JPH0358106A - High speed positioning control method - Google Patents
High speed positioning control methodInfo
- Publication number
- JPH0358106A JPH0358106A JP19273389A JP19273389A JPH0358106A JP H0358106 A JPH0358106 A JP H0358106A JP 19273389 A JP19273389 A JP 19273389A JP 19273389 A JP19273389 A JP 19273389A JP H0358106 A JPH0358106 A JP H0358106A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- value
- positioning
- drive shaft
- command signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000001514 detection method Methods 0.000 claims description 13
- 238000010586 diagram Methods 0.000 description 4
- 238000013016 damping Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41251—Servo with spring, resilient, elastic element, twist
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41367—Estimator, state observer, space state controller
Landscapes
- Manipulator (AREA)
- Control Of Position Or Direction (AREA)
Abstract
Description
【発明の詳細な説明】
く産業上の利用分野〉
本発明は、例えば関節部にばね要素を有するロボットア
ーム,クレーン等や、駆動部にばね要素を有する位置決
めテーブル等に適用して有用な、高速位置決め制御方法
に関するものである。[Detailed Description of the Invention] Industrial Application Fields The present invention is useful for application to, for example, robot arms, cranes, etc. that have spring elements in their joints, positioning tables that have spring elements in their drive parts, etc. This invention relates to a high-speed positioning control method.
く従来の技術〉
ばね要素を有する回転軸の従来の位置決め制御方法にあ
っては、第3図に示すように、角度信号及び角速度信号
のみをフィードバック制御する。すなわち、回転軸の駆
動軸Aは、モータ1,角度検出手段2,角速度検出手段
3により構成され、モータ角度信号θ及びモータ角速度
信号θを出力する。この駆動軸Aばばね要素5を介して
負荷軸Bit駆動する。BACKGROUND ART In a conventional positioning control method for a rotary shaft having a spring element, only an angular signal and an angular velocity signal are feedback-controlled, as shown in FIG. That is, the drive shaft A of the rotating shaft is constituted by a motor 1, an angle detection means 2, and an angular velocity detection means 3, and outputs a motor angle signal θ and a motor angular velocity signal θ. A load shaft Bit is driven via this drive shaft A spring element 5.
位置ゲイン手段9は、角度信号θと角度目標値信号θ,
1との減算演算をする減算手段11aを介して得られる
角度偏差信号θ,.,一θを入力とし、この入力に比例
した信号K.(θraf一θ)を出力する。速度ゲイン
手段10は、信号Kウ(θ1,−θ)と角速度信号θと
の減算演算をする減算手段1lbを介して得られろ速度
偏差信号K, (θ21−θ)一θを入力とし、この入
力に比例したトルク指令信号τを出力する。The position gain means 9 receives the angle signal θ and the angle target value signal θ,
The angular deviation signals θ, . , - θ are input, and a signal K. is proportional to this input. (θraf - θ) is output. The speed gain means 10 inputs the speed deviation signal K, (θ21 - θ) - θ obtained through the subtraction means 1lb which performs a subtraction operation between the signal K (θ1, -θ) and the angular velocity signal θ. A torque command signal τ proportional to this input is output.
トルク指令信号τはサーボドライバ8を介して駆動軸A
のモータ1に駆動トルクを発生させる。結局、位置ゲイ
ン手段9,速度ゲイン手段10及び減算手段11a,l
lbにより位置速度制御系12が形成され、駆動軸Aの
位置速度制御をしている。The torque command signal τ is sent to the drive shaft A via the servo driver 8.
The motor 1 of the motor 1 generates a driving torque. In the end, the position gain means 9, the speed gain means 10, and the subtraction means 11a, l
A position and speed control system 12 is formed by lb, and controls the position and speed of the drive shaft A.
く発明が解決しようとする課題〉
ところで第3図に示すように、角度信号θ,角速度信号
θのみをフィードバックする従来の位置決め制御方法で
は、起動及び位置決め時に回転軸のばね要素5において
ねじり振動が発生し、作業効率が悪化するという問題が
ある。Problems to be Solved by the Invention> By the way, as shown in FIG. 3, in the conventional positioning control method that feeds back only the angle signal θ and the angular velocity signal θ, torsional vibration occurs in the spring element 5 of the rotating shaft during startup and positioning. There is a problem that this occurs and work efficiency deteriorates.
すなわち、第4図は位置決め制御時の負荷軸Bの角度の
時間応答特性を示しており、乙の図に示すように、負荷
軸Bの角度が目標位置に円滑に到達せず、ばね要素5の
ねじりトルク信号及びねじりトルク微分信号のフィード
バックがないのでねじり振動が発生し、位置決めに要す
る時間が長くなる。In other words, FIG. 4 shows the time response characteristics of the angle of the load shaft B during positioning control, and as shown in FIG. Since there is no feedback of the torsional torque signal and torsional torque differential signal, torsional vibration occurs and the time required for positioning increases.
また、ねじり振動を抑制するため、ばね要素のねじりト
ルク信号及びねじりトルク微分信号の負フィードバック
を行い、回転軸の固有周波数でのダンピングを上げると
、固有周波数以上の周波数でのゲインも下げてしまうた
め、固有周波数以下の速度での位置決めは行うことがで
きるが、固有周波数以上の速度での位置決めは行うこと
ができない。In addition, in order to suppress torsional vibration, negative feedback is performed on the torsional torque signal and torsional torque differential signal of the spring element, and when damping is increased at the natural frequency of the rotating shaft, the gain at frequencies above the natural frequency is also reduced. Therefore, positioning can be performed at a speed below the natural frequency, but positioning cannot be performed at a speed above the natural frequency.
く課題を解決するための手段〉
上記課題を解決する本発明の構戒;よ、駆動軸と負荷軸
がばね要素により結合されなる回転軸において、駆動軸
の角度検出手段と角速度検出手段とによる角度信号と角
速度信号を、駆動軸モータのトルク指令信号に負フイー
ドバックする位置速度制御系と、ばね要素におけろねじ
りトルク値及びねじりトルク微分値を求め、駆動軸モー
タへのトルク指令信号に対し、ねじりトルク推定値は負
フィードバック、またねじりトルク微分値は、位置決め
周波数が回転軸の固有周波数より低い場合は負フィード
バック、位置決め周波数が回転軸の固有周波数より高い
場合は正フィードバックするトルク制御系とを有し、通
常行う上記位置速度制御に加え、トルク制御をも合わせ
行うことにより任意の位置決め周波数での位置決めを可
能にしたことを特徴とする。Means for Solving the Problems〉 The principle of the present invention for solving the above problems is that, in a rotating shaft in which a drive shaft and a load shaft are coupled by a spring element, an angle detection means and an angular velocity detection means of the drive shaft are used. A position and speed control system that provides negative feedback of the angle signal and angular velocity signal to the torque command signal of the drive shaft motor, and calculates the torsion torque value and torsion torque differential value in the spring element, and calculates the torsion torque value and torsion torque differential value in the spring element, and , the torsional torque estimated value is a negative feedback, and the torsional torque differential value is a torque control system in which negative feedback is given when the positioning frequency is lower than the natural frequency of the rotating shaft, and positive feedback is given when the positioning frequency is higher than the natural frequency of the rotating shaft. It is characterized in that, in addition to the above-mentioned position and speed control that is normally performed, torque control is also performed, thereby making it possible to perform positioning at any positioning frequency.
く作 用〉
従来の位置速度制御に加え、トルク制御を合わせ行うよ
うにしたものであり、トルク制御は、ばね要素におけろ
ねじりトルク値及びねじりトルク微分値を、推定したり
測定したりし、駆動軸モータへののトルク指令信号に対
し、ねじりトルク推定値は負フイードAツク、またねじ
りトルク微分推定値は、位置決め周波数が回転軸の固有
周波数より低い場合は負フィードバック、位置決め周波
数が回転軸の固有周波数より高い場合は正フィードバッ
クする。Function> In addition to conventional position and speed control, torque control is also performed. Torque control involves estimating or measuring the torsional torque value and torsional torque differential value in the spring element. , in response to the torque command signal to the drive shaft motor, the torsional torque estimated value is a negative feed A, and the torsional torque differential estimated value is a negative feedback if the positioning frequency is lower than the natural frequency of the rotating shaft, and the positioning frequency is rotated. If it is higher than the natural frequency of the axis, positive feedback is given.
この結果、位置決め周波数が回転軸の固有周波数より低
い場合は、上記ねじりトルク推定値及びねじりトルク微
分推定値の負フィードバックにより回転軸の固有周波数
にわけるダンピングを増し、ねじり振動の発生を抑制す
る。また、位置決め周波数が回転軸の固有周波数より高
い場合は、ねじりトルク推定値の負フィードバックによ
り回転軸の固有周波数でのダンピングを増すとともに、
ねじりトルク微分推定値は正フィードバックとし、位置
決め周波数での位相を進めろことtこより、所望の位置
決め速度を確保する。このようにして回転軸の固有周波
数に制限されない任意の速度での回転軸の位置決めが可
能になる。As a result, when the positioning frequency is lower than the natural frequency of the rotating shaft, the damping corresponding to the natural frequency of the rotating shaft is increased by negative feedback of the estimated torsional torque value and the estimated torsional torque differential value, thereby suppressing the occurrence of torsional vibration. Additionally, if the positioning frequency is higher than the natural frequency of the rotating shaft, negative feedback of the estimated torsional torque increases damping at the natural frequency of the rotating shaft, and
The torsion torque differential estimated value is given positive feedback, and the phase at the positioning frequency is advanced to ensure the desired positioning speed. In this way, the rotating shaft can be positioned at any speed not limited by the natural frequency of the rotating shaft.
く実 施 例〉
ここで、第1図および第2図を参照して本発明の実施例
を説明する。第1図は全体の構成図であり、第3図と同
一部分には同符号を付す。Embodiments Here, embodiments of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is an overall configuration diagram, and the same parts as in FIG. 3 are given the same reference numerals.
回転軸の駆動軸Aはモータ1,その角度検出手段2,角
速度検出手段3により構成され各々モータ角度信号θ及
びモータ角速度信号θを出力する。The drive shaft A of the rotating shaft is constituted by a motor 1, its angle detection means 2, and angular velocity detection means 3, each of which outputs a motor angle signal θ and a motor angular velocity signal θ.
位置速度制御系12は、角度信号θ,角速度信号θ及び
角度目標値θ1.,を入力としている。そして位置ゲイ
ン手段9は角度信号θと角度目標値信号θ11とを減算
演算する減算手段11aを介して得られる角度偏差信号
θr * ( 一6に比例した信号K.(θ、.,一〇
)を出力する。速度ゲイン手段10は、信号K.(θ2
.,一θ)と角速度信号θとを減算演算する減算手段1
lbを介して得られる速度偏差信号K.(θ,.,一の
ーCに比例したモータトルク指令値で.Vを出力する。The position and speed control system 12 receives an angle signal θ, an angular velocity signal θ, and an angle target value θ1. , is the input. Then, the position gain means 9 generates an angular deviation signal θr* (a signal K.(θ, ., 10) proportional to -6) obtained through a subtraction means 11a that subtracts the angle signal θ and the angle target value signal θ11. The speed gain means 10 outputs the signal K.(θ2
.. , - θ) and the angular velocity signal θ.
The speed deviation signal K.lb is obtained via K.lb. (Outputs .V with a motor torque command value proportional to -C of θ, ., 1.
一方、トルク制御系16は、上記駆動軸Aの角度検出手
段2からの角度信号θ及びモータ
1へのトルク指令信号τを入力としている。On the other hand, the torque control system 16 receives the angle signal θ from the angle detection means 2 of the drive shaft A and the torque command signal τ sent to the motor 1 as input.
そして、ばね要素5におけろねじりトルク値の推定*T
u及びねじりトルク微分値の推定値TIをオブザーバ手
段13を介して得、各々ねじリトルク推定値ゲイン手段
15及びねじりトルク微分推定値ゲイン手段14を介し
て、K.・Tq及び信号T。−T.から加算手段17a
を介してモータトルク指令値τ.を出力する。この場合
、ゲインT0は位置決め周波数が回転軸の固有周波数よ
り低い場合は負値、位置決め周波数が回転軸の固有周波
数より高い場合は正値をとる。Then, the estimated torsional torque value in the spring element 5 *T
u and the estimated value TI of the torsional torque differential value are obtained via the observer means 13, and the estimated value TI of the torsional torque differential value K. - Tq and signal T. -T. Adding means 17a from
Motor torque command value τ. Output. In this case, the gain T0 takes a negative value when the positioning frequency is lower than the natural frequency of the rotating shaft, and takes a positive value when the positioning frequency is higher than the natural frequency of the rotating shaft.
そして、位置速度制御系12からのモータトルク指令値
で.9とトルク制御系16からのモータトルク指令値τ
.を加算手段17bで加算して得たモータトルク指令値
τが、サーボドライバ8に印加される。サーボドライバ
8は駆動軸Aのモータ1にトルクを発生させる。Then, the motor torque command value from the position and speed control system 12 is used. 9 and the motor torque command value τ from the torque control system 16
.. The motor torque command value τ obtained by adding τ by the adding means 17b is applied to the servo driver 8. The servo driver 8 causes the motor 1 of the drive shaft A to generate torque.
かかる方法により、位置決め制御をしたときの負荷軸B
の角度の時間応答性を第2図(al(b)に示す。第2
図(It) (blに示すように、位置決め周波数が回
転軸の固有周波数より低い場合でも、また高い場合でも
目標位置に迅速に到達しかつ位置決め時のねじり振動が
抑制されているのがわかる。With this method, when positioning control is performed, the load axis B
The time response of the angle is shown in Figure 2 (al(b)).
As shown in Figure (It) (bl), it can be seen that the target position is quickly reached and torsional vibration during positioning is suppressed even when the positioning frequency is lower than or higher than the natural frequency of the rotating shaft.
なお上記実施例ではオブザーパ手段13により、ばね要
素5のねじりトルク値及びねじりトルク微分値を推定し
たが、ねじりトルク値はトルクセンサにより直接測定し
、ねじりトルク微分値は、トルクセンサで潤定したトル
ク値を基に推定するようにしてもよい。In the above embodiment, the torsional torque value and the torsional torque differential value of the spring element 5 were estimated by the observer means 13, but the torsional torque value was directly measured by the torque sensor, and the torsional torque differential value was determined by the torque sensor. It may be estimated based on the torque value.
く発明の効果〉
以上実施例にて説明したように、本発明によれば、任意
の位置決め速度において、回転軸を目標位置に迅速に到
達させ、かつ位置決め時のねじり振動を抑制することが
で%た。Effects of the Invention> As explained above in the embodiments, according to the present invention, it is possible to quickly make the rotating shaft reach the target position at any positioning speed, and to suppress torsional vibration during positioning. %Ta.
第1図は本発明の制御方法を適用した制御系を示す構成
図、第2図(a) (b3は本発明のffilJllF
Il1方法を実行した場合の負荷軸の時間応答を示す特
性図、第3図は従来技術の制御系を示す構成図、第4図
は従来技術の制御方法を実行した場合の負荷軸の時間応
答を示す特性図である。
図面中、
Aは回転軸の駆動軸、
Bは回転軸の負荷軸、
1はモータ、
2は角度検出手段、
3は角速度検出手段、
5はばね要素、
8はサーボドライバ、
9は位置ゲイン手段、
10は速度ゲイン手段、
11a,llbは減算手段、
12は位置速度制御系、
13はオブザーバ手段、
14はねじりトルク微分推定値ゲイン手段、15はねじ
りトルク推定値ゲイン手段、16はトルク制御系、
7a,
7
bは加算手段である。
三菱重工業株式会社FIG. 1 is a block diagram showing a control system to which the control method of the present invention is applied, and FIG.
A characteristic diagram showing the time response of the load axis when the Il1 method is executed, Figure 3 is a configuration diagram showing the control system of the conventional technology, and Figure 4 is the time response of the load axis when the conventional control method is executed. FIG. In the drawing, A is the drive shaft of the rotary shaft, B is the load shaft of the rotary shaft, 1 is the motor, 2 is the angle detection means, 3 is the angular velocity detection means, 5 is the spring element, 8 is the servo driver, 9 is the position gain means , 10 is a speed gain means, 11a and llb are subtraction means, 12 is a position speed control system, 13 is an observer means, 14 is a torsional torque differential estimated value gain means, 15 is a torsional torque estimated value gain means, 16 is a torque control system , 7a, 7b are addition means. Mitsubishi Heavy Industries, Ltd
Claims (2)
と、ばね要素を介して駆動軸に結合されて回転する負荷
軸とでなる回転軸を制御対象とし、トルク指令信号の値
を制御することにより負荷軸の位置決めをする制御方法
であって、 前記駆動軸へのトルク指令信号に対し、駆 動軸に備えた角度検出手段及び角速度検出手段から出力
される角度信号及び角速度信号を基に負フィードバック
制御する位置速度制御系と、 前記ばね要素でのねじりトルク値及びねじ りトルク微分値を、前記角度信号及び前記駆動軸へのト
ルク指令信号を入力とするオブザーバ手段により推定し
、前記駆動軸へのトルク指令信号に対し、推定したねじ
りトルク値を基に負フィードバック制御するとともに、
前記駆動軸へのトルク指令信号に対し、位置決め周波数
が回転軸の固有周波数より低い場合には推定したねじり
トルク微分値を基に負フィードバック制御をし逆に位置
決め周波数が回転軸の固有周波数より高い場合には推定
したねじりトルク微分値を基に正フィードバック制御す
るトルク制御系とを有し、 位置速度制御に加えトルク制御をも合せて 行うことにより、任意の位置決め周波数での負荷軸の位
置決めをすることを特徴とする高速位置決め制御方法。(1) The value of the torque command signal is controlled by controlling a rotating shaft consisting of a drive shaft that rotates according to the value of the torque command signal and a load shaft that is connected to the drive shaft via a spring element and rotates. A control method for positioning a load shaft by determining the position of a load shaft based on an angle signal and an angular velocity signal output from an angle detection means and an angular velocity detection means provided on the drive shaft in response to a torque command signal to the drive shaft. a position and speed control system that performs negative feedback control; and an observer means that receives the angle signal and the torque command signal to the drive shaft to estimate the torsion torque value and the torsion torque differential value at the spring element; In response to the torque command signal, negative feedback control is performed based on the estimated torsional torque value, and
In response to the torque command signal to the drive shaft, if the positioning frequency is lower than the natural frequency of the rotary shaft, negative feedback control is performed based on the estimated torsion torque differential value, and conversely, the positioning frequency is higher than the natural frequency of the rotary shaft. In some cases, it has a torque control system that performs positive feedback control based on the estimated torsional torque differential value, and by performing torque control in addition to position speed control, it is possible to position the load shaft at any positioning frequency. A high-speed positioning control method characterized by:
と、ばね要素を介して駆動軸に結合されて回転する負荷
軸とでなる回転軸を制御対象とし、トルク指令信号の値
を制御することにより負荷軸の位置決めをする制御方法
であって、 前記駆動軸へのトルク指令信号に対し、駆 動軸に備えた角度検出手段及び角速度検出手段から出力
される角度信号及び角速度信号を基に負フィードバック
制御する位置速度制御系と、 前記ばね要素でのねじりトルク値をトルク センサにより直接測定するとともに測定されたトルク値
からねじりトルク微分値を推定し、前記駆動軸へのトル
ク指令信号に対し、測定したねじりトルク値を基に負フ
ィードバック制御するとともに、前記駆動軸へのトルク
指令信号に対し、位置決め周波数が回転軸の固有周波数
より低い場合には推定したねじりトルク微分値を基に負
フィードバック制御をし逆に位置決め周波数が回転軸の
固有周波数より高い場合には推定したねじりトルク微分
値を基に正フィードバック制御をするトルク制御系とを
有し、 位置速度制御に加えトルク制御をも合せて 行うことにより、任意の位置決め周波数での負荷軸の位
置決めをすることを特徴とする高速位置決め制御方法。(2) The value of the torque command signal is controlled by controlling a rotating shaft consisting of a drive shaft that rotates according to the value of the torque command signal and a load shaft that is connected to the drive shaft via a spring element and rotates. A control method for positioning a load shaft by determining the position of a load shaft based on an angle signal and an angular velocity signal output from an angle detection means and an angular velocity detection means provided on the drive shaft in response to a torque command signal to the drive shaft. a position and speed control system that performs negative feedback control, and a torque sensor that directly measures the torsional torque value at the spring element, estimates a torsional torque differential value from the measured torque value, and calculates the torsional torque value with respect to the torque command signal to the drive shaft. , Negative feedback control is performed based on the measured torsional torque value, and negative feedback is performed based on the estimated torsional torque differential value when the positioning frequency is lower than the natural frequency of the rotating shaft in response to the torque command signal to the drive shaft. control, and conversely, when the positioning frequency is higher than the natural frequency of the rotating shaft, it has a torque control system that performs positive feedback control based on the estimated torsion torque differential value, and combines torque control in addition to position speed control. A high-speed positioning control method characterized by positioning a load shaft at an arbitrary positioning frequency by performing the following steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1192733A JP2798217B2 (en) | 1989-07-27 | 1989-07-27 | High-speed positioning control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1192733A JP2798217B2 (en) | 1989-07-27 | 1989-07-27 | High-speed positioning control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0358106A true JPH0358106A (en) | 1991-03-13 |
JP2798217B2 JP2798217B2 (en) | 1998-09-17 |
Family
ID=16296164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1192733A Expired - Lifetime JP2798217B2 (en) | 1989-07-27 | 1989-07-27 | High-speed positioning control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2798217B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993016423A1 (en) * | 1992-02-06 | 1993-08-19 | Fanuc Ltd | Adaptive sliding mode control method for control object including spring system |
JPH07123761A (en) * | 1993-10-28 | 1995-05-12 | Toyo Electric Mfg Co Ltd | Methods for controlling and estimating output torque of motor drive system |
JP2003084225A (en) * | 2001-09-11 | 2003-03-19 | Sumitomo Heavy Ind Ltd | Method and device for controlling galvanoscanner, and the galvanoscanner |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5541314B2 (en) | 2012-05-29 | 2014-07-09 | 株式会社明電舎 | Control device for dynamometer system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6346521A (en) * | 1986-08-14 | 1988-02-27 | Kawasaki Heavy Ind Ltd | Control system for position of object |
JPS63191211A (en) * | 1987-02-03 | 1988-08-08 | Mitsubishi Electric Corp | Controller for movable object |
-
1989
- 1989-07-27 JP JP1192733A patent/JP2798217B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6346521A (en) * | 1986-08-14 | 1988-02-27 | Kawasaki Heavy Ind Ltd | Control system for position of object |
JPS63191211A (en) * | 1987-02-03 | 1988-08-08 | Mitsubishi Electric Corp | Controller for movable object |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993016423A1 (en) * | 1992-02-06 | 1993-08-19 | Fanuc Ltd | Adaptive sliding mode control method for control object including spring system |
US5442270A (en) * | 1992-02-06 | 1995-08-15 | Fanuc Ltd. | Adaptive sliding mode control method for object of control including spring system |
JPH07123761A (en) * | 1993-10-28 | 1995-05-12 | Toyo Electric Mfg Co Ltd | Methods for controlling and estimating output torque of motor drive system |
JP2003084225A (en) * | 2001-09-11 | 2003-03-19 | Sumitomo Heavy Ind Ltd | Method and device for controlling galvanoscanner, and the galvanoscanner |
JP4580600B2 (en) * | 2001-09-11 | 2010-11-17 | 住友重機械工業株式会社 | Galvano scanner control method, apparatus, and galvano scanner |
Also Published As
Publication number | Publication date |
---|---|
JP2798217B2 (en) | 1998-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8040098B2 (en) | Position controller | |
CN106873383B (en) | Online control method for reducing vibration of industrial robot | |
JPH10309684A (en) | Compliance control method of manipulator | |
JP3239789B2 (en) | Control device and control method | |
JP2000289636A (en) | Steering angle controller for vehicle | |
JPH0358106A (en) | High speed positioning control method | |
JPH09282008A (en) | Servo controller | |
JPH09212203A (en) | Robot controller | |
JP3300144B2 (en) | Weaving control method for multi-axis robot | |
JP2521315B2 (en) | Vibration control device for flexible structures | |
JPH05252779A (en) | Robot servo controller | |
JPH08278821A (en) | Damping method for servo control system | |
JPS63154088A (en) | Force-torque control system of motor with speed reducer | |
JP2003047269A (en) | Servo controller | |
JP2659799B2 (en) | Positioning control method for flexible manipulator | |
JPH08317679A (en) | Motor speed control system | |
JP2003235280A (en) | Motor controller | |
JPH0285906A (en) | Industrial robot controller | |
CN116755344B (en) | Method for self-adaptively resisting unknown high-frequency vibration of CMG frame servo system | |
JPS61217802A (en) | Robot controller | |
JPH0224078A (en) | Manipulator controller | |
JPH081560A (en) | Robot vibration restricting method and its device | |
JPH07337055A (en) | Robot controller | |
JPH04306712A (en) | Controller for manipulator | |
JPH06202736A (en) | Controller with torque ripple compensating function |