JPH0550005B2 - - Google Patents

Info

Publication number
JPH0550005B2
JPH0550005B2 JP19939784A JP19939784A JPH0550005B2 JP H0550005 B2 JPH0550005 B2 JP H0550005B2 JP 19939784 A JP19939784 A JP 19939784A JP 19939784 A JP19939784 A JP 19939784A JP H0550005 B2 JPH0550005 B2 JP H0550005B2
Authority
JP
Japan
Prior art keywords
manipulator
feedback control
nonlinear compensation
control
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19939784A
Other languages
Japanese (ja)
Other versions
JPS6177906A (en
Inventor
Tooru Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19939784A priority Critical patent/JPS6177906A/en
Publication of JPS6177906A publication Critical patent/JPS6177906A/en
Publication of JPH0550005B2 publication Critical patent/JPH0550005B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は非線形補償機能を有するマニピユレー
タの制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a control device for a manipulator having a nonlinear compensation function.

<従来の技術> 従来より、マニピユレータの制御装置において
は、フイードバツク制御と共に、非線形補償を行
つている。すなわち、制御対象のマニピユレータ
が多関節構造である場合などには、その動きは常
に慣性モーメント、コリオリ・遠心力、そして重
力等の非線形な力の影響を受けているので、それ
を補償するための非線形補償量をマニピユレータ
の関節角及び関節角速度より求めて、マニピユレ
ータへの制御出力(トルク指令)を非線形補償す
ることにより、マニピユレータの非線形効果を相
殺し、線形動作を実現しようとしている(特開昭
55−41585号公報参照)。
<Prior Art> Conventionally, in manipulator control devices, nonlinear compensation has been performed in addition to feedback control. In other words, when the manipulator to be controlled has a multi-joint structure, its movement is always affected by nonlinear forces such as moment of inertia, Coriolis centrifugal force, and gravity, so it is necessary to By calculating the amount of nonlinear compensation from the joint angle and joint angular velocity of the manipulator and nonlinearly compensating the control output (torque command) to the manipulator, the nonlinear effect of the manipulator is offset and linear operation is being realized (Japanese Patent Application Laid-Open No.
(See Publication No. 55-41585).

<発明が解決しようとする問題点> しかしながら、このような従来のマニピユレー
タの制御装置にあつては、非線形補償を行う演算
において、高速演算アルゴリズム(例えばLuhの
アルゴリズム)を使用しても、多関節多自由度と
なると、かなり演算時間が増加し、これに伴いフ
イードバツク制御周期も非線形補償周期に合わせ
ざるを得ず、長い制御周期となるため、非線形補
償があまり必要のない位置決め時の精密サーボ制
御が粗い制御となり、位置決め時間がかかり、マ
ニピユレータ動作性能の低下を招くという問題点
があつた。
<Problems to be Solved by the Invention> However, in the case of such conventional manipulator control devices, even if high-speed calculation algorithms (for example, Luh's algorithm) are used in calculations for nonlinear compensation, multi-joint When there are multiple degrees of freedom, the calculation time increases considerably, and as a result, the feedback control period must also match the nonlinear compensation period, resulting in a long control period, so precision servo control during positioning that does not require much nonlinear compensation However, there were problems in that the control was rough, the positioning time was long, and the operating performance of the manipulator was degraded.

そこで本発明は、位置決め時のマニピユレータ
の動作性能を向上させることのできるマニピユレ
ータの制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a manipulator control device that can improve the operating performance of the manipulator during positioning.

<問題点を解決するための手段> 本発明は、上記の目的を達成するため、第1図
に示すように、第1には、各時点での目標値と実
際値とを比較しつつマニピユレータMへの制御出
力をフイードバツク制御するフイードバツク制御
手段Aと、マニピユレータMの有する非線形性を
補償するため上記制御出力を非線形補償する非線
形補償手段Bとを設ける他、実際値が最終目標値
付近に達したときに非線形補償手段Aの作動を停
止させる非線形補償停止手段Cを設けるようにし
たことを特徴とする。
<Means for Solving the Problems> In order to achieve the above object, the present invention, as shown in FIG. In addition to providing a feedback control means A for feedback controlling the control output to the manipulator M, and a nonlinear compensation means B for nonlinearly compensating the control output to compensate for the nonlinearity of the manipulator M, the actual value reaches near the final target value. The present invention is characterized in that a nonlinear compensation stop means C is provided for stopping the operation of the nonlinear compensation means A when this occurs.

第2には、更に上記非線形補償停止手段Cの作
動と同期して上記フイードバツク制御手段Aのフ
イードバツク制御周期を短くするフイードバツク
制御周期切換手段Dを設けるようにしたことを特
徴とする。
A second feature is that a feedback control period switching means D is further provided for shortening the feedback control period of the feedback control means A in synchronization with the operation of the nonlinear compensation stop means C.

第3には、更に上記フイードバツク制御周期切
換手段Dの作動と同期してその制御周期に合つた
フイードバツク制御ゲインに切換えるフイードバ
ツク制御ゲイン切換手段Eを設けるようにしたこ
とを特徴とする。
Thirdly, the present invention is characterized in that it is further provided with a feedback control gain switching means E which synchronizes with the operation of the feedback control period switching means D and switches to a feedback control gain suitable for the control period.

<作用> すなわち、マニピユレータの非線形形が強くで
る高速動作時は従来通り非線形補償しつつ線形フ
イードバツク制御を行い、非線形性があまり問題
とならない最終目標値付近での位置決め時には、
非線形補償を停止してフイードバツク制御のみで
制御し(第1の発明)、更にはフイードバツク制
御周期を短くし(第2の発明)、更にはその制御
周期に合つたフイードバツク制御ゲインに切換え
る(第3の発明)のである。
<Function> In other words, during high-speed operation when the manipulator is strongly nonlinear, linear feedback control is performed while nonlinear compensation is performed as before, and when positioning near the final target value where nonlinearity is not a problem,
Nonlinear compensation is stopped and control is performed using only feedback control (first invention), the feedback control period is shortened (second invention), and the feedback control gain is switched to match the control period (third invention). invention).

<実施例> 以下実施例を説明する。<Example> Examples will be described below.

第2図はマイクロコンピユータを用いた場合の
ハードウエア構成例を示す。同図において、1は
マイクロコンピユータ(CPU)であり、その出
力によりD/A変換器2及び電流アンプ3を介し
てマニピユレータの各関節軸のDCモータ4を駆
動する。5はタコジエレータで、これにより関節
角速度θ・を検出する。6はカウンタで、これによ
り関節角θを検出する。尚、2〜6は各関節軸毎
に設けられるが、図では省略してある。ここにマ
イクロコンピユータ1内部で、目標パターン発
生、線形フイードバツク制御、非線形補償等を行
う。
FIG. 2 shows an example of a hardware configuration using a microcomputer. In the figure, 1 is a microcomputer (CPU), and its output drives a DC motor 4 of each joint shaft of the manipulator via a D/A converter 2 and a current amplifier 3. 5 is a tachometer, which detects the joint angular velocity θ. 6 is a counter, which detects the joint angle θ. In addition, although numbers 2 to 6 are provided for each joint axis, they are omitted in the figure. Here, target pattern generation, linear feedback control, nonlinear compensation, etc. are performed within the microcomputer 1.

第3図は制御系ブロツク図であり、図中11は
線形フイードバツクコンローラ、12は非線形補
償演算ブロツク、13はマニピユレータである。
FIG. 3 is a control system block diagram, in which 11 is a linear feedback controller, 12 is a nonlinear compensation calculation block, and 13 is a manipulator.

第4図は動作手順を示すフローチヤートであ
り、これは第1の発明に対応している。
FIG. 4 is a flowchart showing the operating procedure, which corresponds to the first invention.

所定の制御周期毎にこのフローを繰返すが、先
ずステツプ1(図ではS1)でマニピユレータの現
在の関節角θと関節角速度θ・と検出しデータとし
て取り込む。
This flow is repeated at every predetermined control cycle, but first, in step 1 (S1 in the figure), the current joint angle θ and joint angular velocity θ· of the manipulator are detected and imported as data.

ステツプ2ではある動作の最終目標関節角と
実際値θとを比較して、所定範囲(Aは所定値)
に入つたか否かを判定し、YESであれば、次の
ステツプ3で最終目標関節角速度θ・r(通常は零)
と実際値θ・とを比較して、所定範囲(Bは所定
値)に入つたか否かを判定する。
In step 2, the final target joint angle of a certain motion is compared with the actual value θ, and a predetermined range (A is a predetermined value) is determined.
If it is YES, in the next step 3, the final target joint angular velocity θ・r (usually zero) is determined.
is compared with the actual value θ· to determine whether the value falls within a predetermined range (B is a predetermined value).

ステツプ2でNO、若しくはステツプ3でNO
の場合は、高速動作中とみなし(第7図参照)、
ステツプ11へ進んでその時点での目標値θr、θ・r
と実際値θ、θ・との偏差に基づいて定められるフ
イードバツク制御量uを計算し(第3図参照)、
次のステツプ12でuとθとθ・とから非線形補償演
算により非線形補償量(指令トルク)Tを計算し
出力する。
NO at step 2 or NO at step 3
In this case, it is assumed that high-speed operation is in progress (see Figure 7).
Proceed to step 11 and set the target value θr, θ・r at that point.
Calculate the feedback control amount u determined based on the deviation between the actual values θ and θ・ (see Figure 3),
In the next step 12, a nonlinear compensation amount (command torque) T is calculated and output from u, θ, and θ· by nonlinear compensation calculation.

ステツプ3でYESの場合は、充分低速になつ
て最終目標値に近づいたとみなし(第7図参照)、
ステツプ21へ進んでその時点での目標値θr、θ・r
と実際値θ、θ・との偏差に基づいて定められるフ
イードバツク制御量uを計算し、この場合は非線
形補償演算を行うことなく、次のステツプ22で、 T=A′u+B′(A′、B′は所定値) として、指令トルクTを計算し出力する。
If YES in step 3, it is assumed that the speed has become sufficiently low that it has approached the final target value (see Figure 7).
Proceed to step 21 and set the target values θr and θ・r at that point.
The feedback control amount u determined based on the deviation between B' is a predetermined value), the command torque T is calculated and output.

第5図のフローチヤートは第2の発明に対応す
るものであり、フイードバツク制御と非線形補償
とを行うときはステツプ11、12の次のステツプ13
で制御周期をDT0に設定するが、非線形補償を
停止してフイードバツク制御のみ行うときはステ
ツプ21、22の次のステツプ23で制御周期をDT0
からDT1(DT1<DT0)に切換え、制御周期を早
める。
The flowchart in FIG. 5 corresponds to the second invention, and when performing feedback control and nonlinear compensation, step 13 following steps 11 and 12 is performed.
The control period is set to DT0 in step 23, but if you want to stop nonlinear compensation and perform only feedback control, set the control period to DT0 in step 23 following steps 21 and 22.
to DT1 (DT1 < DT0) and speed up the control cycle.

第6図のフローチヤートは第3の発明に対応す
るものであり、ステツプ23で制御周期をDT1に
切換えて短くした場合に、次のステツプ24でそれ
に合わせてフイードバツク制御ゲインK1,K2(第
3図参照)を切換える。
The flowchart in FIG. 6 corresponds to the third invention, and when the control period is shortened by switching to DT1 in step 23, the feedback control gains K 1 , K 2 ( (see Figure 3).

次に作用を説明する。 Next, the action will be explained.

先ず、マニピユレータの持つ強い非線形性を取
除く非線形補償について述べる。
First, we will discuss nonlinear compensation that removes the strong nonlinearity of the manipulator.

よく知られているように、多関節マニピユレー
タは次の(1)式のような非線形性、軸間干渉性を有
しており、高速・高精度な動作を線形フイードバ
ツクで実現するには、これが問題となつてくる。
As is well known, articulated manipulators have nonlinearity and inter-axis interference as shown in equation (1) below, and this is necessary to achieve high-speed, high-precision motion with linear feedback. It becomes a problem.

〓(θ)θ¨+〓(θ、θ・)+〓(θ)θ・ +〓(θ)=〓 ……(1) ここに、θ=〔θ1、…θot(θi:各ジヨイト関節
角、n:各ジヨイント数) 〓=〔T1、…Tot(Ti:各ジヨイントへの駆動ト
ルク) 〓(θ):慣性モーメント行列 〓(θ、θ・):コリオリ・遠心力項 〓(θ):各ジヨイントの粘性摩擦 〓(θ):重力項 そこで、例えば次の(2)式のように指令トルクを
定めてやることで、マニピユレータの非線形性、
軸間干渉性をある程度取除けて、次の(3)式のよう
に線形化され、線形フイードバツク制御をより効
果的に行うことができる。
〓(θ)θ¨+〓(θ, θ・)+〓(θ)θ・ +〓(θ)=〓 ...(1) Here, θ=[θ 1 ,...θ o ] ti : angle of each joint joint, n: number of each joint) 〓=[T1,...T o ] t (T i : driving torque to each joint) 〓(θ): moment of inertia matrix〓(θ, θ・): Coriolis・Centrifugal force term = (θ): Viscous friction of each joint = (θ): Gravity term Therefore, by determining the command torque as in the following equation (2), for example, the nonlinearity of the manipulator can be reduced.
Inter-axis interference can be removed to some extent and linearized as shown in equation (3) below, allowing more effective linear feedback control.

〓=〓(θ)〔〓1θ+〓2θ・+〓〓〕 +〓(θ、θ・)+〓(θ)θ・+〓(θ) …(2) θ¨=〓2θ・+〓1θ+〓〓 …(3) ここに、〓1、〓2、〓は定数行列で、特に干
渉性を取除くために、〓1、〓2、〓は対角行列
に選んでいる。〓はフイードバツク制御量であ
る。
〓=〓(θ) [〓1θ+〓 2 θ・+〓〓〓] +〓(θ, θ・)+〓(θ)θ・+〓(θ) …(2) θ¨=〓2θ・+〓1θ+ 〓〓 …(3) Here, 〓1, 〓2, 〓 are constant matrices, and 〓1, 〓2, 〓 are chosen to be diagonal matrices, especially to remove interference. 〓 is the feedback control amount.

そこで、非線形補償演算ブロツクでは、マニピ
ユレータの諸元値、すなわち、各軸に固定された
座標系で表された各リンクの重心位置、リンク重
量、慣性モーメント、摩擦係数、リンク座標間の
変換行列、ゲイン〓1、〓2、〓を記憶してい
て、マニピユレーの関節角θと関節角速度θ・、及
び線形フイードバツクコントローラの制御出力で
あるフイードバツク制御量uを入力し、式(2)を例
えばLuhのアルゴリズム(式(1)の形の方程式を高
速で演算することが可能なアルゴリズム)で計算
し、非線形補償量である指令トルク〓を定めて、
マニピユレータの各軸のモータに出力する。これ
により、マニユピユレーは略線形化され、また各
軸は略独立として見なすことができる。
Therefore, in the nonlinear compensation calculation block, the specification values of the manipulator, that is, the center of gravity position of each link expressed in the coordinate system fixed to each axis, the link weight, the moment of inertia, the friction coefficient, the transformation matrix between link coordinates, The gains 〓1, 〓2, 〓 are memorized, the joint angle θ and the joint angular velocity θ・ of the manipulator, and the feedback control amount u, which is the control output of the linear feedback controller, are input, and equation (2) is expressed as, for example, Calculate using Luh's algorithm (an algorithm that can calculate equations in the form of formula (1) at high speed), and determine the command torque 〓, which is a nonlinear compensation amount.
Outputs to the motor of each axis of the manipulator. This makes the manipulator substantially linear, and each axis can be regarded as substantially independent.

さて、一般的な6軸多関節マニピユレータで式
(2)の補償演算を考えてみると、大体乗算・加算合
計600位あり、現状の演算プロセツサを用いても
20〜50ms程度はかかつてしまい、線形フイード
バツクコントローラの制御周期も、これに同期さ
せざるを得ず、マニピユレータの機械的共振周波
数が一般的に10数Hzであることから、充分短い制
御周期と言うこともできず、位置決め精度低下、
整定時間が長くなる等の問題を生じてしまう。
Now, using a general 6-axis multi-joint manipulator, the formula is
If we consider the compensation operations in (2), there are approximately 600 multiplications and additions in total, and even with the current arithmetic processor,
The control period of the linear feedback controller must be synchronized with this, and since the mechanical resonance frequency of the manipulator is generally around 10-odd Hz, the control period is sufficiently short. It is not possible to say this, and the positioning accuracy decreases.
This results in problems such as a long settling time.

ところで、式(1)を見てもわかるように、マニピ
ユレータの非線形力はθ¨、θ・が大きい時に強くで
て、低速時にはあまり出ない。つまり、第7図の
ように、ある作業動作で位置決めに近づいた時点
では、かなり低速化しており、〓(θ)の変化も
少なく、非線形補償も不必要となつてくる。
By the way, as can be seen from Equation (1), the nonlinear force of the manipulator is strong when θ¨ and θ· are large, and not so much when the speed is low. In other words, as shown in FIG. 7, when a certain work operation approaches positioning, the speed has decreased considerably, the change in 〓(θ) is small, and nonlinear compensation is no longer necessary.

そこで補償演算を簡略化するため、|−θ|
<A、|θ・r−θ・|<Bの領域に入つたら(A、
Bはマニピユレータの非線形力特性から適当に定
める)、ほぼθ・=0と考え、 T=A′u+B …(4) ここに、 A′=〓()〓、 B′=〓()〓1 +〓(、0)+〓() の定数 にてフイードバツク制御のみを行う(第1の発
明)。
Therefore, in order to simplify the compensation calculation, |−θ|
<A, |θ・r−θ・|<B when it enters the region (A,
(B is determined appropriately from the nonlinear force characteristics of the manipulator), and approximately θ・=0, T=A′u+B …(4) Here, A′=〓()〓, B′=〓()〓1 + Only feedback control is performed using the constant 〓(,0)+〓() (first invention).

これにより、制御系でかなりの演算部分を占め
ていた非線形補償演算がなくなり、演算負荷が激
減される。
As a result, the nonlinear compensation calculation that occupied a considerable part of the calculation in the control system is eliminated, and the calculation load is drastically reduced.

第2の発明では、第1発明で激減された演算負
荷分を線形フイードバツクコントローラの制御周
期の短縮化に使用する。精密な位置決めを整定時
間短く行うには目標値に対する偏差を早く検出
し、早く対処する必要があり、制御周期を非線形
補償演算周期DT0に合わせたものから、補償演
算を止め短い周期DT1(<DT0)にすることで、
第8図に示すように整定時間が短縮化され、また
位置繰返し精度も向上する。
In the second invention, the calculation load drastically reduced in the first invention is used to shorten the control period of the linear feedback controller. In order to perform precise positioning in a short settling time, it is necessary to detect deviations from the target value quickly and take appropriate action. ),
As shown in FIG. 8, the settling time is shortened and the position repeatability is improved.

第3の発明では、第2の発明に加えて、変更さ
れたフイードバツク制御周期に合つた制御ゲイン
K1,K2(第3図参照)に切換える。
In a third invention, in addition to the second invention, a control gain that matches the changed feedback control period is provided.
Switch to K 1 and K 2 (see Figure 3).

例えば第10図の例で考えると、閉ループ系で
は、 θ¨−(F2+GK2)θ・−(F1+GK2K1)θ =GK2K1θr …(5) となる。ここで、これをZ変換(Z=est、Δt=
制御周期)し、所望特性とするゲインK1,K2
Δtの関数となることから、制御周期に合つた制
御ゲインK1,K2に切換える意味は明白である。
For example, considering the example of FIG. 10, in a closed loop system, θ¨−(F 2 +GK 2 )θ·−(F 1 +GK 2 K 1 )θ = GK 2 K 1 θr (5). Here, this is Z-transformed (Z=e st , Δt=
Since the gains K 1 and K 2 that provide the desired characteristics are a function of Δt, the meaning of switching to the control gains K 1 and K 2 that match the control cycle is obvious.

尚、第9図は、ゲインを切換えずDT0周期で
マツチングされたゲインで制御した場合と、
DT1周期でマツチングされたゲインに切換えた
場合との制御性の差を示している。
In addition, Fig. 9 shows the case where the gain is controlled with the matched gain in the DT0 cycle without switching the gain, and
This shows the difference in controllability compared to when switching to a gain matched in DT1 cycle.

<発明の効果> 以上説明したように本発明によれば、マニピユ
レータの非線形性が強くでる高速動作時は、従来
通り非線形補償しつつ線形フイードバツク制御を
行い、非線形形があまり問題にならない最終目標
位置及び速度に近づいたら、非線形補償を止めフ
イードバツク制御のみで制御するようにしたた
め、位置決め時の演算負荷を大巾に低減できると
いう効果が得られる。
<Effects of the Invention> As explained above, according to the present invention, during high-speed operation when the manipulator is highly nonlinear, linear feedback control is performed while nonlinear compensation is performed as before, and the final target position is determined where nonlinearity does not pose much of a problem. When the speed approaches , the nonlinear compensation is stopped and control is performed only by feedback control, which has the effect of greatly reducing the calculation load during positioning.

また、第2には、非線形補償の停止と同時にフ
イードバツク制御周期を短くすることで、位置繰
返しが精度が向上し、整定時間も短くすることが
できるという効果が得られる。
Second, by shortening the feedback control period at the same time as stopping nonlinear compensation, the accuracy of position repetition can be improved and the settling time can also be shortened.

また第3には、フイードバツク制御周期の短縮
化と同時にこれに合つたフイードバツク制御ゲイ
ンに切換えることで、最適なゲイン選択により更
に制御性能を向上させることができるという効果
が得られる。
Thirdly, by shortening the feedback control period and simultaneously switching to a feedback control gain suitable for this, it is possible to further improve control performance through optimal gain selection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロツク図、第2
図はマイクロコンピユータによるハードウエア構
成例を示すブロツク図、第3図は制御系ブロツク
図、第4図〜第6図はそれぞれ第1〜第3の発明
に対応する動作手順のフローチヤート、第7図〜
第9図は作用を説明するための線図、第10図は
非線形補償停止時の制御系ブロツク図である。 11……線系フイードバツクコントローラ、1
2……非線形補償演算ブロツク、13……マニピ
ユレータ。
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2 is a block diagram showing the configuration of the present invention.
The figure is a block diagram showing an example of a hardware configuration using a microcomputer, FIG. 3 is a control system block diagram, FIGS. 4 to 6 are flowcharts of operating procedures corresponding to the first to third inventions, respectively. figure~
FIG. 9 is a diagram for explaining the operation, and FIG. 10 is a block diagram of the control system when nonlinear compensation is stopped. 11...Line system feedback controller, 1
2...Nonlinear compensation calculation block, 13...Manipulator.

Claims (1)

【特許請求の範囲】 1 各時点での目標値と実際値とを比較しつつマ
ニピユレータへの制御出力をフイードバツク制御
するフイードバツク制御手段と、マニピユレータ
の有する非線形性を補償するため上記制御出力を
非線形補償する非線形補償手段とを有するマニピ
ユレータの制御装置において、実際値が最終目標
値付近に達したときに上記非線形補償手段の作動
を停止させる非線形補償停止手段を設けたことを
特徴とするマニピユレータの制御装置。 2 各時点での目標値と実際値とを比較しつつマ
ニピユレータへの制御出力をフイードバツク制御
するフイードバツク制御手段と、マニピユレータ
の有する非線形性を補償するため上記制御出力を
非線形補償する非線形補償手段とを有するマニピ
ユレータの制御装置において、実際値が最終目標
値付近に達したときに上記非線形補償手段の作動
を停止させる非線形補償停止手段と、該非線形補
償停止手段の作動と同期して上記フイードバツク
制御手段のフイードバツク制御周期を短くするフ
イードバツク制御周期切換手段とを設けたことを
特徴とするマニピユレータの制御装置。 3 各時点での目標値と実際値とを比較しつつマ
ニピユレータへの制御出力をフイードバツク制御
するフイードバツク制御手段と、マニピユレータ
の有する非線形性を補償するため上記制御出力を
非線形補償する非線形補償手段とを有するマニピ
ユレータの制御装置において、実際値が最終目標
値付近に達したときに上記非線形補償手段の作動
を停止させる非線形補償停止手段と、該非線形補
償停止手段の作動と同期して上記フイードバツク
制御手段のフイードバツク制御周期を短くするフ
イードバツク制御周期切換手段と、該フイードバ
ツク制御周期切換手段の作動と同期してその制御
周期に合つたフイードバツク制御ゲインに切換え
るフイードバツク制御ゲイン切換手段とを設けた
ことを特徴とするマニピユレータの制御装置。
[Scope of Claims] 1. Feedback control means that performs feedback control of the control output to the manipulator while comparing the target value and actual value at each point in time, and nonlinear compensation for the control output to compensate for the nonlinearity of the manipulator. A control device for a manipulator, comprising a nonlinear compensation means for stopping the operation of the nonlinear compensation means when an actual value reaches near a final target value. . 2 Feedback control means for feedback controlling the control output to the manipulator while comparing the target value and actual value at each point in time, and nonlinear compensation means for nonlinearly compensating the control output to compensate for the nonlinearity of the manipulator. A control device for a manipulator comprising: nonlinear compensation stop means for stopping the operation of the nonlinear compensation means when the actual value reaches near the final target value; 1. A control device for a manipulator, comprising: feedback control period switching means for shortening a feedback control period. 3 Feedback control means for feedback controlling the control output to the manipulator while comparing the target value and actual value at each point in time, and nonlinear compensation means for nonlinearly compensating the control output to compensate for the nonlinearity of the manipulator. A control device for a manipulator comprising: nonlinear compensation stop means for stopping the operation of the nonlinear compensation means when the actual value reaches near the final target value; The present invention is characterized by comprising a feedback control period switching means for shortening the feedback control period, and a feedback control gain switching means for switching to a feedback control gain suitable for the control period in synchronization with the operation of the feedback control period switching means. Manipulator control device.
JP19939784A 1984-09-26 1984-09-26 Controller of manipulator Granted JPS6177906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19939784A JPS6177906A (en) 1984-09-26 1984-09-26 Controller of manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19939784A JPS6177906A (en) 1984-09-26 1984-09-26 Controller of manipulator

Publications (2)

Publication Number Publication Date
JPS6177906A JPS6177906A (en) 1986-04-21
JPH0550005B2 true JPH0550005B2 (en) 1993-07-27

Family

ID=16407103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19939784A Granted JPS6177906A (en) 1984-09-26 1984-09-26 Controller of manipulator

Country Status (1)

Country Link
JP (1) JPS6177906A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234141A (en) * 1986-04-04 1987-10-14 Nikon Corp Camera lens including extender with grip
JP2535334B2 (en) * 1986-10-29 1996-09-18 フアナツク株式会社 Digital negative feedback control system
JPH0769734B2 (en) * 1987-04-24 1995-07-31 株式会社日立製作所 Manipulator device

Also Published As

Publication number Publication date
JPS6177906A (en) 1986-04-21

Similar Documents

Publication Publication Date Title
WO2004092859A1 (en) Servo controller
JPH08118275A (en) Controller for manipulator
US5920169A (en) Servomotor control method
JPH10309684A (en) Compliance control method of manipulator
JPS615302A (en) Controller of manipulator
JP2006215626A (en) Position controller
JP2016045549A (en) Position control device
JPH10329063A (en) Robot control device
JPH10128688A (en) Non-interfering control method of robot
JP4639417B2 (en) Robot control device
JP2619227B2 (en) Robot control method and device
JPH0550005B2 (en)
JPS60263206A (en) Control device of manipulator
JPS61201304A (en) Method for controlling position of robot
JPS6077210A (en) Controlling method of spatial kinetic mechanism
JPH02205489A (en) Control method for impedance of manipulator
JP2016177513A (en) Tandem position control device
JPH06332535A (en) Robot controller
JP2003047269A (en) Servo controller
GB2146801A (en) Control of robots
JPH02297612A (en) Sliding mode controlling system with integrability
JPH11345010A (en) Controller for robot
JPS59220806A (en) Controlling method of industrial robot
JP7182952B2 (en) CONTROL METHOD, CONTROL PROGRAM, RECORDING MEDIUM, CONTROL DEVICE, ROBOT SYSTEM, AND PRODUCT MANUFACTURING METHOD
JPH08141951A (en) Cooperative control method of robot and cooperative control device thereof