)は補償電圧発生器、(22)は応答補償
器、(40a) 、(40b) 、(40c)、(40
d) 、(40e)は加算器である。
[Prior Art] FIG. 2 is a block diagram of a conventional servo device described in Japanese Patent Publication No. 81-30514. In Figure 2, (1) is a command value generator that outputs a command value g indicating the position of a machine whose position is controlled by a servo device, and (2) is a command value g and position detector (not shown). (3) is a position controller that outputs a speed command value ■ such that the deviation from the position detection value g corresponding to the position of the machine detected by is zero; (4) A speed side controller that outputs a current command value I such that the deviation from the speed detection value V corresponding to the speed of the machine detected by (4) is zero.
is the drive voltage e such that the deviation between the current command value and the current detection value corresponding to the current flowing through the DC motor (not shown) detected by the current detector (not shown) is zero.
The current controller (11) that outputs the current controller is a block in which the characteristics of a DC motor and a machine driven by the DC motor are expressed by a transfer function. Here, R is the circuit resistance of the DC motor, L is the circuit inductance of the DC motor, and Kt
is the torque constant, J is the sum of the moments of inertia of the DC motor and the load, K is the induced voltage constant, (lO) is the torque generation block that generates torque depending on the rotation direction such as friction torque, and (21) is the compensation voltage generation (22) is a response compensator, (40a), (40b), (40c), (40
d) and (40e) are adders.

次に、従来のサーボ装置の動作について説明する。まず
、指令値発生器(1)は円弧等、要求される工具軌跡を
実現するのに必要である各駆動軸に対応する指令値g 
を出力する。次いで、位置側御器(2)は指令値g と
位置検出値pとの偏差が「 零になるような速度指令値■ を出力する。次い「 で、速度制御器(3)は速度指令値V と速度検出「 値Vとの偏差が零になるような電流指令値I を「 出力する。さらに、電流制御器(4)は電流指令値I 
と電流検出値■との偏差が零になるような駆「 動電圧e を出力する。直流電動機は駆動電圧e によ
って回転し、その回転を所定の伝達機構(図示せず)を
介して機械に伝達し、機械を動かす。
Next, the operation of the conventional servo device will be explained. First, the command value generator (1) generates a command value g corresponding to each drive axis necessary to realize a required tool trajectory such as a circular arc.
Output. Next, the position side controller (2) outputs a speed command value such that the deviation between the command value g and the detected position value p becomes zero.Next, the speed controller (3) outputs the speed command value Outputs the current command value I such that the deviation between the value V and the speed detection value V becomes zero.Furthermore, the current controller (4) outputs the current command value I
The DC motor is rotated by the drive voltage e, and the rotation is transmitted to the machine via a predetermined transmission mechanism (not shown). Transmit information and operate the machine.

ところで、直流電動機の駆動軸の摩擦トルクτはトルク
発生ブロック(lO)から発生し、例えばクーロン摩擦
τrの場合、速度検出値■に対応して以下のような値と
なる。
Incidentally, the friction torque τ of the drive shaft of the DC motor is generated from the torque generation block (lO), and in the case of Coulomb friction τr, for example, the following values correspond to the detected speed value ■.

τl(v > 0 ) 「    l       (V<0)−τ   ≦ 
τ ≦ τ     (V ■ 0)ここで、τ1は直
流電動機、伝達機構及び負荷等によって決まる正の値で
ある。
τl(v>0) "l(V<0)−τ≦
τ ≦ τ (V ■ 0) Here, τ1 is a positive value determined by the DC motor, transmission mechanism, load, etc.

直流電動機が停止している場合、上式で示した摩擦トル
クτのために、 一τl ≦τ≦τ1 の範囲では7gが0となり、直流電動機は回転しない。
When the DC motor is stopped, due to the friction torque τ shown in the above equation, 7g becomes 0 in the range of -τl ≦τ≦τ1, and the DC motor does not rotate.

即ち、直流電動機の回転方向が反転するときには、トル
ク指令値、即ち電流指令値工 が急「 激に変化しない限り、この不感帯のために直流電動機は
一旦停止してしまうという現象が現われる。
That is, when the direction of rotation of the DC motor is reversed, a phenomenon occurs in which the DC motor will temporarily stop due to this dead zone unless the torque command value, that is, the current command value changes suddenly and drastically.

この現象は加工誤差となって現われる。具体的には、第
3図に示すように真円の切削指令を出力して、曲線(5
0)に示す真円に沿って切削を行なおつとすると、直流
電動機の回転方向が反転するときに直流電動機が一旦停
止して、円弧切削の象限切り換え部分において実際の切
削物の形状が曲線(51)に示すようなふくらみをもつ
という不具合を生じる。このため、従来のサーボ装置で
は指令値発生器(1)から直流電動機の回転方向を反転
する反転信号が出力されると、補償電圧発生器(21)
がそのときの直流電動機の直流電流値を決定して、指令
電圧とほぼ絶対値が等しく且つ極性が反対の補償電圧を
発生し、応答補償器(22)が電流指令値I を速やか
にこの補償電圧に一致させて、摩擦「 トルクによる不感帯を減少させ速やかに回転を始めるよ
うにしている。
This phenomenon appears as a machining error. Specifically, as shown in Figure 3, a perfect circle cutting command is output, and a curve (5
If cutting is to be carried out along the perfect circle shown in 0), the DC motor will temporarily stop when the direction of rotation of the DC motor is reversed, and the actual shape of the cut object will become a curved line ( This causes the problem of bulging as shown in 51). For this reason, in conventional servo devices, when the command value generator (1) outputs a reversal signal that reverses the rotation direction of the DC motor, the compensation voltage generator (21)
determines the DC current value of the DC motor at that time, generates a compensation voltage that is almost equal in absolute value to the command voltage and opposite in polarity, and the response compensator (22) promptly adjusts the current command value I to this compensation. By matching the voltage, the dead zone caused by friction and torque is reduced and rotation begins quickly.

[発明が解決しようとする問題点] 上記構成の従来のサーボ装置は、補償電圧に慣性モーメ
ントの駆動トルク、重力等の回転方向に依存しないトル
クに相当する電圧が含まれており、これを減算せずに摩
擦トルクに相当する電圧として取り扱ってしまうので、
補正に誤差を生じてしまうという問題があった。
[Problems to be Solved by the Invention] In the conventional servo device with the above configuration, the compensation voltage includes a voltage corresponding to the drive torque of the moment of inertia, a torque that does not depend on the rotation direction such as gravity, and this is subtracted. Because it is treated as a voltage equivalent to friction torque without
There was a problem in that an error occurred in the correction.

本発明は、上記問題点を解決するためになされたもので
、直流電動機の回転方向が反転するときに、摩擦トルク
等の直流電動機の回転に依存するトルクによって生じる
軌跡誤差をより正確に減少させるサーボ装置を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and more accurately reduces trajectory errors caused by torque that depends on the rotation of the DC motor, such as friction torque, when the rotation direction of the DC motor is reversed. The purpose is to provide servo devices.

[問題点を解決するための手段] そこで、本発明では、検出手段の出力する機械の位置に
対応する検出値に基づいて、指令手段の出力する機械の
位置に対応する指令値により機械を駆動する駆動電動機
の駆動軸に加わる負荷トルクのうち、慣性モーメントに
よるトルクを除いた推定負荷トルクを算出する状態観測
器と、駆動電動機の回転方向の変化を検出する回転方向
検出手段と、回転方向検出手段が駆動電動機の回転方向
の変化を検出すると、駆動電動機の駆動軸にかかる負荷
トルクと略同じ大きさで、逆向きのトルクを、検出値を
指令値に一致するようにフィードバック制御する増幅制
御手段を介して、駆動軸に加える補正手段とを備えたサ
ーボ装置を構成するものである。
[Means for solving the problem] Therefore, in the present invention, the machine is driven by a command value corresponding to the position of the machine outputted by the commanding means based on a detected value corresponding to the position of the machine outputted by the detection means. a state observation device that calculates an estimated load torque excluding the torque due to the moment of inertia from among the load torque applied to the drive shaft of the drive motor; a rotation direction detection means that detects a change in the rotation direction of the drive motor; When the means detects a change in the rotational direction of the drive motor, amplification control is performed to feedback-control a torque of approximately the same magnitude as the load torque applied to the drive shaft of the drive motor, but in the opposite direction, so that the detected value matches the command value. This constitutes a servo device including a correction means applied to the drive shaft via the correction means.

[作 用コ 上記構成のサーボ装置は、状態観測器が検出値に基づい
て、駆動電動機の駆動軸に加わる負荷トルクのうち、慣
性モーメントによるトルクを除いた推定負荷トルクを算
出し、回転方向検出手段が駆動電動機の回転方向の変化
を検出すると、補正手段が駆動電動機の駆動軸にかかる
負荷トルクと略同じ大きさで、逆向きのトルクを、増幅
制御手段を介して駆動軸に加える。
[Operation] In the servo device with the above configuration, the condition observation device calculates the estimated load torque, which is the load torque applied to the drive shaft of the drive motor, excluding the torque due to the moment of inertia, based on the detected value, and detects the rotation direction. When the means detects a change in the rotational direction of the drive motor, the correction means applies a torque of substantially the same magnitude as the load torque applied to the drive shaft of the drive motor, but in an opposite direction, to the drive shaft via the amplification control means.

[実施例] 以下、本発明の一実施例を添付図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係るサーボ装置のブロック図である。FIG. 1 is a block diagram of a servo device according to the present invention.

なお、第1図において第2図と同様の機能を果たす部分
については同一の符号を付し、その説明は省略する。(
11)は重力トルク等の直流電動機の回転方向に依存し
ない負荷トルクを発生するブロック、(20)は応答補
償器、(22a)は直流電動機の回転方向が反転すると
きに推定摩擦トルクを電流に換算して出力するブロック
、(23)は重力トルク等の直流電動機の回転方向に依
存しない負荷トルクを演算するブロック、(30)は状
態観11JII ’Dを表わし、(31)は増幅器、k
、はトルク定数の推定値、Jは電動機及び負荷の慣性モ
ーメントの和の推定値、(40「) 、(40g) 、
(40h)は加算器である。
Note that in FIG. 1, parts that perform the same functions as those in FIG. 2 are designated by the same reference numerals, and their explanations will be omitted. (
11) is a block that generates a load torque such as gravity torque that does not depend on the rotation direction of the DC motor, (20) is a response compensator, and (22a) is a block that converts estimated friction torque into a current when the rotation direction of the DC motor is reversed. (23) is a block that calculates the load torque independent of the rotation direction of the DC motor, such as gravity torque, (30) represents the state view 11JII'D, (31) is the amplifier, and (31) is the block that converts and outputs it.
, is the estimated value of the torque constant, J is the estimated value of the sum of the inertia moments of the motor and the load, (40''), (40g),
(40h) is an adder.

状態観測器(30)、応答補償器(20)を除く部分の
サーボ装置は従来の装置と同じ動作をする。
The servo device except for the state observer (30) and response compensator (20) operates in the same way as the conventional device.

状態観測器(30)は慣性モーメントを駆動するトルク
を除いた負荷トルク云、を算出するものである。以下そ
の算出を説明する。第1図により速度検出値Vは、 となる。加算器(40f)に入力される速度値■は、※
−−ci  I−云d) JS  t (良 1−K  で)(2) Js   t    。
The state observation device (30) calculates the load torque excluding the torque driving the moment of inertia. The calculation will be explained below. According to FIG. 1, the detected speed value V is as follows. The speed value ■ input to the adder (40f) is *
--ci I-yund) JS t (Good 1-K) (2) Js t.

となる。従って、増幅器(31)に入力される速度値で
は、 v −V −V              (3)と
なる。第3式に第1式及び第2式を代入すると、ン一二
(< I−に守) JS   t    0 −−(Kl−τ −τr) Js    tg となる。J ySk  塙に、とすると、となる。−K
  /J<Oより十分時間が経過すると、々−0となる
。従って、 =  −K  ン−τ +τr d      Og となり慣性モーメントを駆動するトルクを除いた負荷ト
ルクそ (云 −τ +τF)が得られる。
becomes. Therefore, the velocity value input to the amplifier (31) is v −V −V (3). Substituting the first and second equations into the third equation yields N12 (< I-nimori) JS t 0 --(Kl-τ - τr) Js tg . If J ySk Hanawa, then it becomes. -K
When sufficient time has elapsed since /J<O, the value becomes -0. Therefore, = -K n -τ + τrd Og, and the load torque excluding the torque driving the moment of inertia (yen -τ + τF) is obtained.

66g 次に、応答補償器(20)は直流電動機の回転方向が反
転するときに、摩擦トルクがτdから−τdに変化する
として、トルク−2τ、に相当する電流=2τ /kt
を電流指令値に加え、摩擦トルクの影響が小さくなるよ
うにする。実際には、実験等により適当な係数K r 
” 1を決め、″2Kr τd/Kt となる補正を行なう。
66g Next, when the direction of rotation of the DC motor is reversed, the response compensator (20) assumes that the friction torque changes from τd to -τd, and the current corresponding to the torque -2τ is 2τ/kt.
is added to the current command value to reduce the influence of friction torque. In reality, an appropriate coefficient K r
``1'' is determined, and correction is performed to obtain ``2Kr τd/Kt.

なお、応答補償器(20)で重力トルク等の直流電動機
の回転方向に依存しない負荷トルクτ2を予め演算し、
負荷トルクτ を慣性モーメントを駆& 動するトルクを除いた負荷トルクそ、から減算すること
により、直流電動機の回転方向に依存しない負4;jト
ルクτ を求めるようにしてもよい。重力トルクは質Q
mの場合、重力加速度をg1腕の長さ、減速比等によっ
て決まる定数をLとすると、LIlgして与えられる。
Note that the response compensator (20) calculates in advance a load torque τ2 that does not depend on the rotational direction of the DC motor, such as gravitational torque,
By subtracting the load torque τ from the load torque excluding the torque that drives the moment of inertia, the negative torque τ that does not depend on the rotational direction of the DC motor may be obtained. Gravity torque is quality Q
In the case of m, the gravitational acceleration is given as LIlg, where L is a constant determined by g1 arm length, reduction ratio, etc.

又、第1図に示したサーボ装置では、状態観測器(30
)に駆動電動機に流れる電流!と駆動軸の速度Vを入力
しているが、駆動軸の速度Vの代わりに駆動軸の位置g
又は駆動軸の速度Vと位置gとの両方とし、対応するモ
デルを用いた状態観111(30)を構成するようにし
ても、同様の動作を期待できる。
In addition, in the servo device shown in Fig. 1, a state observation device (30
) Current flowing through the drive motor! and the speed V of the drive shaft is input, but instead of the speed V of the drive shaft, the position g of the drive shaft is input.
Alternatively, a similar operation can be expected by setting both the speed V and the position g of the drive shaft and configuring the state view 111 (30) using the corresponding model.

[発明の効果] 以上説明したように本発明によれば、状態観7g1J器
により駆動電動機の駆動軸に加わる負荷トルクのうち、
慣性モーメントによるトルクを除いた推定負荷トルクを
算出し、回転方向検出手段により駆動電動機の回転方向
の変化が検出されると、補正手段により駆動電動機の駆
動軸にかかる負荷トルクと略同じ大きさで、逆向きのト
ルクを、増幅制御手段を介して駆動軸に加えるようにし
たので、駆動電動機の回転方向の反転時における軌跡追
従精度が向上し、加工精度の向上環が図れるサーボ装置
を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, among the load torque applied to the drive shaft of the drive motor by the state view 7g1J device,
The estimated load torque excluding the torque due to the moment of inertia is calculated, and when a change in the rotation direction of the drive motor is detected by the rotation direction detection means, the correction means calculates the estimated load torque to be approximately the same magnitude as the load torque applied to the drive shaft of the drive motor. To provide a servo device that improves the trajectory tracking accuracy when the rotational direction of the drive motor is reversed and improves machining accuracy by applying torque in the opposite direction to the drive shaft via an amplification control means. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るサーボ装置のブロック図、第2図
は従来のサーボ装置のブロック図、第3図は真円の切削
指令が出力された際の゛機械の移動軌跡を示す説明図で
ある。 各図中、1は指令値発生器、2は位置制御器、3は速度
制御器、4は電流制御器、5.6.7.8.9は直流電
動機及び機械の伝達関数を表わすブロック、lOは直流
電動機の回転に依存したトルクを発生するブロック、1
1は直流電動機の回転方向に依存しない負荷トルクを発
生するブロック、20は応答補償器、22aは直流電動
機の回転方向反転時に推定摩擦トルクを電流に換算して
出力するブロック、23は重力トルク等の直流電動機の
回転方向に依存しない負荷トルクを演算するブロック、
30は状態観71Jj器、31は増幅器、40a 、 
40b 、 40c 。 40d 、 40e 、 40r、 40g 、 40
hは加算器、Jは直流電動機及び負荷の慣性モーメント
の和、Jは直流電動機及び負荷の慣性モーメントの和の
推定値、K は誘起電圧定数、K はトルク定数、l1
ctはc                     
 tトルク定数の推定値、Lは直流電動機の回路インダ
クタンス、Rは直流電動機の回路抵抗である。 なお、各図中同一符号は同−又は相当部分を示すもので
ある。
Fig. 1 is a block diagram of a servo device according to the present invention, Fig. 2 is a block diagram of a conventional servo device, and Fig. 3 is an explanatory diagram showing the movement trajectory of the machine when a perfect circle cutting command is output. It is. In each figure, 1 is a command value generator, 2 is a position controller, 3 is a speed controller, 4 is a current controller, 5.6.7.8.9 is a block representing a DC motor and a transfer function of the machine, lO is a block that generates torque depending on the rotation of the DC motor, 1
1 is a block that generates a load torque independent of the rotational direction of the DC motor, 20 is a response compensator, 22a is a block that converts estimated friction torque into a current and outputs it when the rotational direction of the DC motor is reversed, 23 is a gravitational torque, etc. A block that calculates the load torque independent of the rotation direction of the DC motor,
30 is a state view 71Jj device, 31 is an amplifier, 40a,
40b, 40c. 40d, 40e, 40r, 40g, 40
h is an adder, J is the sum of the inertia moments of the DC motor and load, J is the estimated value of the sum of the inertia moments of the DC motor and load, K is the induced voltage constant, K is the torque constant, l1
ct is c
t is the estimated value of the torque constant, L is the circuit inductance of the DC motor, and R is the circuit resistance of the DC motor. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)機械の位置に対応する指令値を出力する指令手段
と、前記指令値に基づいて駆動電動機により駆動制御さ
れる機械の位置に対応する検出値を出力する検出手段と
、前記検出値を前記指令値に一致するようにフィードバ
ック制御する増幅制御手段とを備えたサーボ装置におい
て、 前記検出値に基づいて、前記駆動電動機の駆動軸に加わ
る負荷トルクのうち、慣性モーメントによるトルクを除
いた推定負荷トルクを算出する状態観測器と、前記駆動
電動機の回転方向の変化を検出する回転方向検出手段と
、前記回転方向検出手段が前記駆動電動機の回転方向の
変化を検出すると、前記駆動電動機の駆動軸にかかる前
記負荷トルクと略同じ大きさで、逆向きのトルクを該駆
動軸に加える補正手段とを備えたことを特徴とするサー
ボ装置。
(1) A command means for outputting a command value corresponding to the position of the machine; a detection means for outputting a detected value corresponding to the position of the machine driven and controlled by the drive motor based on the command value; and an amplification control means that performs feedback control so as to match the command value, the servo device comprising: an amplification control means that performs feedback control to match the command value; based on the detected value, an estimate is made of the load torque applied to the drive shaft of the drive motor excluding the torque due to the moment of inertia; a state observation device that calculates a load torque; a rotational direction detection device that detects a change in the rotational direction of the drive motor; and when the rotational direction detection device detects a change in the rotational direction of the drive motor, the drive motor is driven. A servo device comprising: a correction means for applying a torque in an opposite direction to the drive shaft with substantially the same magnitude as the load torque applied to the shaft.
(2)状態観測器は、前記駆動電動機に流れる電流と、
前記駆動電動機の駆動軸の速度及び該駆動軸の位置のう
ちいずれか一方及びサーボ装置のモデルに基づいて、前
記負荷トルクを推算する特許請求の範囲第1項記載のサ
ーボ装置。
(2) The state observation device detects the current flowing through the drive motor;
The servo device according to claim 1, wherein the load torque is estimated based on one of the speed of the drive shaft of the drive motor and the position of the drive shaft and a model of the servo device.
(3)補償器は、前記駆動電動機の回転方向に依存しな
い負荷トルクを推定負荷トルクから減算して、前記補正
を加える特許請求の範囲第1項記載のサーボ装置。
(3) The servo device according to claim 1, wherein the compensator makes the correction by subtracting a load torque that does not depend on the rotational direction of the drive motor from the estimated load torque.
JP10334487A 1987-04-28 1987-04-28 Servo device Expired - Lifetime JPH0789299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10334487A JPH0789299B2 (en) 1987-04-28 1987-04-28 Servo device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10334487A JPH0789299B2 (en) 1987-04-28 1987-04-28 Servo device

Publications (2)

Publication Number Publication Date
JPS63269211A true JPS63269211A (en) 1988-11-07
JPH0789299B2 JPH0789299B2 (en) 1995-09-27

Family

ID=14351522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10334487A Expired - Lifetime JPH0789299B2 (en) 1987-04-28 1987-04-28 Servo device

Country Status (1)

Country Link
JP (1) JPH0789299B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543641A (en) * 2013-09-30 2014-01-29 中国人民解放军国防科学技术大学 Steering engine hinge torque real-time dynamic loading device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543641A (en) * 2013-09-30 2014-01-29 中国人民解放军国防科学技术大学 Steering engine hinge torque real-time dynamic loading device
CN103543641B (en) * 2013-09-30 2016-03-16 中国人民解放军国防科学技术大学 The real-time dynamic loading device of a kind of steering wheel hinge moment

Also Published As

Publication number Publication date
JPH0789299B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JP4985659B2 (en) Robot control method
JPH0311944B2 (en)
JPS63269211A (en) Servo device
JPH0884492A (en) Method and apparatus for operating servo motor synchronously
JPS61224012A (en) Driving system of manipulator
JP2580502B2 (en) Force / torque control method for motor with reduction gear
JPH04112690A (en) Control method for servo motor
JP2782254B2 (en) Electric power steering system
JPS6336941A (en) Control method for positioning of turnover device
JPH0358106A (en) High speed positioning control method
JPH104692A (en) Position controller for motor
JPH0792702B2 (en) Control device
JPH05250029A (en) Industrial robot
JPH0285906A (en) Industrial robot controller
JPH0378643B2 (en)
JPH09132155A (en) Control device for motor-driven power steering device
JPH0224078A (en) Manipulator controller
JPS63201705A (en) Vibration-proof controller for manipulator
JPS6159509A (en) Positioning control system
JPH04109890A (en) Speed controller for non-backrush control
JP2816045B2 (en) Positioning control device
JPH081560A (en) Robot vibration restricting method and its device
JPH0550005B2 (en)
JP3249976B2 (en) Servo motor torque control system
JPS59612A (en) State observer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 12