JPH02219107A - Numerical controller - Google Patents

Numerical controller

Info

Publication number
JPH02219107A
JPH02219107A JP3986289A JP3986289A JPH02219107A JP H02219107 A JPH02219107 A JP H02219107A JP 3986289 A JP3986289 A JP 3986289A JP 3986289 A JP3986289 A JP 3986289A JP H02219107 A JPH02219107 A JP H02219107A
Authority
JP
Japan
Prior art keywords
section
speed
moving
movable part
line segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3986289A
Other languages
Japanese (ja)
Other versions
JP2790643B2 (en
Inventor
Juichi Maruyama
丸山 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1039862A priority Critical patent/JP2790643B2/en
Publication of JPH02219107A publication Critical patent/JPH02219107A/en
Application granted granted Critical
Publication of JP2790643B2 publication Critical patent/JP2790643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To enable curved path interpolation for controlling the moving position of a movable part properly by calculating acceleration by a speed calculation part so that normal acceleration to be generated corresponding to the curvature of a locus is less than a permissble value. CONSTITUTION:A curve interpolation calculation part 2 calculates coordinate data on the moving point P(t) of the movable part by using the moving speed F outputted by the speed calculation part and fine segment data >Xk sent from a command input part 1. The moving speed F of the path in the section connecting optional points Pk and Pk+1 on the path is determined by using segment data >Xk-1, >Xk, and Xk+1 of the section (k) and its peripheral sections and the maximum speed command value F0 so that the quantity of direction variation in the moving speed in the section (k) per unit time, i.e. normal acceleration is less than the permissble value. The coordinate data on the moving point P(t) of the movable part are calculated form the moving speed F and the segment data >Xk (k=1 - n-1) in the section (k) t control the moving position of the movable part in order. Consequently, the curve path interpolation is performed at high speed with high accuracy corresponding to requested accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は数値制御装置に関するものであり、特に、可
動部の曲線軌跡の曲線補間動作を曲率に応じて適宜制御
できる数値制御装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a numerical control device, and in particular to a numerical control device that can appropriately control curve interpolation operation of a curved locus of a movable part according to the curvature. be.

[従来の技術] 従来、数値制御装置においては、空間上の自由曲線を移
動経路として制御する場合に、その曲線を微小区間に分
割して微小線分データとし、この線分データを用いて移
動経路を補関し制御する方法が一般的に採られている。
[Prior Art] Conventionally, in a numerical control device, when controlling a free curve in space as a movement path, the curve is divided into minute sections to create minute line segment data, and this line segment data is used to control movement. A method of interlinking and controlling routes is generally adopted.

例えば、第4図は特公昭63−33167号公報に示さ
れている従来の数値制御装置の要部構成を示すブロック
図である。また、第5図は従来の数値制御装置の曲線軌
道補間処理による移動点の軌道を示す軌跡図である。
For example, FIG. 4 is a block diagram showing the main part configuration of a conventional numerical control device disclosed in Japanese Patent Publication No. 63-33167. Further, FIG. 5 is a trajectory diagram showing the trajectory of a moving point by curved trajectory interpolation processing of a conventional numerical control device.

第4図及び第5図において、(1)は曲線経路上の任意
の点を結ぶ区間にの線分データXk  (k=1、2,
・・・、n−1)及び最高速度指令値FOを入力する指
令入力部、(2)は指令入力部(1)に入力した線分デ
ータXk  (k=1、2,・、n−1)及び速度指令
値FOにより曲線補間用の演算を行なう曲線補間計算部
、また、(3)は曲線補間計算部(2)で算出した座標
データPx(t)により制御されるX軸サーボ系(3a
)と座標データPY  (t)により制御されるY軸サ
ーボ系(3b)とで構成されているサーボ駆動部である
4 and 5, (1) represents line segment data Xk (k=1, 2,
..., n-1) and the maximum speed command value FO, (2) is the line segment data Xk (k=1, 2, . . . , n-1) input to the command input section (1). ) and a curve interpolation calculation section that performs calculations for curve interpolation using the speed command value FO, and (3) is an X-axis servo system ( 3a
) and a Y-axis servo system (3b) controlled by coordinate data PY (t).

従来の曲線補間を行なう数値制御装置の要部構成は上記
のようになっており、所望の曲線加工を行なうために、
図示しない可動部の移動軌跡を複数の目標点P1、P2
.・・・Pnを順次通る曲線近似経路とし、この経路上
の任意の点PkとPk+1を結ぶ区間にの線分データX
k  (k=1、2,・・・n−1)及び最高速度指令
値FOから可動部の移動座標データP(t)を順次演算
し、サーボ駆動部(3)を適宜制御して可動部の移動経
路の制御である曲線補間動作を行なっている。なお、第
4図では平面加工による二次元制御の場合を示しており
、空間加工の場合にはサーボ駆動部(3)としてZ軸サ
ーボ系が追加されて三次元制御が行なわれる。
The main components of a conventional numerical control device that performs curve interpolation are as described above, and in order to perform the desired curve processing,
The movement locus of the movable part (not shown) is set at multiple target points P1 and P2.
.. ...Set a curved approximation route passing through Pn sequentially, and line segment data X in the section connecting arbitrary points Pk and Pk+1 on this route
k (k=1, 2,...n-1) and the maximum speed command value FO, the movement coordinate data P(t) of the movable part is sequentially calculated, and the servo drive part (3) is appropriately controlled to move the movable part. A curve interpolation operation is performed to control the movement path of the robot. Note that FIG. 4 shows the case of two-dimensional control by planar machining, and in the case of spatial machining, a Z-axis servo system is added as a servo drive section (3) to perform three-dimensional control.

ここで、第5図を用いて従来の数値制御装置による曲線
補間動作について説明する。
Here, the curve interpolation operation by the conventional numerical control device will be explained using FIG.

XY平面内の移動経路の指令値として、複数の目標点P
1、P2.・・・Pnを順次結ぶ各微小線分の線分デー
タXi、X2.・・・Xnと最高速度指令値FOが与え
られる。指令入力部(1)は微小線分データXk  (
k=1、2,・・・n−1)と最高速度指令値FOを順
次入力して曲線補間計算部(2)に送る。
Multiple target points P as command values for the movement route in the XY plane
1, P2. . . . Line segment data Xi, X2 . . . of each minute line segment sequentially connecting Pn. ...Xn and the maximum speed command value FO are given. The command input section (1) inputs minute line segment data Xk (
k=1, 2, .

曲線補間計算部(2)は入力された各データに基づき、
複数の目標点PI、P2.・・・Pnを通る経路計算を
行ない、この経路(点線)上を速度FOで移動する移動
点p (t)の座標を一定の微小なサンプリング周期Δ
T毎に、例えば、スプライン関数計算等を用いて補間演
算し順次出力する。このようにして求めた時々刻々の移
動点p (gの座標データはサーボ駆動部(3)のX軸
サーボ系(3a)及びY軸サーボ系(3b)のサーボ駆
動部(3)にPx(t)及びpy(t)として送られ、
各軸のサーボモータ(図示せず)を駆動して可動部の位
置を適宜制御することにより曲線経路補間を行なってい
る。
Based on each input data, the curve interpolation calculation unit (2) calculates
A plurality of target points PI, P2. ...Calculates a route passing through Pn, and calculates the coordinates of a moving point p (t) moving at a speed FO on this route (dotted line) at a constant minute sampling period Δ
For each T, interpolation calculations are performed using, for example, spline function calculations, and the results are sequentially output. The coordinate data of the momentary movement point p (g) obtained in this way is transferred to the servo drive unit (3) of the X-axis servo system (3a) and Y-axis servo system (3b) of the servo drive unit (3). t) and py(t),
Curved path interpolation is performed by driving servo motors (not shown) for each axis to appropriately control the positions of the movable parts.

[発明が解決しようとする課題] 上記のような従来の数値制御装置では、可動部の移動経
路の指令として経路の線分データと速度指令値をプログ
ラムデータとして与える必要があった。また、曲線経路
を上記のような一定の速度FOで移動する場合には、一
般的に、その曲線の法線方向に遠心力が作用し、その遠
心力の大きさに応じてサーボ駆動される可動部に位置誤
差が生じ、移動経路の軌跡誤差を誘発していた。
[Problems to be Solved by the Invention] In the conventional numerical control device as described above, it is necessary to give route line segment data and a speed command value as program data as a command for a movement route of a movable part. Furthermore, when moving along a curved path at a constant speed FO as described above, centrifugal force generally acts in the normal direction of the curve, and the servo is driven according to the magnitude of the centrifugal force. A positional error occurred in the movable part, causing a trajectory error in the moving route.

したがって、従来の数値制御装置では複雑な曲線軌跡を
高速度に、しかも高精度に経路制御するためには、要求
される精度を考慮して遠心力による法線方向の加速度が
一定値以下となるように曲線の曲率に応じて最適な速度
指令値FkOをきめ細かく与える必要があった。
Therefore, in order to control complex curved trajectories at high speed and with high precision, with conventional numerical control devices, the acceleration in the normal direction due to centrifugal force must be below a certain value, taking into account the required accuracy. Therefore, it was necessary to give the optimum speed command value FkO in detail according to the curvature of the curve.

しかし、曲線経路を構成する大量の微小線分の各区間毎
の最適な速度FkOを予め求め、プログラムデータとし
て与えるには手間がかかり、データ量も増大し入力処理
に時間がかかるために、これらの改善が望まれていた。
However, it takes time and effort to determine in advance the optimal speed FkO for each section of a large number of minute line segments that make up a curved route and provide it as program data, and the amount of data increases and input processing takes time. Improvement was desired.

そこで、この発明は微小線分で与えられる曲線経路の法
線加速度が要求される精度に応じて常に一定値以下とな
るような移動速度を演算し、この移動速度を用いて可動
部の移動位置を適宜制御する曲線経路補間が可能な数値
制御装置の提供を課題とするものである。
Therefore, the present invention calculates a moving speed such that the normal acceleration of a curved path given by a minute line segment is always below a certain value according to the required accuracy, and uses this moving speed to determine the moving position of the movable part. An object of the present invention is to provide a numerical control device capable of appropriately controlling curved path interpolation.

[課題を解決するための手段] この発明にかかる数値制御装置は、所望の曲線加工軌道
を得るために可動部の移動軌跡を複数の目標点P1、P
2.・・・、Pnを順次通る曲線近似経路とし、この経
路上の任意の点PkとPk+1を結ぶ区間にの線分デー
タXk  (k=1.2.・、n−1)及び最高速度指
令値FOを入力する指令入力部(1)と、前記指令入力
部(1)に入力した区間にとその近傍の区間の線分デー
タ・・・、 Xk−1、Xk 。
[Means for Solving the Problem] The numerical control device according to the present invention changes the movement trajectory of the movable part to a plurality of target points P1, P in order to obtain a desired curved machining trajectory.
2. ..., Pn as a curved approximation route that passes sequentially, and line segment data Xk (k=1.2.., n-1) and maximum speed command value in the section connecting arbitrary points Pk and Pk+1 on this route. A command input section (1) for inputting the FO, and line segment data of the section input to the command input section (1) and sections in the vicinity thereof..., Xk-1, Xk.

Xk+1.・・・及び最高速度指令値FOにより区間に
の移動点の速度が当該区間の曲率に応じて定まる許容法
線加速度以下となる移動速度Fを算出する速度計算部(
10)と、前記速度計算部(10)で算出した移動速度
F及び前記指令入力部(1)に入力した区間にの線分デ
ータXk  (k=1、2,・・・。
Xk+1. . . . and a speed calculation unit (
10), the moving speed F calculated by the speed calculation section (10), and line segment data Xk (k=1, 2, . . . ) in the section input to the command input section (1).

n−1)により可動部の移動点P (t)の座標データ
を順次演算する曲線補間計算部(2)と、前記曲線補間
計算部(2)から送られる座標データにより可動部の移
動位置を順次制御するサーボ駆動部(3)とを具備する
ものである。
a curve interpolation calculation unit (2) that sequentially calculates the coordinate data of the moving point P (t) of the movable part using It is equipped with a servo drive unit (3) for sequential control.

[作用] この発明の数値制御装置においては、移動軌跡を複数の
目標点PI、P2.・・・、Pnを順次通る経路とし、
この経路上の任意の点PkとPk+1を結ぶ区間にの線
分データXk  (k=1、2,・・・、n−1)及び
最高速度指令値FOを入力することで、区間にとその近
傍の区間の線分データ・・・、 Xk−1、Xk 。
[Operation] In the numerical control device of the present invention, the movement locus is divided into a plurality of target points PI, P2 . . . . , let the route pass sequentially through Pn,
By inputting the line segment data Xk (k=1, 2,..., n-1) and the maximum speed command value FO for the section connecting arbitrary points Pk and Pk+1 on this route, the Line segment data of neighboring sections..., Xk-1, Xk.

Xk+1.・・・及び最高速度指令値FOから区間にの
移動点の速度が当該区間の曲率に応じて定まる許容法線
加速度以下となる移動速度Fが求まり、この移動速度F
及び区間にの線分データXk  (k−1゜2、・・・
、n−1)により可動部の移動点P (t)の座標デー
タを演算して可動部の移動位置を順次制御するものだか
ら、移動経路の各区間について各々当該区間を含む近傍
区間の線分データから経路方向の変化量が順次求まり、
この経路方向の変化に伴う法線加速度が許容値を満足す
るような移動速度で、要求される精度に応じた高速度で
且つ高精度の曲線経路補間ができる。
Xk+1. ...and the maximum speed command value FO, the moving speed F at which the speed of the moving point in the section is equal to or less than the allowable normal acceleration determined according to the curvature of the section is determined, and this moving speed F
and line segment data Xk (k-1゜2,...
, n-1) to calculate the coordinate data of the moving point P (t) of the moving part and sequentially control the moving position of the moving part. Therefore, for each section of the moving route, the line segment of the neighboring section including the section is The amount of change in the route direction is sequentially determined from the data,
A curved route can be interpolated at a high speed and with high accuracy according to the required accuracy at a moving speed such that the normal acceleration accompanying the change in the route direction satisfies the permissible value.

[実施例] 第1図はこの発明の一実施例である数値制御装置の要部
構成を示すブロック図である。なお、図中、(1)から
(3)は上記従来例の構成部分と同一または相当する構
成部分であるから、ここでは重複する説明を省略する。
[Embodiment] FIG. 1 is a block diagram showing the main part configuration of a numerical control device which is an embodiment of the present invention. In addition, since (1) to (3) in the figure are the same or corresponding components to the components of the above-mentioned conventional example, redundant explanation will be omitted here.

第1図において、(10)は指令入力部(1)から送ら
れる微小線分データXk及び最高速度指令値FOにより
移動経路の各区間の移動速度Fを算出する速度計算部で
ある。この移動速度Fは区間にの移動点の速度が当該区
間の曲率に応じて定まる許容法線加速度以下の速度であ
り、指令入力部(1)から送られる区間にとその近傍の
区間の線分データ・・・ Xk−1、Xk 、 Xk+
1 、・・・及び最高速度指令値FOにより区間に毎に
順次算出される。曲線補間計算部(2)は速度計算部(
10)の出力する移動速度Fと指令入力部(1)から送
られてくる微小線分データXkを用いて可動部の移動点
P (t)の座標データを順次演算する。そして、この
曲線補間計算部(2)から送られる座標データによりサ
ーボ駆動部(3)は可動部の移動位置を順次制御する。
In FIG. 1, (10) is a speed calculating section that calculates the moving speed F of each section of the moving route based on the minute line segment data Xk and the maximum speed command value FO sent from the command input section (1). This moving speed F is a speed at which the speed of the moving point in the section is less than the permissible normal acceleration determined according to the curvature of the section, and the speed is the speed of the moving point in the section and the line segment in the vicinity of the section sent from the command input unit (1). Data... Xk-1, Xk, Xk+
1, . . . and the maximum speed command value FO. The curve interpolation calculation section (2) is a speed calculation section (
The coordinate data of the moving point P (t) of the movable part is sequentially calculated using the moving speed F outputted by 10) and the minute line segment data Xk sent from the command input section (1). Then, the servo drive section (3) sequentially controls the moving position of the movable section based on the coordinate data sent from the curve interpolation calculation section (2).

ここで、第2図を用いてこの実施例の数値制御装置によ
る曲線補間動作について説明する。第2図はこの発明の
実施例の数値制御装置の一つの速度計算部を用いた軌道
補間処理による移動点の軌道を示す軌跡図である。
Here, the curve interpolation operation by the numerical control device of this embodiment will be explained using FIG. FIG. 2 is a trajectory diagram showing a trajectory of a moving point obtained by trajectory interpolation processing using one of the speed calculating sections of the numerical control device according to the embodiment of the present invention.

第2図において、経路の区間k及び区間に+1における
線分データに移動方向をつけた線分ベクトルを各々Xk
及びXk+1とすれば、各々の単位線分ベクトルは次式
となる。
In Figure 2, the line segment vectors obtained by adding the moving direction to the line segment data at section k and section +1 of the route are each expressed as Xk.
and Xk+1, each unit line segment vector becomes the following equation.

そして、区間にの移動速度をFkとし、近似的にこの区
間で経路の移動方向がxkからxk+1に変化するもの
とすれば、この間の速度ベクトル変化ΔFは次式となる
Then, if the moving speed in the section is Fk, and the moving direction of the route changes approximately from xk to xk+1 in this section, then the speed vector change ΔF during this period is given by the following equation.

ΔF=Fk  (xk+1−xk)−”・(2)式した
がって、この区間の移動時間をΔtとすれば、方向変化
に伴う平均法線加速度αは次式となる。
ΔF=Fk (xk+1−xk)−”・Equation (2) Therefore, if the travel time in this section is Δt, then the average normal acceleration α due to a change in direction is expressed by the following equation.

α−IFI/Δt =(Fk/Δt)  l xk+l  −xk(3)式 また、区間にの経路の長さをIXklで近似すれば、移
動時間Δtは次式となる。
α-IFI/Δt = (Fk/Δt) l xk+l −xk Formula (3) Furthermore, if the length of the route in the section is approximated by IXkl, the travel time Δt becomes the following formula.

J t −I Xk I /Fk    ・・・・−(
4)式そこで、これらの結果を整理すれば、 ・・・・・・(5)式 %式% この結果、要求される軌跡精度に基づく経路の法線加速
度αの許容値が定まるため、前記(5)式から経路の各
区間の許容速度Fkが計算できる。
J t −I Xk I /Fk ・・・・−(
Equation 4) Therefore, if we organize these results, we get... Equation (5) % Equation % As a result, the allowable value of the normal acceleration α of the path based on the required trajectory accuracy is determined, so the above The allowable speed Fk for each section of the route can be calculated from equation (5).

一方、経路の最高速度指令値FOが与えられているため
、この両者を満す区間にの移動速度Fは経路の最高速度
指令値FOと経路の各区間の許容速度Fkの小さい方を
とって次式のように決定される。
On the other hand, since the maximum speed command value FO of the route is given, the travel speed F in the section that satisfies both is the smaller of the maximum speed command value FO of the route and the allowable speed Fk of each section of the route. It is determined as follows.

F−m E n、 (FO、Fk )  ・・・・・・
(6)式このように、この実施例の数値制御装置では、
移動軌跡を複数の目標点P1、P2.・・・ Pnを順
次通る経路とし、この経路上の任意の点PkとPk+1
を結ぶ区間にの線分データXk  (k=1、2,・・
・、n−1)及び最高速度指令値FOを指令入力部(1
)に入力し、区間にとその近傍の区間の線分データ・・
・、 Xk−1、Xk 、 Xk+1 、・・・及び最
高速度指令値FOにより速度計算部(10)が区間にの
移動点の速度として当該区間の曲率に応じて定まる許容
法線加速度以下の移動速度Fを上記(1)式から上記(
6)式を用いて算出し、この移動速度F及び区間にの線
分データXk  (k=1.2.・、n−1)により、
曲線補間計算部(2)が可動部の移動点P (t)の座
標データを順次演算し、この各座標データによりサーボ
駆動部(3)が可動部の移動位置を順次制御する。
F−m E n, (FO, Fk) ・・・・・・
Equation (6) As shown above, in the numerical control device of this embodiment,
The movement trajectory is divided into a plurality of target points P1, P2 . ... Set a route passing through Pn sequentially, and any points Pk and Pk+1 on this route
Line segment data Xk (k=1, 2,...
・, n-1) and maximum speed command value FO at the command input section (1
), enter the line segment data for the section and its neighboring sections...
・, Xk-1, Xk, Xk+1, ... and the maximum speed command value FO, the speed calculation unit (10) determines the speed of the moving point in the section as the speed of the movement below the permissible normal acceleration determined according to the curvature of the section. The speed F is calculated from the above equation (1) by the above (
6) Calculated using formula, and using this moving speed F and line segment data Xk (k=1.2.., n-1) in the section,
A curve interpolation calculation unit (2) sequentially calculates coordinate data of a moving point P (t) of the movable part, and a servo drive unit (3) sequentially controls the moving position of the movable part based on each coordinate data.

したがって、移動経路の各区間について各々当該区間を
含む近傍区間の線分データから経路方向の変化量が順次
求まり、この経路方向の変化に伴う法線加速度が許容値
を満足するような移動速度で要求される精度に応じて高
速度で且つ高精度の曲線経路補間ができる。このため、
複雑な曲線軌跡を高速度に、しかも高精度で経路制御す
る場合にも、従来のように曲線経路を構成する大量の微
小線分の各区間毎の最適な速度を予め求め、プログラム
データとして与える必要もないので、プログラムデータ
の作成が容易になり、データ量も抑制でき入力処理が容
易になり、最適速度による可動部の迅速な移動制御が可
能になる。
Therefore, for each section of the travel route, the amount of change in the route direction is sequentially determined from line segment data of neighboring sections including the section, and the travel speed is such that the normal acceleration accompanying the change in the route direction satisfies the allowable value. Curved path interpolation can be performed at high speed and with high accuracy depending on the required accuracy. For this reason,
Even when controlling a complex curved trajectory at high speed and with high precision, the optimal speed for each section of the large number of minute line segments that make up the curved route must be determined in advance and provided as program data, as in the past. Since this is not necessary, it becomes easy to create program data, the amount of data can be suppressed, input processing is facilitated, and rapid movement control of the movable part at an optimum speed becomes possible.

つぎに、この数値制御装置の他の実施例について説明す
る。第3図はこの発明の数値制御装置の他の実施例の速
度計算部を用いた軌道補間処理による移動点の軌道を示
す軌跡図である。
Next, another embodiment of this numerical control device will be described. FIG. 3 is a trajectory diagram showing a trajectory of a moving point obtained by trajectory interpolation processing using a speed calculating section of another embodiment of the numerical control device of the present invention.

第3図において、曲線経路上の任意の点Pk及びPk+
1における接線ベクトルを各々Qk及びQk+1とすれ
ば、各々の単位ベクトルは次式となる。
In FIG. 3, arbitrary points Pk and Pk+ on the curved path
If the tangent vectors at 1 are respectively Qk and Qk+1, each unit vector becomes the following equation.

そして、この単位接線ベクトルqk及びq k+1を上
記実施例の単位線分ベクトルxk及びxk+1の代りに
使用すれば、上記(5)式は次式となる。
If these unit tangent vectors qk and qk+1 are used in place of the unit line segment vectors xk and xk+1 of the above embodiment, the above equation (5) becomes the following equation.

・・・・・・(8)式 したがって、この計算式から更に精度のよい結果を得る
ことができる。
. . . Formula (8) Therefore, a more accurate result can be obtained from this calculation formula.

なお、接線ベクトルQk及びQk+1の算出方法は特願
昭63−082214号に記載されており、公知である
。この方法は目標点P1、、P2.・・・Pnの各位置
ベクトルから求めた経路の各区間の線分データである各
弦のベクトルから近似接線ベクトルを算出する方法であ
る。したがって、この方法によれば、経路の区間k及び
その近傍の区間に=1、に+1.・・・等の線分データ
を用いて近似的に接線ベクトルQk及びQ k+1が容
易に求まる。
The method for calculating the tangent vectors Qk and Qk+1 is described in Japanese Patent Application No. 63-082214 and is well known. This method uses target points P1, P2. . . . This is a method of calculating an approximate tangent vector from the vector of each chord, which is the line segment data of each section of the route determined from each position vector of Pn. Therefore, according to this method, =1 for route section k and its neighboring sections, and +1 for section k of the route. The tangent vectors Qk and Qk+1 can be easily found approximately using line segment data such as .

このように、この実施例においても上記実施例と同様に
、移動経路上の任意の点PkとPk+1を結ぶ区間にの
線分データXk  (k=1、2,・・・、n−1)及
び最高速度指令値FOを指令入力部(1)に入力するこ
とにより、速度計算部(10)が区間にの移動点の速度
が当該区間の曲率に応じて定まる許容法線加速度以下の
移動速度Fを上記(1)式から上記(8)式を用いて算
出して、この移動速度F及び区間にの線分データXk 
 (k=1,2.−、n−1)により、曲線補間計算部
(2)が可動部の移動点p (t)の座標データを順次
演算し、この各座標データによりサーボ駆動部(3)が
可動部の移動位置を順次制御できる。
In this way, in this embodiment as well, as in the above embodiment, line segment data Xk (k=1, 2, . . . , n-1) in the section connecting arbitrary points Pk and Pk+1 on the moving route are used. By inputting the maximum speed command value FO into the command input unit (1), the speed calculation unit (10) calculates the speed at which the speed of the moving point in the section is less than the allowable normal acceleration determined according to the curvature of the section. F is calculated from the above equation (1) using the above equation (8), and this moving speed F and line segment data Xk in the section are calculated.
(k=1, 2.-, n-1), the curve interpolation calculation unit (2) sequentially calculates the coordinate data of the moving point p (t) of the movable part, and based on each coordinate data, the servo drive unit (3) ) can sequentially control the moving position of the movable part.

したがって、上記実施例と同様に、移動経路の各区間に
ついて各々当該区間を含む近傍区間の線分データから経
路方向の変化量が順次求まり、この経路方向の変化に伴
う法線加速度が許容値を満足するような移動速度で要求
される精度に応じて高速度で且つ高精度の曲線経路補間
ができ、最適速度による可動部の迅速な移動制御が可能
になる。
Therefore, similarly to the above embodiment, for each section of the travel route, the amount of change in the route direction is sequentially determined from the line segment data of the neighboring sections including the section, and the normal acceleration associated with this change in the route direction exceeds the allowable value. It is possible to interpolate curved paths at high speed and with high accuracy according to the required accuracy at a satisfactory movement speed, and to quickly control the movement of the movable part at an optimum speed.

加えて、この実施例では経路の区間k及びその近傍の区
間に一11区間に+1.・・・等の線分データを用いて
接線ベクトルQk及びQk+1が容易に求まるから、複
雑な曲線軌跡であってもより高速度で演算処理ができる
In addition, in this embodiment, +1. Since the tangent vectors Qk and Qk+1 can be easily determined using line segment data such as .

ところで、上記実施例では説明の関係で平面加工による
二次元制御の場合について述べたが、空間加工による三
次元制御の場合にも当然応用できる。なお、三次元制御
の場合には、サーボ駆動部(3)にはZ軸サーボ系が追
加され、曲線補間計算部(2)からサーボ駆動部(3)
のZ軸サーボ系には座標データP Z(t)が送られる
By the way, in the above embodiment, for the sake of explanation, the case of two-dimensional control using planar processing has been described, but it can of course be applied to the case of three-dimensional control using spatial processing. In addition, in the case of three-dimensional control, a Z-axis servo system is added to the servo drive unit (3), and the curve interpolation calculation unit (2) is connected to the servo drive unit (3).
Coordinate data PZ(t) is sent to the Z-axis servo system.

[発明の効果] 以上説明したとおり、この発明の数値制御装置は、移動
軌跡を複数の目標点Pi、P2.・・・Pnを順次通る
経路とし、この経路上の任意の点PkとPk+1を結ぶ
区間にの線分データXk  (k−■、2.・・・、n
−1)及び最高速度指令値FOを入力することで、区間
にとその近傍の区間の線分データ・・・Xk−1、Xk
 、 Xk+1 、・・・及び最高速度指令値FOから
区間にの移動点の速度が当該区間の曲率に応じて定まる
許容法線加速度以下となる移動速度Fが求まり、この移
動速度F及び区間にの線分データXk  (k=1、2
,・、n−1)により可動部の移動点p (t)の座標
データを演算して可動部の移動位置を順次制御すること
により、移動経路の各区間について各々当該区間を含む
近傍区間の線分データから経路方向の変化量が順次求ま
り、この経路方向の変化に伴う法線加速度が許容値を満
足するような移動速度で、要求される精度に応じた高速
度で且つ高精度の曲線経路補間ができるので、最適速度
による可動部の迅速な移動制御が可能となる。
[Effects of the Invention] As explained above, the numerical control device of the present invention allows the movement locus to be divided into a plurality of target points Pi, P2, . ...Pn is a route that passes sequentially, and line segment data Xk (k-■, 2..., n
-1) and the maximum speed command value FO, the line segment data for the section and its neighboring sections...Xk-1, Xk
, Line segment data Xk (k=1, 2
, ·, n-1), calculate the coordinate data of the moving point p (t) of the movable part and sequentially control the moving position of the movable part. The amount of change in the route direction is sequentially determined from the line segment data, and the curve is created at a high speed and high precision according to the required accuracy, at a moving speed such that the normal acceleration associated with this change in route direction satisfies the tolerance value. Since path interpolation is possible, rapid movement control of the movable part at the optimum speed is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例である数値制御装置の要部
構成を示すブロック図、第2図はこの発明の実施例の数
値制御装置の一つの速度計算部を用いた軌道補間処理に
よる移動点の軌道を示す軌跡図、第3図はこの発明の数
値制御装置の他の実施例の速度計算部を用いた軌道補間
処理による移動点の軌道を示す軌跡図、第4図は従来の
数値制御装置の要部構成を示すブロック図、第5図は従
来の数値制御装置の軌道補間処理による移動点の軌道を
示す軌跡図である。 図において、 に指令入力部    2:曲線補間計算部3:サーボ駆
動部  10:速度計算部である。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。
FIG. 1 is a block diagram showing the main part configuration of a numerical control device which is an embodiment of the present invention, and FIG. 2 is a block diagram showing the trajectory interpolation process using one of the speed calculation sections of the numerical control device which is an embodiment of the present invention. FIG. 3 is a trajectory diagram showing the trajectory of the moving point according to the trajectory interpolation process using the speed calculation unit of another embodiment of the numerical control device of the present invention, and FIG. 4 is a trajectory diagram showing the trajectory of the moving point according to the conventional FIG. 5 is a block diagram showing the configuration of main parts of the numerical control device, and a trajectory diagram showing the trajectory of a moving point by trajectory interpolation processing of the conventional numerical control device. In the figure, these are a command input section 2: a curve interpolation calculation section 3: a servo drive section 10: a speed calculation section. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 所望の曲線加工軌道を得るために可動部の移動軌跡を複
数の目標点P1、P2、・・・、Pnを順次通る曲線近
似経路とし、この経路上の任意の点PkとPk+1を結
ぶ区間kの線分データXk(k=1、2、・・・、n−
1)及び最高速度指令値F0を入力する指令入力部と、 前記指令入力部に入力した区間kとその近傍の区間の線
分データ・・・、Xk−1、Xk、Xk+1、・・・及
び最高速度指令値F0により区間kの移動点の速度が当
該区間の曲率に応じて定まる許容法線加速度以下となる
移動速度Fを算出する速度計算部と、 前記速度計算部で算出した移動速度F及び前記指令入力
部に入力した区間にの線分データXk(k=1、2、・
・・、n−1)により可動部の移動点P(t)の座標デ
ータを順次演算する曲線補間計算部と、前記曲線補間計
算部から送られる座標データにより可動部の移動位置を
順次制御するサーボ駆動部と を具備することを特徴とする数値制御装置。
[Claims] In order to obtain a desired curved machining trajectory, the movement trajectory of the movable part is set as a curved approximation path that sequentially passes through a plurality of target points P1, P2, ..., Pn, and any point Pk on this path is Line segment data Xk (k=1, 2, ..., n-
1) and a command input section for inputting the maximum speed command value F0, line segment data of the section k input to the command input section and sections in its vicinity..., Xk-1, Xk, Xk+1, ..., and a speed calculating section that calculates a moving speed F at which the speed of a moving point in section k is equal to or less than an allowable normal acceleration determined according to the curvature of the section according to a maximum speed command value F0; and a moving speed F calculated by the speed calculating section. and line segment data Xk (k=1, 2, . . .
..., n-1), and a curve interpolation calculation unit that sequentially calculates the coordinate data of the moving point P(t) of the movable part, and a curve interpolation calculation unit that sequentially controls the movement position of the movable part based on the coordinate data sent from the curve interpolation calculation unit. A numerical control device characterized by comprising a servo drive section.
JP1039862A 1989-02-20 1989-02-20 Numerical control unit Expired - Lifetime JP2790643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039862A JP2790643B2 (en) 1989-02-20 1989-02-20 Numerical control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039862A JP2790643B2 (en) 1989-02-20 1989-02-20 Numerical control unit

Publications (2)

Publication Number Publication Date
JPH02219107A true JPH02219107A (en) 1990-08-31
JP2790643B2 JP2790643B2 (en) 1998-08-27

Family

ID=12564782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039862A Expired - Lifetime JP2790643B2 (en) 1989-02-20 1989-02-20 Numerical control unit

Country Status (1)

Country Link
JP (1) JP2790643B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561525A (en) * 1991-08-30 1993-03-12 Mitsubishi Electric Corp Method and device for displaying moving action of mobile object
WO1997003393A1 (en) * 1995-07-10 1997-01-30 Fanuc Ltd Method and apparatus for free curve interpolation
WO1999001805A1 (en) * 1997-07-03 1999-01-14 Fanuc Ltd Method of conversion of robot teaching program
JPH11345017A (en) * 1999-05-21 1999-12-14 Mitsubishi Electric Corp Numerical controller
US6748300B2 (en) 2002-05-15 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Method of determining permissible speed of an object and controlling the object
WO2011077791A1 (en) * 2009-12-25 2011-06-30 三菱重工業株式会社 Control parameter adjustment method and adjustment device
CN103926881A (en) * 2014-04-21 2014-07-16 北京航空航天大学 Speed-fluctuation-free parameter curve direct interpolation method based on secant method
DE102016012634A1 (en) 2015-10-30 2017-05-04 Fanuc Corporation Numerical control with curvature and curvature change dependent speed control
WO2023029919A1 (en) * 2021-09-02 2023-03-09 浙江大学 Equivalent acceleration-based feed speed control method for linear path numerical control machining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224307A (en) * 1985-07-25 1987-02-02 Mitsubishi Electric Corp Preparing device for numerical control tape
JPS62271004A (en) * 1986-05-19 1987-11-25 Nec Corp Curve interpolation system for numerical control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224307A (en) * 1985-07-25 1987-02-02 Mitsubishi Electric Corp Preparing device for numerical control tape
JPS62271004A (en) * 1986-05-19 1987-11-25 Nec Corp Curve interpolation system for numerical control

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561525A (en) * 1991-08-30 1993-03-12 Mitsubishi Electric Corp Method and device for displaying moving action of mobile object
WO1997003393A1 (en) * 1995-07-10 1997-01-30 Fanuc Ltd Method and apparatus for free curve interpolation
US5936864A (en) * 1995-07-10 1999-08-10 Fanuc Ltd. Free curve interpolation apparatus and interpolation method
WO1999001805A1 (en) * 1997-07-03 1999-01-14 Fanuc Ltd Method of conversion of robot teaching program
JPH11345017A (en) * 1999-05-21 1999-12-14 Mitsubishi Electric Corp Numerical controller
DE10255585B4 (en) * 2002-05-15 2006-01-12 Mitsubishi Denki K.K. Method and device for determining a permissible speed of an object and for controlling the object
US6748300B2 (en) 2002-05-15 2004-06-08 Mitsubishi Denki Kabushiki Kaisha Method of determining permissible speed of an object and controlling the object
WO2011077791A1 (en) * 2009-12-25 2011-06-30 三菱重工業株式会社 Control parameter adjustment method and adjustment device
JP2011134169A (en) * 2009-12-25 2011-07-07 Mitsubishi Heavy Ind Ltd Control parameter adjusting method and adjusting device
CN102640066A (en) * 2009-12-25 2012-08-15 三菱重工业株式会社 Control parameter adjustment method and adjustment device
CN103926881A (en) * 2014-04-21 2014-07-16 北京航空航天大学 Speed-fluctuation-free parameter curve direct interpolation method based on secant method
DE102016012634A1 (en) 2015-10-30 2017-05-04 Fanuc Corporation Numerical control with curvature and curvature change dependent speed control
US10037021B2 (en) 2015-10-30 2018-07-31 Fanuc Corporation Numerical controller performing speed control with curvature and curvature change amount
DE102016012634B4 (en) 2015-10-30 2024-02-01 Fanuc Corporation Numerical control with curvature and curvature change dependent speed control
WO2023029919A1 (en) * 2021-09-02 2023-03-09 浙江大学 Equivalent acceleration-based feed speed control method for linear path numerical control machining

Also Published As

Publication number Publication date
JP2790643B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
Sencer et al. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools
US7039494B2 (en) Controller for machine
JP5762625B2 (en) Trajectory control device
JP6435872B2 (en) Numerical control device and control method
JP2008523487A (en) Method and apparatus for moving guidance of movable machine elements of a numerically controlled machine
JPH02219107A (en) Numerical controller
EP0357778B1 (en) Method of speed control for servomotor
JP2737725B2 (en) Robot control device and method
JPH0695294B2 (en) Trajectory interpolation method for industrial robot
JPH08123531A (en) Control method for track
JPH06110534A (en) Position control method for machine tool
JP2021086181A (en) Orbit generator, automatic position control device and orbit generation method
JPH0550005B2 (en)
JP3164512B2 (en) Numerical control unit
JPH02137006A (en) Speed controller
JPH01234903A (en) Interpolating device
JPS58149512A (en) Numerical control system
Chen et al. Research on High-Precision Contouring Control of Gantry Dual-Drive H-Type Planar Motion Platform
JPH0488510A (en) Locus controller
JP3512651B2 (en) Robot control device and control method
Yang et al. Time-optimal Planning Within Constraints in Robots Operating Space
JPH0969005A (en) Device and method for controlling servo system
JPH01286002A (en) Curve interpolating system
JP2001242921A (en) Control unit for machining equipment, control method for machining equipment, machining system, and storage medium
JPH08147021A (en) Numerical controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11