JP2798217B2 - High-speed positioning control method - Google Patents

High-speed positioning control method

Info

Publication number
JP2798217B2
JP2798217B2 JP1192733A JP19273389A JP2798217B2 JP 2798217 B2 JP2798217 B2 JP 2798217B2 JP 1192733 A JP1192733 A JP 1192733A JP 19273389 A JP19273389 A JP 19273389A JP 2798217 B2 JP2798217 B2 JP 2798217B2
Authority
JP
Japan
Prior art keywords
torque
positioning
value
shaft
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1192733A
Other languages
Japanese (ja)
Other versions
JPH0358106A (en
Inventor
武也 川村
明寛 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1192733A priority Critical patent/JP2798217B2/en
Publication of JPH0358106A publication Critical patent/JPH0358106A/en
Application granted granted Critical
Publication of JP2798217B2 publication Critical patent/JP2798217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41251Servo with spring, resilient, elastic element, twist
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41367Estimator, state observer, space state controller

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、例えば関節部にばね要素を有するロボット
アーム,クレーン等や、駆動部にばね要素を有する位置
決めテーブル等に適用して有用な、高速位置決め制御方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is useful when applied to, for example, a robot arm or a crane having a spring element in a joint, or a positioning table having a spring element in a drive unit. The present invention relates to a high-speed positioning control method.

<従来の技術> ばね要素を有する回転軸の従来の位置決め制御方法に
あっては、第3図に示すように、角度信号及び角速度信
号のみをフィードバック制御する。すなわち、回転軸の
駆動軸Aは、モータ1,角度検出手段2,角速度検出手段3
により構成され、モータ角度信号θ及びモータ角速度信
号を出力する。この駆動軸Aはばね要素5を介して負
荷軸Bを駆動する。
<Prior Art> In a conventional positioning control method for a rotary shaft having a spring element, as shown in FIG. 3, only an angle signal and an angular velocity signal are feedback-controlled. That is, the driving shaft A of the rotating shaft is composed of the motor 1, the angle detecting means 2, the angular velocity detecting means 3,
And outputs a motor angle signal θ and a motor angular velocity signal. This drive shaft A drives a load shaft B via a spring element 5.

位置ゲイン手段9は、角度信号θと角度目標値信号θ
refとの減算演算をする減算手段11aを介して得られる角
度偏差信号θref−θを入力とし、この入力に比例した
信号Kp(θref−θ)を出力する。速度ゲイン手段10
は、信号Kp(θref−θ)と角速度信号との減算演算
をする減算手段11bを介して得られる速度偏差信号K
p(θref−θ)−を入力とし、この入力に比例したト
ルク指令信号τを出力する。トルク指令信号τはサーボ
ドライバ8を介して駆動軸Aのモータ1に駆動トルクを
発生させる。結局、位置ゲイン手段9,速度ゲイン手段10
及び減算手段11a,11bにより位置速度制御系12が形成さ
れ、駆動軸Aの位置速度制御をしている。
The position gain means 9 includes an angle signal θ and an angle target value signal θ
An angle deviation signal θ ref −θ obtained through a subtraction means 11a for performing a subtraction operation with ref is input, and a signal K pref −θ) proportional to this input is output. Speed gain means 10
Is a velocity deviation signal K obtained through a subtraction means 11b for performing a subtraction operation between the signal K pref −θ) and the angular velocity signal.
pref −θ) − is input and a torque command signal τ proportional to this input is output. The torque command signal τ causes the motor 1 of the drive shaft A to generate a drive torque via the servo driver 8. After all, the position gain means 9 and the speed gain means 10
A position / speed control system 12 is formed by the subtraction means 11a and 11b, and controls the position / speed of the drive shaft A.

<発明が解決しようとする課題> ところで第3図に示すように、角度信号θ,角速度信
号のみをフィードバックする従来の位置決め制御方法
では、起動及び位置決め時に回転軸のばね要素5におい
てねじり振動が発生し、作業効率が悪化するという問題
がある。
<Problems to be Solved by the Invention> As shown in FIG. 3, in the conventional positioning control method in which only the angle signal θ and the angular velocity signal are fed back, torsional vibration occurs in the spring element 5 of the rotating shaft at the time of starting and positioning. However, there is a problem that work efficiency is deteriorated.

すなわち、第4図は位置決め制御時の負荷軸Bの角度
の時間応答特性を示しており、この図に示すように、負
荷軸Bの角度が目標位置に円滑に到達せず、ばね要素5
のねじりトルク信号及びねじりトルク微分信号のフィー
ドバックがないのでねじり振動が発生し、位置決めに要
する時間が長くなる。
That is, FIG. 4 shows a time response characteristic of the angle of the load shaft B during the positioning control. As shown in FIG. 4, the angle of the load shaft B does not reach the target position smoothly, and the spring element 5
Since there is no feedback of the torsional torque signal and the torsional torque differential signal, torsional vibration occurs and the time required for positioning becomes longer.

また、ねじり振動を抑制するため、ばね要素のねじり
トルク信号及びねじりトルク微分信号の負フィードバッ
クを行い、回転軸の固有周波数でのダンピングを上げる
と、固有周波数以上の周波数でのゲインも下げてしまう
ため、固有周波数以下の速度での位置決めは行うことが
できるが、固有周波数以上の速度での位置決めは行うこ
とができない。
Further, in order to suppress the torsional vibration, the negative feedback of the torsion torque signal and the torsion torque differential signal of the spring element is performed, and if the damping at the natural frequency of the rotating shaft is increased, the gain at a frequency higher than the natural frequency is also reduced. Therefore, positioning can be performed at a speed lower than the natural frequency, but positioning cannot be performed at a speed higher than the natural frequency.

<課題を解決するための手段> 上記課題を解決する本発明の構成は、駆動軸と負荷軸
がばね要素により結合されたる回転軸において、駆動軸
の角度検出手段と角速度検出手段とによる角度信号と角
速度信号を、駆動軸モータのトルク指令信号に負フィー
ドバックする位置速度制御系と、ばね要素におけるねじ
りトルク値及びねじりトルク微分値を求め、駆動軸モー
タへのトルク指令信号に対し、ねじりトルク推定値は負
フィードバック、またねじりトルク微分値は、位置決め
周波数が回転軸の固有周波数より低い場合は負フィード
バック、位置決め周波数が回転軸の固有周波数より高い
場合は正フィードバックするトルク制御系とを有し、通
常行う上記位置速度制御に加え、トルク制御をも合わせ
行うことにより任意の位置決め周波数での位置決めを可
能にしたことを特徴とする。
<Means for Solving the Problems> According to a configuration of the present invention that solves the above problems, an angle signal generated by an angle detection unit and an angular velocity detection unit of a drive shaft in a rotating shaft in which a drive shaft and a load shaft are connected by a spring element. And a position / speed control system that negatively feeds back the angular speed signal to the torque command signal of the drive shaft motor, and obtains the torsional torque value and torsional torque differential value of the spring element, and estimates the torsional torque for the torque command signal to the drive shaft motor. The value is negative feedback, and the torsional torque derivative has a torque control system that performs negative feedback when the positioning frequency is lower than the natural frequency of the rotating shaft, and positive feedback when the positioning frequency is higher than the natural frequency of the rotating shaft, By performing torque control in addition to the above-mentioned position / speed control that is normally performed, the position at an arbitrary positioning frequency can be obtained. It is characterized in that placement is possible.

<作用> 従来の位置速度制御に加え、トルク制御を合わせ行う
ようにしたものであり、トルク制御は、ばね要素におけ
るねじりトルク値及びねじりトルク微分値を、推定した
り測定したりし、駆動軸モータへののトルク指令信号に
対し、ねじりトルク推定値は負フィードバック、またね
じりトルク微分推定値は、位置決め周波数が回転軸の固
有周波数より低い場合は負フィードバック、位置決め周
波数が回転軸の固有周波数より高い場合は正フィードバ
ックする。
<Operation> In addition to the conventional position / velocity control, torque control is performed in combination. Torque control estimates and measures the torsional torque value and torsional torque differential value of the spring element, and drives the drive shaft. For the torque command signal to the motor, the estimated torsional torque value is negative feedback, and the estimated torsional torque differential value is negative feedback if the positioning frequency is lower than the natural frequency of the rotating shaft. If it is high, provide positive feedback.

この結果、位置決め周波数が回転軸の固有周波数より
低い場合は、上記ねじりトルク推定値及びねじりトルク
微分推定値の負フィードバックにより回転軸の固有周波
数におけるダンピングを増し、ねじり振動の発生を抑制
する。また、位置決め周波数が回転軸の固有周波数より
高い場合は、ねじりトルク推定値の負フィードバックに
より回転軸の固有周波数でのダンピングを増すととも
に、ねじりトルク微分推定値は正フィードバックとし、
位置決め周波数での位相を進めることにより、所望の位
置決め速度を確保する。このようにして回転軸の固有周
波数に制限されない任意の速度での回転軸の位置決めが
可能になる。
As a result, when the positioning frequency is lower than the natural frequency of the rotating shaft, damping at the natural frequency of the rotating shaft is increased by the negative feedback of the estimated torsional torque value and the estimated torsional torque differential value, thereby suppressing the occurrence of torsional vibration. When the positioning frequency is higher than the natural frequency of the rotating shaft, the damping at the natural frequency of the rotating shaft is increased by negative feedback of the torsional torque estimation value, and the torsional torque differential estimated value is positive feedback.
By advancing the phase at the positioning frequency, a desired positioning speed is secured. In this way, it is possible to position the rotating shaft at an arbitrary speed that is not limited by the natural frequency of the rotating shaft.

<実 施 例> ここで、第1図および第2図を参照して本発明の実施
例を説明する。第1図は全体の構成図であり、第3図と
同一部分には同符号を付す。
<Embodiment> Here, an embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is an overall configuration diagram, and the same parts as those in FIG. 3 are denoted by the same reference numerals.

回転軸の駆動軸Aはモータ1,その角度検出手段2,角速
度検出手段3により構成され、各々モータ角度信号θ及
びモータ角速度信号を出力する。
The drive shaft A of the rotating shaft is constituted by a motor 1, its angle detecting means 2, and angular velocity detecting means 3, and outputs a motor angle signal θ and a motor angular velocity signal, respectively.

位置速度制御系12は、角度信号θ,角速度信号及び
角度目標値θrefを入力としている。そして位置ゲイン
手段9は角度信号θと角度目標値信号θrefとを減算演
算する減算手段11aを介して得られる角度偏差信号θref
−θに比例した信号Kp(θref−θ)を出力する。速度
ゲイン手段10は、信号Kp(θref−θ)と角速度信号
とを減算演算する減算手段11bを介して得られる速度偏
差信号Kp(θref−θ)−に比例したモータトルク指
令値τpvを出力する。
The position / speed control system 12 receives an angle signal θ, an angular velocity signal, and an angle target value θref as inputs. Then, the position gain means 9 subtracts the angle signal θ and the angle target value signal θ ref from the angle deviation signal θ ref obtained through the subtraction means 11a.
The signal K pref −θ) proportional to −θ is output. The speed gain means 10 calculates a motor torque command value proportional to a speed deviation signal K pref -θ)-obtained through a subtraction means 11b for subtracting the signal K pref -θ) from the angular velocity signal. Output τ pv .

一方、トルク制御系16は、上記駆動軸Aの角度検出手
段2からの角度信号θ及びモータ1へのトルク指令信号
τを入力としている。そして、ばね要素5におけるねじ
りトルク値の推定値 及びねじりトルク微分値の推定値 をオブザーバ手段13を介して得、各々ねじりトルク推定
値ゲイン手段15及びねじりトルク微分推定値ゲイン手段
14を介して、信号 を得、さらに信号 から加算手段17aを介してモータトルク指令値τを出
力する。この場合、ゲインTDは位置決め周波数が回転軸
の固有周波数より低い場合は負荷、位置決め周波数が回
転軸の固有周波数より高い場合は正値をとる。
On the other hand, the torque control system 16 receives an angle signal θ from the angle detecting means 2 of the drive shaft A and a torque command signal τ to the motor 1 as inputs. Then, the estimated value of the torsional torque value in the spring element 5 And estimated value of torsional torque derivative Are obtained through the observer means 13, and the torsional torque estimated value gain means 15 and the torsional torque differential estimated value gain means are respectively obtained.
14 through the signal And further signal Through the addition means 17a from outputting a motor torque command value tau a. In this case, the gain T D when positioning a frequency lower than the natural frequency of the rotating shaft load, if the positioning frequency higher than the natural frequency of the rotating shaft takes a positive value.

そして、位置速度制御系12からのモータトルク指令値
τpvとトルク制御系16からのモータトルク指令値τ
加算手段17bで加算して得たモータトルク指令値τが、
サーボドライバ8に印加される。サーボドライバ8は駆
動軸Aのモータ1にトルクを発生させる。
Then, the motor torque command tau to the motor torque command value tau a obtained by adding by the adding means 17b from the motor torque command tau pv and the torque control system 16 from the position speed control system 12,
Applied to the servo driver 8. The servo driver 8 causes the motor 1 of the drive shaft A to generate torque.

かかる方法により、位置決め制御をしたときの負荷軸
Bの角度の時間応答性を第2図(a)(b)に示す。第
2図(a)(b)に示すように、位置決め周波数が回転
軸の固有周波数より低い場合でも、また高い場合でも目
標位置に迅速に到達しかつ位置決め時のねじり振動が抑
制されているのがわかる。
FIGS. 2 (a) and 2 (b) show the time response of the angle of the load shaft B when the positioning control is performed by such a method. As shown in FIGS. 2 (a) and 2 (b), even when the positioning frequency is lower or higher than the natural frequency of the rotating shaft, the target position is quickly reached and torsional vibration during positioning is suppressed. I understand.

なお上記実施例ではオブザーバ手段13により、ばね要
素5のねじりトルク値及びねじりトルク微分値を推定し
たが、ねじりトルク値はトルクセンサにより直接測定
し、ねじりトルク微分値は、トルクセンサで測定したト
ルク値を基に推定するようにしてもよい。
In the above embodiment, the torsional torque value and the torsional torque differential value of the spring element 5 were estimated by the observer means 13, but the torsional torque value was directly measured by the torque sensor, and the torsional torque differential value was the torque measured by the torque sensor. You may make it estimate based on a value.

ちなみに、「位置決め周波数」とは具体的には、位置
ゲイン手段9のゲインKpである。この位置決め周波数
は、設計者によって設定されるものであり、位置決めが
比較的低速度でよい場合には小さな値に設定され、位置
決めが高速性を要求される場合には大きな値に設定され
る。また「回転軸の固有周波数」は、具体的にはばね要
素5のねじりばね剛性であり、この値は制御対象に固有
の物理定数であり、予め判っている。そして、設計者
は、位置決め周波数こ回転軸の固有周波数を比較し、位
置決め周波数が回転軸の固有周波数より低い場合には、
ゲインTDを負値に設定し、位置決め周波数が回転軸の固
有周波数より高い場合には、ゲインTDを正値に設定する
のである。
Incidentally, the “positioning frequency” is specifically the gain Kp of the position gain means 9. The positioning frequency is set by the designer, and is set to a small value when positioning is relatively low speed, and is set to a large value when positioning requires high speed. The “natural frequency of the rotating shaft” is specifically the torsional spring stiffness of the spring element 5, and this value is a physical constant unique to the control target and is known in advance. Then, the designer compares the natural frequency of the rotating shaft with the positioning frequency, and if the positioning frequency is lower than the natural frequency of the rotating shaft,
Set the gain T D negative value, when the positioning frequency higher than the natural frequency of the rotating shaft is to set the gain T D positive value.

<発明の効果> 以上実施例にて説明したように、本発明によれば、任
意の位置決め速度において、回転軸を目標位置に迅速に
到達させ、かつ位置決め時のねじり振動を抑制すること
ができた。
<Effects of the Invention> As described in the above embodiments, according to the present invention, at any positioning speed, the rotating shaft can quickly reach the target position, and torsional vibration during positioning can be suppressed. Was.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の制御方法を適用した制御系を示す構成
図、第2図(a)(b)は本発明の制御方法を実行した
場合の負荷軸の時間応答を示す特性図、第3図は従来技
術の制御系を示す構成図、第4図は従来技術の制御方法
を実行した場合の負荷軸の時間応答を示す特性図であ
る。 図面中、 Aは回転軸の駆動軸、 Bは回転軸の負荷軸、 1はモータ、 2は角度検出手段、 3は角速度検出手段、 5はばね要素、 8はサーボドライバ、 9は位置ゲイン手段、 10は速度ゲイン手段、 11a,11bは減算手段、 12は位置速度制御系、 13はオブザーバ手段、 14はねじりトルク微分推定値ゲイン手段、 15はねじりトルク推定値ゲイン手段、 16はトルク制御系、 17a,17bは加算手段である。
FIG. 1 is a block diagram showing a control system to which the control method of the present invention is applied, and FIGS. 2 (a) and 2 (b) are characteristic diagrams showing a time response of a load shaft when the control method of the present invention is executed. FIG. 3 is a configuration diagram showing a control system of the related art, and FIG. 4 is a characteristic diagram showing a time response of a load shaft when the control method of the related art is executed. In the drawings, A is a drive shaft of a rotating shaft, B is a load shaft of a rotating shaft, 1 is a motor, 2 is an angle detecting means, 3 is an angular velocity detecting means, 5 is a spring element, 8 is a servo driver, and 9 is a position gain means. , 10 is speed gain means, 11a and 11b are subtraction means, 12 is position and speed control system, 13 is observer means, 14 is torsion torque differential estimated value gain means, 15 is torsion torque estimated value gain means, and 16 is torque control system. , 17a and 17b are addition means.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G05D 3/12 306 G05D 3/12 305──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G05D 3/12 306 G05D 3/12 305

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】トルク指令信号の値に応じて回転駆動する
駆動軸と、ばね要素を介して駆動軸に結合されて回転す
る負荷軸とでなる回転軸を制御対象とし、トルク指令信
号の値を制御することにより負荷軸の位置決めをする制
御方法であって、 前記駆動軸へのトルク指令信号に対し、駆動軸に備えた
角度検出手段及び角速度検出手段から出力される角度信
号及び角速度信号を基に負フィードバック制御する位置
速度制御系と、 前記ばね要素でのねじりトルク値及びねじりトルク微分
値を、前記角度信号及び前記駆動軸へのトルク指令信号
を入力とするオブザーバ手段により推定し、前記駆動軸
へのトルク指令信号に対し、推定したねじりトルク値を
基に負フィードバック制御するとともに、前記駆動軸へ
のトルク指令信号に対し、位置決め周波数が回転軸の固
有周波数より低い場合には推定したねじりトルク微分値
を基に負フィードバック制御をし逆に位置決め周波数が
回転軸の固有周波数より高い場合には推定したねじりト
ルク微分値を基に正フィードバック制御するトルク制御
系とを有し、 位置速度制御に加えトルク制御をも合せて行うことによ
り、任意の位置決め周波数での負荷軸の位置決めをする
ことを特徴とする高速位置決め制御方法。
An object to be controlled is a rotating shaft consisting of a driving shaft that is driven to rotate in accordance with the value of a torque command signal and a load shaft that is connected to and rotated by a driving shaft via a spring element. Controlling the load shaft by controlling the torque command signal to the drive shaft, the angle signal and the angular velocity signal output from the angle detection means and the angular velocity detection means provided in the drive shaft, A position / speed control system for performing negative feedback control based on the torsion torque value and the torsion torque differential value of the spring element, which are estimated by observer means that receives the angle signal and the torque command signal to the drive shaft, Negative feedback control is performed on the torque command signal to the drive shaft based on the estimated torsional torque value, and positioning torque is controlled in response to the torque command signal to the drive shaft. If the number is lower than the natural frequency of the rotating shaft, negative feedback control is performed based on the estimated torsional torque differential value. Conversely, if the positioning frequency is higher than the natural frequency of the rotating shaft, the negative feedback control is performed based on the estimated torsional torque differential value. A high-speed positioning control method, comprising: a torque control system for performing a positive feedback control; and performing positioning of a load axis at an arbitrary positioning frequency by performing torque control in addition to position / velocity control.
【請求項2】トルク指令信号の値に応じて回転駆動する
駆動軸と、ばね要素を介して駆動軸に結合されて回転す
る負荷軸とでなる回転軸を制御対象とし、トルク指令信
号の値を制御することにより負荷軸の位置決めをする制
御方法であって、 前記駆動軸へのトルク指令信号に対し、駆動軸に備えた
角度検出手段及び角速度検出手段から出力される角度信
号及び角速度信号を基に負フィードバック制御する位置
速度制御系と、 前記ばね要素でのねじりトルク値をトルクセンサにより
直接測定するとともに測定されたトルク値からねじりト
ルク微分値を推定し、前記駆動軸へのトルク指令信号に
対し、測定したねじりトルク値を基に負フィードバック
制御するとともに、前記駆動軸へのトルク指令信号に対
し、位置決め周波数が回転軸の固有周波数より低い場合
には推定したねじりトルク微分値を基に負フィードバッ
ク制御をし逆に位置決め周波数が回転軸の固有周波数よ
り高い場合には推定したねじりトルク微分値を基に正フ
ィードバック制御をするトルク制御系とを有し、 位置速度制御に加えトルク制御をも合せて行うことによ
り、任意の位置決め周波数での負荷軸の位置決めをする
ことを特徴とする高速位置決め制御方法。
2. A control system according to claim 1, wherein a rotating shaft composed of a driving shaft that is driven to rotate in accordance with the value of the torque command signal and a load shaft that is connected to the driving shaft via a spring element and rotates is controlled. Controlling the load shaft by controlling the torque command signal to the drive shaft, the angle signal and the angular velocity signal output from the angle detection means and the angular velocity detection means provided in the drive shaft, A position / speed control system for performing negative feedback control based on a torque command signal to the drive shaft by directly measuring a torsional torque value at the spring element by a torque sensor and estimating a torsional torque differential value from the measured torque value. The negative feedback control is performed based on the measured torsional torque value, and the positioning frequency changes with respect to the torque command signal to the drive shaft. When the frequency is lower than the number, the negative feedback control is performed based on the estimated torsional torque differential value. Conversely, when the positioning frequency is higher than the natural frequency of the rotating shaft, the positive feedback control is performed based on the estimated torsional torque differential value. A high-speed positioning control method comprising: a control system; and performing torque positioning in addition to position / velocity control to position a load axis at an arbitrary positioning frequency.
JP1192733A 1989-07-27 1989-07-27 High-speed positioning control method Expired - Lifetime JP2798217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192733A JP2798217B2 (en) 1989-07-27 1989-07-27 High-speed positioning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192733A JP2798217B2 (en) 1989-07-27 1989-07-27 High-speed positioning control method

Publications (2)

Publication Number Publication Date
JPH0358106A JPH0358106A (en) 1991-03-13
JP2798217B2 true JP2798217B2 (en) 1998-09-17

Family

ID=16296164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192733A Expired - Lifetime JP2798217B2 (en) 1989-07-27 1989-07-27 High-speed positioning control method

Country Status (1)

Country Link
JP (1) JP2798217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180130A1 (en) * 2012-05-29 2013-12-05 株式会社明電舎 Dynamometer system control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05216504A (en) * 1992-02-06 1993-08-27 Fanuc Ltd Adaptive sliding mode control system for control object including spring system
JP3253434B2 (en) * 1993-10-28 2002-02-04 東洋電機製造株式会社 Shaft torque control method and shaft torque estimation method for motor drive system
JP4580600B2 (en) * 2001-09-11 2010-11-17 住友重機械工業株式会社 Galvano scanner control method, apparatus, and galvano scanner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638212B2 (en) * 1986-08-14 1994-05-18 川崎重工業株式会社 Object position control device
JPS63191211A (en) * 1987-02-03 1988-08-08 Mitsubishi Electric Corp Controller for movable object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180130A1 (en) * 2012-05-29 2013-12-05 株式会社明電舎 Dynamometer system control device
JP2013246152A (en) * 2012-05-29 2013-12-09 Meidensha Corp Dynamometer control device
KR101515902B1 (en) 2012-05-29 2015-05-04 메이덴샤 코포레이션 Dynamometer system control device
US9335228B2 (en) 2012-05-29 2016-05-10 Meidensha Corporation Dynamometer system control device

Also Published As

Publication number Publication date
JPH0358106A (en) 1991-03-13

Similar Documents

Publication Publication Date Title
JP2762364B2 (en) Feedforward control method for servo motor
JP2709969B2 (en) Servo motor control method
JP3231932B2 (en) Electric power steering device
JPH0866893A (en) Collision detecting method
JPH0683403A (en) Adaptive pi control system
CN101656507A (en) Motor control system
JPH08249067A (en) Position controller for motor
JP3981773B2 (en) Robot controller
JP3239789B2 (en) Control device and control method
JPH10309684A (en) Compliance control method of manipulator
JP2798217B2 (en) High-speed positioning control method
JPH0962363A (en) Motor positioning control method
JP2007043884A (en) Method of suppressing/controlling vibration, and device for multi-inertial resonance system
JPH09282008A (en) Servo controller
JP2003216243A (en) Robot controller
JP3917094B2 (en) Motor control method and apparatus
JPH09238490A (en) Motor controller
JPH07185817A (en) Weaving control method of multi-axes robot
JPH05252779A (en) Robot servo controller
JPH08278821A (en) Damping method for servo control system
JP3235112B2 (en) Motor control device
JPH07121239A (en) Control method for robot device
JP3503343B2 (en) Friction compensation type control method and device
JPH08286759A (en) Robot driving control method for compensating statical friction
JP2958600B2 (en) Motor control device