JPS6177906A - Controller of manipulator - Google Patents

Controller of manipulator

Info

Publication number
JPS6177906A
JPS6177906A JP19939784A JP19939784A JPS6177906A JP S6177906 A JPS6177906 A JP S6177906A JP 19939784 A JP19939784 A JP 19939784A JP 19939784 A JP19939784 A JP 19939784A JP S6177906 A JPS6177906 A JP S6177906A
Authority
JP
Japan
Prior art keywords
manipulator
control
feedback control
nonlinear compensation
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19939784A
Other languages
Japanese (ja)
Other versions
JPH0550005B2 (en
Inventor
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19939784A priority Critical patent/JPS6177906A/en
Publication of JPS6177906A publication Critical patent/JPS6177906A/en
Publication of JPH0550005B2 publication Critical patent/JPH0550005B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To reduce greatly the arithmetic load in a positioning mode by discontinuing the nonlinear compensation and applying the feedback control only at a point close to the final target position or speed where the nonlinearity can be ignored. CONSTITUTION:A DC motor 4 of each joint shaft of a manipulator is driven by the output of a microcomputer 1 via a D/A converter 2 and a current amplifier 3. Then a tachogenerator 5 detects a joint angle speed d/dt(theta) and at the same time a counter 6 detects a joint angle theta respectively. Here the final target joint angle of the manipulator is compared with an actual angle theta. When the actual angle theta is set within a prescribed range, the final target joint angle speed is compared with the actual speed. Then it is regarded that the angle speed is slowed satisfactorily down to the final target value when the actual speed is kept within the prescribed range. Then the feedback control degree U is calculated from the deviation between the target angle and angle speed and these actual values. Thus a command torque T is calculated and delivered.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は非線形補償l!能を有するマニピュレータの制
御装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides nonlinear compensation l! The present invention relates to a control device for a manipulator having the following functions.

〈従来の技術〉 従来より、マニピュレータの制御装置においては、フィ
ードバック制御と共に、非線形補償を行っている。すな
わち、制御対象のマニピュレータが多関節構造である場
合などには、その動きは常に慣性モーメント、コリオリ
・遠心力、そして重力等の非線形な力の影響を受けてい
るので、それを補償するための非線形補償量をマニピュ
レータの関節角及び関節角速度より求めて、マニピュレ
ータへの制御出力(トルク指令)を非線形補償すること
により、マニピュレータの非線形効果を相殺し、線形動
作を実現しようとしている(特開昭55−41585号
公報参照)。
<Prior Art> Conventionally, in manipulator control devices, nonlinear compensation has been performed in addition to feedback control. In other words, when the manipulator to be controlled has a multi-joint structure, its movement is always affected by nonlinear forces such as moment of inertia, Coriolis centrifugal force, and gravity, so it is necessary to By calculating the nonlinear compensation amount from the joint angle and joint angular velocity of the manipulator and nonlinearly compensating the control output (torque command) to the manipulator, the nonlinear effect of the manipulator is canceled out and linear operation is realized (Japanese Patent Application Laid-Open No. 55-41585).

〈発明が解決しようとする問題点〉 しかしながら、このような従来のマニピュレータの制御
装置にあっては、非線形補償を行う演算において、高速
演算アルゴリズム(例えばLuhのアルゴリズム)を使
用しても、多関節多自由度となると、かなり演算時間が
増加し、これに伴いフィードバック制御周期も非線形補
償周期に合わせざるを得す、長い制御周期となるため、
非線形補償があまり必要のない位置決め時の精密サーボ
制御が粗い制御となり、位置決めに時間がかかり、マニ
ピュレータ動作性能の低下を招くという問題点があった
<Problems to be Solved by the Invention> However, in such conventional manipulator control devices, even if high-speed calculation algorithms (for example, Luh's algorithm) are used in calculations for nonlinear compensation, multi-joint If there are multiple degrees of freedom, the calculation time will increase significantly, and the feedback control period will have to match the nonlinear compensation period, resulting in a long control period.
There is a problem in that precision servo control during positioning, which does not require much nonlinear compensation, results in coarse control, which takes time for positioning, leading to a decrease in manipulator operating performance.

そこで本発明は、位置決め時のマニピュレータの動作性
能を向上させることのできるマニピュレータの制御装置
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manipulator control device that can improve the operational performance of a manipulator during positioning.

く問題点を解決するための手段) 本発明は、上記の目的を達成するため、第1図に示すよ
うに、第1には、各時点での目標値と実際値とを比較し
つつマニピュレータMへ(7) IJ ’+B 出力を
フィードバック制御するフィードバンク制御手段Aと、
マニピュレータMの有する非線形性を補償するため上記
制御出力を非線形補償する非線形補償手段Bとを設ける
他、実際値が最終目標値付近に達したときに非線形補償
手段Aの作動を停止させる非線形補償停止手段Cを設け
るようにしたことを特徴とする。
In order to achieve the above object, the present invention, as shown in FIG. to M (7) IJ '+B Feed bank control means A that performs feedback control of the output;
In order to compensate for the nonlinearity of the manipulator M, a nonlinear compensation means B for nonlinearly compensating the control output is provided, as well as a nonlinear compensation stop for stopping the operation of the nonlinear compensation means A when the actual value reaches around the final target value. The present invention is characterized in that a means C is provided.

第2には、更に上記非線形補償停止手段Cの作動と同期
して上記フィードバック制御手段Aのフィードハック制
御周期を短くするフィードバック制御周期切換手段りを
設けるようにしたことを特徴とする。
A second feature is that a feedback control period switching means is further provided for shortening the feed hack control period of the feedback control means A in synchronization with the operation of the nonlinear compensation stop means C.

第3には、更に上記フィードバック制御周期切換手段り
の作動と同期してその制御周期に合ったフィードバンク
制御ゲインに切換えるフィードバンク制御ゲイン切換手
段Eを設けるようにしたことを特徴とする。
Thirdly, the present invention is characterized in that it is further provided with a feed bank control gain switching means E that switches to a feed bank control gain that matches the control period in synchronization with the operation of the feedback control period switching means.

くイ乍用ン すなわち、マニピュレータの非線形性が強くでる高速動
作時は従来通り非線形補償しつつ線形フィードバンク制
御を行い、非線形性があまり問題とならない最終目標値
付近での位置決め時には、非線形補償を停止してフィー
ドバック制御のみで制御しく第1の発明)、更にはフィ
ードバンク制周期に合ったフィードバック制御ゲインに
切換える(第3の発明)のである。
In other words, during high-speed operation when the manipulator's nonlinearity is strong, linear feedbank control is performed while nonlinear compensation is performed as before, and when positioning near the final target value where nonlinearity is not a problem, nonlinear compensation is performed. In this case, the control is stopped and controlled using only feedback control (first invention), and furthermore, the feedback control gain is switched to match the feedbank control period (third invention).

〈実施例〉 以下に実施例を説明する。<Example> Examples will be described below.

ハードウェア構成例を示す、同図において、1はマイク
ロコンピュータ(CP U)であり、その出演算ブロッ
ク、13はマニピュレータである。
In the figure showing an example of the hardware configuration, 1 is a microcomputer (CPU), its output calculation block, and 13 is a manipulator.

第4図は動作手順を示すフローチャートであり、これは
第1の発明に対応している。
FIG. 4 is a flowchart showing the operating procedure, which corresponds to the first invention.

所定の制御周期毎にこのフローを繰返すが、先ずステッ
プ1 (図ではSL)でマニピュレータの現在の関節角
θと関節角速度θとを検出しデータとして取り込む。
This flow is repeated every predetermined control cycle, but first, in step 1 (SL in the figure), the current joint angle θ and joint angular velocity θ of the manipulator are detected and taken in as data.

ステップ2ではある動作の最終目標関節角TTと実際値
θとを比較して、所定範囲(Aは所定値)に入ったか否
かを判定し、YESであれば、次のステップ3で最終目
標関節角速度77(通常は零)と実際値θとを比較して
、所定範囲(Bは所定値)に入ったか否かを判定する。
In step 2, the final target joint angle TT of a certain movement is compared with the actual value θ to determine whether it is within a predetermined range (A is a predetermined value). If YES, in the next step 3, the final target joint angle TT is determined. The joint angular velocity 77 (usually zero) is compared with the actual value θ to determine whether it is within a predetermined range (B is a predetermined value).

ステップ2でNO1若しくはステップ3でNOの場合は
、高速動作中とみなしく第7図参照)、ステップ11へ
進んでその時点での目標値θr、θrと実際値θ、θと
の偏差に基づいて定められるフィードバック制御i1u
を計算しく第3図参照)、次のステップ12でUとθと
υとから非線形補償演算により非線形補償量(指令トル
ク)Tを計算し出力する。
If the result is NO1 in step 2 or NO in step 3, it is assumed that high-speed operation is in progress (see Figure 7), and the process proceeds to step 11 based on the deviation between the target values θr, θr and the actual values θ, θ at that time. Feedback control i1u determined by
(see FIG. 3), and in the next step 12, a nonlinear compensation amount (command torque) T is calculated and output from U, θ, and υ by nonlinear compensation calculation.

ステップ3でYESの場合は、充分低速になって最終目
標値に近づいたとみなしく第7図参照)、ステップ21
へ進んでその時点での目標値θr、θrと実際値θ、θ
との偏差に基づいて定められるフィードバック制御量U
を計算し、この場合は非線形補償演算を行うことなく、
次のステップ22で、TwA’u+8’   (A’、
B’は所定値)として、指令トルクTを計算し出力する
If YES in step 3, it is assumed that the speed has become sufficiently low that it has approached the final target value (see Figure 7), and step 21
Proceed to and calculate the target values θr, θr and actual values θ, θ at that point.
The feedback control amount U determined based on the deviation from
In this case, without performing any nonlinear compensation operation,
In the next step 22, TwA'u+8'(A',
B' is a predetermined value), the command torque T is calculated and output.

第5図のフローチャートは第2の発明に対応するもので
あり、フィードバック制御と非線形補償とを行うときは
ステップ11.12の次のステップ13で制御周期をD
TOに設定するが、非線形補償を停止してフィードバン
ク制御のみ行うときはステップ21.22の次のステッ
プ23で制御周期をDTOからDTI  (DTI<D
TO)に切換え、制御H周期を早める。
The flowchart in FIG. 5 corresponds to the second invention, and when performing feedback control and nonlinear compensation, the control period is changed to D in step 13 following step 11.12.
TO, but if you want to stop nonlinear compensation and perform only feedbank control, change the control cycle from DTO to DTI (DTI<D
TO) to advance the control H cycle.

第6図のフローチャートは第3の発明に対応するもので
あり、ステップ23で制御周期をDTIに切換えて短く
した場合に、次のステ、プ24でそれに合わせてフィー
ドバック制御ゲインに、、に、(第3図参照)を切換え
る。
The flowchart in FIG. 6 corresponds to the third invention, and when the control period is shortened by switching to DTI in step 23, the feedback control gain is adjusted accordingly in the next step, step 24. (See Figure 3).

次に作用を説明する。Next, the action will be explained.

先ず、マニピュレータの持つ強い非線形性を取除く非線
形補償について述べる。
First, we will discuss nonlinear compensation that removes the strong nonlinearity of the manipulator.

よく知られているように、多関節マニピュレータは次の
(1)式のような非線形性、軸間干渉性を有しており、
高速・高精度な動作を線形フィードバックで実現するに
は、これが問題となってくる。
As is well known, multi-joint manipulators have nonlinearity and inter-axis interference as shown in equation (1) below.
This becomes a problem in achieving high-speed, high-precision operation using linear feedback.

J (θ)  I9i+f  (θ、汐)+V(θ)汐
+g(θ)=T    ・・・(1) ここに、θ=〔θ1.・・・θ。〕も(θ、:各ジョイ
ト関節角、n:ジョイント数) T= (T、、i−T、)’  (Tl:各ジョイトへ
の駆動トルク) J(θ):慣性モーメント行列 f (θ、θ):コリオリ・遠心力項 V <O>  :各ジヨイントの粘性摩擦g (θ)二
重力項 そこで、例えば次の(2)弐のように指令トルクを定め
てやることで、マニピュレータの非線形性。
J (θ) I9i + f (θ, tide) + V (θ) tide + g (θ) = T ... (1) Here, θ = [θ1. ...θ. ] also (θ,: joint angle of each joint, n: number of joints) T = (T,,i-T,)' (Tl: driving torque to each joint) J(θ): moment of inertia matrix f (θ, θ): Coriolis centrifugal force term V <O>: Viscous friction g of each joint (θ) Double force term Therefore, by setting the command torque as in (2) 2 below, for example, the nonlinearity of the manipulator can be reduced. .

軸間干渉性をある程度取除けて、次の(3)弐のように
線形化され、線形フィードバック制御をより効果的に行
うことができる。
Inter-axis interference can be removed to some extent, linearization can be performed as shown in (3) 2 below, and linear feedback control can be performed more effectively.

T=J (θ) (F、θ+F z /l + G u
 )+f  (θ、σ)+V(θ)汐十g (θ)・・
・(2)/j=Fze十F 、 0 + G u   
−(31ここに、F l+ F z、 Gは定数行列で
、特に干渉性を取除(ために、F、、F、、Gは対角行
列に選んでいる。Uはフィードバック制御量である。
T=J (θ) (F, θ+F z /l + Gu
) + f (θ, σ) + V (θ) Shio 10g (θ)...
・(2)/j=Fze1F, 0 + Gu
−(31 Here, F l+ F z, G is a constant matrix, and F,, F,, G are selected as diagonal matrices in order to specifically remove interference. U is a feedback control amount. .

そこで、非線形補償演算ブロックでは、マニピュレータ
の諸元値、すなわち、各軸に固定された座標系で表され
た各リンクの重心位置、リンク重量、慣性モーメント、
摩擦係数、リンク座標間の変換行列、ゲインF1、Ft
、Gを記憶していて、マニピュレータの関節角θと関節
角速度6.及び線形フィードバックコントローラの制御
出力であるフィードバック制m1kuを入力し、弐(2
)を例えばLuhのアルゴリズム(式(1)の形の方程
式を高速で演算することが可能なアルゴリズム)で計算
し、非線形補償量である指令トルクTを定めて、マニビ
ュレータの各軸のモータに出力する。これにより、マニ
ピュレータは路線形化され、また各軸は略独立として見
なすことができる。
Therefore, in the nonlinear compensation calculation block, the specification values of the manipulator, that is, the center of gravity position of each link expressed in the coordinate system fixed to each axis, the link weight, the moment of inertia,
Friction coefficient, transformation matrix between link coordinates, gain F1, Ft
, G, and the joint angle θ and joint angular velocity of the manipulator 6. and the feedback control m1ku which is the control output of the linear feedback controller, and
) is calculated using Luh's algorithm (an algorithm that can calculate equations in the form of formula (1) at high speed), and the command torque T, which is a nonlinear compensation amount, is determined and output to the motor of each axis of the manibulator. do. As a result, the manipulator is shaped into a line, and each axis can be regarded as substantially independent.

さて、一般的な6軸多関節マニピュレータで式(2)の
補償演算を考えてみると、大体乗算・加算合計600位
あり、現状の演算プロセッサを用いても20〜50m5
程度はかかってしまい、線形フィードバックコントロー
ラの制J8周期も、これに同期させざるを得す、マニピ
ュレータの機械的共振周波数が一般的に10数Hzであ
ることから、充分短い制御周期と言うこともできず、位
置決め精度低下、整定時間が長くなる等の問題を生じて
しまう。
Now, if we consider the compensation calculation of equation (2) with a general 6-axis multi-joint manipulator, there are approximately 600 multiplications and additions in total, which is 20 to 50 m5 even with the current calculation processor.
However, the control period of the linear feedback controller must be synchronized with this, and since the mechanical resonance frequency of the manipulator is generally around 10 Hz, it can be said that the control period is sufficiently short. This results in problems such as decreased positioning accuracy and increased settling time.

ところで、式(11を見てもわかるように、マニピュレ
ータの非線形力はθ、θが大きい時に強(でて、低速時
にはあまり出ない。つまり、第7図のように、ある作業
動作で位置決めに近づいた時点では、かなり低速化して
おり、J(θ)の変化も少なく、非線形補償も不必要と
なってくる。
By the way, as can be seen from equation (11), the nonlinear force of the manipulator is strong when θ and θ are large, and it does not appear much at low speeds.In other words, as shown in Figure 7, the When it approaches, the speed has slowed considerably, the change in J(θ) is small, and nonlinear compensation is no longer necessary.

そこで補償演算を簡略化するため、IT7−01<A、
+N下−θ1<Hの領域に入ったら(A。
Therefore, in order to simplify the compensation calculation, IT7-01<A,
If it enters the region of +N lower -θ1<H (A.

Bはマニピュレータの非線形力特性から適当に定める)
、はぼ汐=0と考え、 T=A’u+B”   ・・・(4) ここに、A’−J  CIJ下)G 。
B is determined appropriately from the nonlinear force characteristics of the manipulator)
, Haboshio = 0, T = A'u + B'' ... (4) Here, A'-J CIJ lower) G.

B’−J  <II下)rear +f  (#r、0)+g  <far)の定数 にてフィードバック制御のみを行う(第1の発明)。B'-J <II lower) rear +f (#r, 0)+g<far) constant Only feedback control is performed at (first invention).

これにより、制御系でかなりの演算部分を占めていた非
線形補償演算がなくなり、演算負荷が激減される。
As a result, the nonlinear compensation calculation that occupied a considerable part of the calculation in the control system is eliminated, and the calculation load is drastically reduced.

第2の発明では、第1の発明で激減された演算負荷骨を
線形フィードバックコントローラの制御周期の短縮化に
使用する。精密な位置決めを整定時間短く行うには目標
値に対する偏差を早く検出し、早く対処する必要があり
、制御周期を非線形補償演算周期DTOに合わせたもの
から、補償演算を止め短い周期DTI  (<DTO)
にすることで、第8図に示すように整定時間が短縮化さ
れ、また位置繰返し精度も向上する。
In the second invention, the computational load drastically reduced in the first invention is used to shorten the control period of the linear feedback controller. In order to perform precise positioning in a short settling time, it is necessary to detect deviations from the target value quickly and take action quickly. )
By doing so, as shown in FIG. 8, the settling time is shortened and the position repeatability is also improved.

第3の発明では、第2の発明に加えて、変更されたフィ
ードバック制御周期に合った制御ゲインに+、Kg(第
3図参照)に切換える。
In the third invention, in addition to the second invention, the control gain is switched to +Kg (see FIG. 3) to match the changed feedback control cycle.

例えば第10図の例で考えると、閉ループ系では、θ−
(F、+CrKZ)θ−(Fl+GKZKl)θ−GK
、に、θr    −(5) となる。ここで、これをZ変fi (Z=6’^(、Δ
t=制御周期)し、所望特性とするゲインに+、Kzは
Δtの関数となることから、制御周期に合った制御ゲイ
ンに1.Kmに切換える意味は明白である。
For example, considering the example in Figure 10, in a closed loop system, θ-
(F, +CrKZ)θ-(Fl+GKZKl)θ-GK
, θr −(5). Here, we convert this to Z transformation fi (Z=6'^(, Δ
t=control period), and since Kz is a function of Δt, the control gain that matches the control period is +1. The meaning of switching to Km is obvious.

尚、第9図は、ゲインを切換えずDTO周期でマツチン
グされたゲインで制御した場合と、D71周期でマツチ
ングされたゲインに切換えた場合との制御■性の差を示
している。
Incidentally, FIG. 9 shows the difference in control performance between a case where the gain is not switched and control is performed using a gain matched with the DTO period, and a case where control is performed with a gain matched with a D71 period.

〈発明の効果〉 以上説明したように本発明によれば、マニピュレータの
非線形性が強くでる高速動作時は、従来通り非線形補償
しつつ線形フィードバック制御を行い、非線形性があま
り問題にならない最終目標位置及び速度に近づいたら、
非線形補償を止めフィードバック制御のみで制御するよ
うにしたため、位置決め時の演算負荷を大巾に低減でき
るという効果が得られる。
<Effects of the Invention> As explained above, according to the present invention, during high-speed operation when the manipulator is highly nonlinear, linear feedback control is performed while nonlinear compensation is performed as before, and the final target position where nonlinearity does not pose much of a problem can be achieved. and when approaching the speed,
Since nonlinear compensation is stopped and control is performed only by feedback control, the effect of greatly reducing the calculation load during positioning can be obtained.

また第2には、非線形補償の停止と同時にフィードバッ
ク制御周期を短くすることで、位置繰返し精度が向上し
、整定時間も短くすることができるという効果が得られ
る。
Secondly, by shortening the feedback control period at the same time as stopping nonlinear compensation, it is possible to improve the position repeatability and shorten the settling time.

また第3には、フィードバック制御周期の短縮化と同時
にこれに合ったフィードバンク制?Imゲインに切換え
ることで、最適なゲイン選択により更に制御性能を向上
させることができるという効果が得られる。
Thirdly, is there a feedbank system that is suitable for shortening the feedback control period and at the same time? By switching to the Im gain, it is possible to obtain the effect that the control performance can be further improved by selecting the optimum gain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図はマイ
クロコンピュータによるハードウェア構成例を示すブロ
ック図、第3図は制御系ブロック図、第4図〜第6図は
それぞれ第1〜第3の発明に対応する動作手順のフロー
チャート、第7図〜第9図は作用を説明するための線図
、第10図は非線形補償停止時の制御系ブロック図であ
る。 ll・・・線形フィードバックコントローラ12・・・
非線形補償演算ブロック  13・・・マニビエレータ 特許出願人  日産自動車株式会社 代理人 弁理士 笹 島  冨二雄 第4図 第5図 第6図 第7図
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a block diagram showing an example of a hardware configuration using a microcomputer, FIG. 3 is a control system block diagram, and FIGS. A flowchart of the operation procedure corresponding to the third invention, FIGS. 7 to 9 are diagrams for explaining the operation, and FIG. 10 is a block diagram of the control system when nonlinear compensation is stopped. ll...Linear feedback controller 12...
Non-linear compensation calculation block 13...Maneviator patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio SasashimaFigure 4Figure 5Figure 6Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)各時点での目標値と実際値とを比較しつつマニピ
ュレータへの制御出力をフィードバック制御するフィー
ドバック制御手段と、マニピュレータの有する非線形性
を補償するため上記制御出力を非線形補償する非線形補
償手段とを有するマニピュレータの制御装置において、
実際値が最終目標値付近に達したときに上記非線形補償
手段の作動を停止させる非線形補償停止手段を設けたこ
とを特徴とするマニピュレータの制御装置。
(1) Feedback control means that performs feedback control on the control output to the manipulator while comparing the target value and actual value at each point in time, and nonlinear compensation means that nonlinearly compensates the control output to compensate for the nonlinearity of the manipulator. A manipulator control device having:
A control device for a manipulator, comprising a nonlinear compensation stop means for stopping the operation of the nonlinear compensation means when the actual value reaches around the final target value.
(2)各時点での目標値と実際値とを比較しつつマニピ
ュレータへの制御出力をフィードバック制御するフィー
ドバック制御手段と、マニピュレータの有する非線形性
を補償するため上記制御出力を非線形補償する非線形補
償手段とを有するマニピュレータの制御装置において、
実際値が最終目標値付近に達したときに上記非線形補償
手段の作動を停止させる非線形補償停止手段と、該非線
形補償停止手段の作動と同期して上記フィードバック制
御手段のフィードバック制御周期を短くするフィードバ
ック制御周期切換手段とを設けたことを特徴とするマニ
ピュレータの制御装置。
(2) Feedback control means that performs feedback control on the control output to the manipulator while comparing the target value and actual value at each time, and nonlinear compensation means that nonlinearly compensates the control output to compensate for the nonlinearity of the manipulator. A manipulator control device having:
nonlinear compensation stop means for stopping the operation of the nonlinear compensation means when the actual value reaches around the final target value; and feedback for shortening the feedback control period of the feedback control means in synchronization with the operation of the nonlinear compensation stop means. 1. A control device for a manipulator, characterized in that a control period switching means is provided.
(3)各時点での目標値と実際値とを比較しつつマニピ
ュレータへの制御出力をフィードバック制御するフィー
ドバック制御手段と、マニピュレータの有する非線形性
を補償するため上記制御出力を非線形補償する非線形補
償手段とを有するマニピュレータの制御装置において、
実際値が最終目標値付近に達したときに上記非線形補償
手段の作動を停止させる非線形補償停止手段と、該非線
形補償停止手段の作動と同期して上記フィードバック制
御手段のフィードバック制御周期を短くするフィードバ
ック制御周期切換手段と、該フィードバック制御周期切
換手段の作動と同期してその制御周期に合ったフィード
バック制御ゲインに切換えるフィードバック制御ゲイン
切換手段とを設けたことを特徴とするマニピュレータの
制御装置。
(3) Feedback control means that performs feedback control on the control output to the manipulator while comparing the target value and actual value at each point in time, and nonlinear compensation means that nonlinearly compensates the control output to compensate for the nonlinearity of the manipulator. A manipulator control device having:
nonlinear compensation stop means for stopping the operation of the nonlinear compensation means when the actual value reaches around the final target value; and feedback for shortening the feedback control period of the feedback control means in synchronization with the operation of the nonlinear compensation stop means. A control device for a manipulator, comprising: a control period switching means; and a feedback control gain switching means for switching to a feedback control gain that matches the control period in synchronization with the operation of the feedback control period switching means.
JP19939784A 1984-09-26 1984-09-26 Controller of manipulator Granted JPS6177906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19939784A JPS6177906A (en) 1984-09-26 1984-09-26 Controller of manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19939784A JPS6177906A (en) 1984-09-26 1984-09-26 Controller of manipulator

Publications (2)

Publication Number Publication Date
JPS6177906A true JPS6177906A (en) 1986-04-21
JPH0550005B2 JPH0550005B2 (en) 1993-07-27

Family

ID=16407103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19939784A Granted JPS6177906A (en) 1984-09-26 1984-09-26 Controller of manipulator

Country Status (1)

Country Link
JP (1) JPS6177906A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234141A (en) * 1986-04-04 1987-10-14 Nikon Corp Camera lens including extender with grip
JPS63111503A (en) * 1986-10-29 1988-05-16 Fanuc Ltd Digital negative feedback control system
JPS63276607A (en) * 1987-04-24 1988-11-14 Hitachi Ltd Coordinate transforming device for manipulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234141A (en) * 1986-04-04 1987-10-14 Nikon Corp Camera lens including extender with grip
JPS63111503A (en) * 1986-10-29 1988-05-16 Fanuc Ltd Digital negative feedback control system
JPS63276607A (en) * 1987-04-24 1988-11-14 Hitachi Ltd Coordinate transforming device for manipulator

Also Published As

Publication number Publication date
JPH0550005B2 (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US5646495A (en) Tandem control method based on a digital servomechanism
US5216342A (en) Sliding mode control method with a feedforward compensation function
US5272423A (en) Velocity control method for a synchronous AC servo motor
KR970002258B1 (en) Method of servomotor control
US5920169A (en) Servomotor control method
Mesmer et al. Robust design of independent joint control of industrial robots with secondary encoders
Cheah et al. Feedback control for robotic manipulator with uncertain kinematics and dynamics
JPH10309684A (en) Compliance control method of manipulator
JPS615302A (en) Controller of manipulator
JPH07104856A (en) Vibration control method
JPS6177906A (en) Controller of manipulator
JPS60263206A (en) Control device of manipulator
JPH02219107A (en) Numerical controller
JPH02205489A (en) Control method for impedance of manipulator
JPH0392911A (en) Robot control method for sliding mode control
JPH02297612A (en) Sliding mode controlling system with integrability
JPS6194110A (en) Controller of manipulator
JPH08286759A (en) Robot driving control method for compensating statical friction
JPS61163406A (en) Robot control device
JPS61217802A (en) Robot controller
JP2783321B2 (en) Control device for articulated robot
JPH11345010A (en) Controller for robot
JPH04197095A (en) Double shaft drive controller
JP3501304B2 (en) Trajectory tracking positioning control method
JP2653130B2 (en) Acceleration / deceleration control device