JPS63268918A - Intake device of engine - Google Patents

Intake device of engine

Info

Publication number
JPS63268918A
JPS63268918A JP10395187A JP10395187A JPS63268918A JP S63268918 A JPS63268918 A JP S63268918A JP 10395187 A JP10395187 A JP 10395187A JP 10395187 A JP10395187 A JP 10395187A JP S63268918 A JPS63268918 A JP S63268918A
Authority
JP
Japan
Prior art keywords
intake
cylinder
passage
resonance
annular passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10395187A
Other languages
Japanese (ja)
Other versions
JP2552284B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Akinori Yamashita
山下 昭則
Toshihiko Hattori
服部 敏彦
Yasuhiro Yuzuriha
楪 泰浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62103951A priority Critical patent/JP2552284B2/en
Publication of JPS63268918A publication Critical patent/JPS63268918A/en
Application granted granted Critical
Publication of JP2552284B2 publication Critical patent/JP2552284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve the charging efficiency by forming an annular passage for resonance which is connected with each intake port. CONSTITUTION:The first group 3a-3c and the second group 3d-3f in which the intake order does not continue are provided and an annular passage 6 connected with each intake port 4a-4f is formed. The passage communicating to the first group cylinders of the annular passage and the passage communicating to the second group cylinders are extended in two directions and connected through communication parts 6a and 6b. The pressure wave having a positive pressure is generated in the vicinity of an intake port in the final period of the intake cycle in each group, and the pressure wave moves in the annular passage and acts onto the intake port in the same group. Therefore, resonance effect can be improved, and the charging efficiency can be improved.

Description

【発明の詳細な説明】 <ff業葉上利用分野) 本発明は共鳴効果によって吸気の充填効率を高めるよう
にしたエンジンの吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <FF Field of Application) The present invention relates to an engine intake device that improves the filling efficiency of intake air through a resonance effect.

(従来技術) 従来から、吸気の動的効果によって充填効率を高めるよ
うにしだLンジンの吸気装δは種々知られている37例
えば、特公昭60−14169月公報に示された装置で
は、多気筒エンジンにおいて、吸気類1rが連続しない
気筒を同一グループとする2グループの気筒れイにそれ
ぞれ接続された2つの吸気通路を設け、この各吸気通路
をそれぞれ、吸気マニホールドブランチの上流端が接続
された拡大室(容積大の集合室)と、この拡大室から上
流に延びる共鳴通路とを備えて構成するとともに、上記
拡大室等に、上記各吸気通路相nを連通遮断可能とする
切替装置を設け、各吸気通路の上流端を上流側集合室に
接続している。この装置によると、上記切替装置がF記
各吸気通路相U8遮断した状態にあるときは、上流側集
合室で反転して反射される吸気圧力波により、エンジン
回転数が比較的低い領域で慣性過給効果が1qられ、上
記切替装置が上記各吸気通路を連通ザる状態となったと
きは、圧力波の反転反射位置が吸気ボー1〜に近づけら
れることにより、エンジン回転数が比較的高い領域で慣
性過給効果が得られる。
(Prior Art) Various types of intake systems δ for L-engines have been known in the past, which improve charging efficiency through the dynamic effect of intake air. In a cylinder engine, two intake passages are provided, each connected to two groups of cylinders in which the intake class 1r has discontinuous cylinders in the same group, and each intake passage is connected to the upstream end of an intake manifold branch. A switching device is provided in the enlarged chamber, etc., to enable communication and disconnection of each of the intake passage phases n. The upstream end of each intake passage is connected to the upstream gathering chamber. According to this device, when the switching device is in the state of blocking each intake passage phase U8 listed in F, the intake pressure wave that is reversed and reflected in the upstream gathering chamber causes inertia in a region where the engine speed is relatively low. When the supercharging effect is reduced to 1q and the switching device connects the intake passages, the inverted reflection position of the pressure wave is brought closer to the intake bow 1~, so that the engine speed is relatively high. An inertial supercharging effect can be obtained in this area.

ところが、この吸気装置によると、吸気マニホールドブ
ランブ部が集合する部分に大きな容積の拡大室が設けら
れているため、吸気系が大聖化し、自動車に搭載する場
合に大きな設置スペースが必要となる等の不都合がある
However, according to this intake system, a large volume expansion chamber is provided in the part where the intake manifold bulges gather, which makes the intake system bulky and requires a large installation space when installed in a car. There are some inconveniences.

また、V型エンジンにおいては、例えば特開昭59−5
65号公報に見られるように、両バンク間の空間に、ブ
ランチ部に相当する湾曲した個々の吸気通路と、この個
々の吸気通路に連通した拡大室に相当する空間とを有す
る吸気マニホールドを配置することにより、慣性過給効
果をもたせつつ、全体の小型化を図るようにしたものが
ある。
In addition, in the case of a V-type engine, for example,
As seen in Publication No. 65, an intake manifold having individual curved intake passages corresponding to branch portions and spaces corresponding to enlarged chambers communicating with these individual intake passages is arranged in the space between both banks. By doing so, there is a system that achieves an inertial supercharging effect while reducing the overall size.

しかしこのWI造によっても、両バンク間に配置された
吸気マニホールドに、ブランチ部に通じる拡大室が設け
られているため、吸気ン二ホールドがバンク上端より上
方に相当堕突出することは避けられず、このためエンジ
ン全体の高さが大きくなり、自動車に搭載する場合、ボ
ンネン!・高さを低く抑えることが困難となる。
However, even with this WI structure, since the intake manifold located between both banks is provided with an enlarged chamber that leads to the branch part, it is unavoidable that the intake manifold protrudes considerably upward from the upper end of the bank. , This increases the overall height of the engine, making it difficult to install it in a car!・It becomes difficult to keep the height low.

つまり、これら従来装置のように吸気マニホールドブラ
ンチ部を拡大室に接続する構造によると、コンパクト化
(特に高さの低減)には限界がある。
In other words, with the structure of these conventional devices in which the intake manifold branch portion is connected to the enlarged chamber, there is a limit to miniaturization (especially reduction in height).

このため、上記拡大室を廃止し、例えば、吸気順序が連
続しない気筒を同一グループとする2つの気筒グループ
の各吸気ポートにそれぞれ、拡大室をhしない2つのパ
イプ状の吸気通路を、短い枝管を介して接続し、Cの両
吸気通路を上流側適宜箇所で集合させてこの部分で圧力
波を反転反射させるようにすることが考えられる。しか
しこの場合、吸気ポートと圧力波反転反射部との間の圧
力波伝播経路の長さに気筒毎の較差が生じ、とくに高速
域での過給効果を期待して上記吸気通路を短くすると、
相対的に上記較差が大きくなって、各気筒に対する圧力
波の作用にアンバランスが生じるため、各気筒に充分な
過給、効果を及ぼすことが困難になる。
For this reason, the enlarged chamber is abolished, and, for example, two pipe-shaped intake passages without an enlarged chamber are installed as short branches in each intake port of two groups of cylinders in which the cylinders in which the intake order is not consecutive are in the same group. It is conceivable that the two intake passages of C are connected through a pipe and brought together at an appropriate point on the upstream side, so that the pressure waves are inverted and reflected at this part. However, in this case, there will be a difference in the length of the pressure wave propagation path between the intake port and the pressure wave inversion/reflection part for each cylinder, and if the intake passage is shortened in hopes of achieving a supercharging effect, especially in the high-speed range,
Since the above-mentioned difference becomes relatively large and an imbalance occurs in the action of pressure waves on each cylinder, it becomes difficult to exert sufficient supercharging and effect on each cylinder.

(発明の目的) 本発明は上記の事情に鑑み、拡大室を不要にしつつ、有
効に吸気の動的効果を発揮させることができ、とくに、
強い圧力波が得られて大きな動的効果をもたせることが
できるエンジンの吸気装置を提供するものである。
(Object of the Invention) In view of the above circumstances, the present invention makes it possible to effectively exert the dynamic effect of intake air while eliminating the need for an expansion chamber, and in particular,
An object of the present invention is to provide an engine intake device that can generate strong pressure waves and provide a large dynamic effect.

(発明の構成) 本発明の装置は、多気筒エンジンにおいて、吸気順序が
連続しない気筒を同一グループとする2つの気筒グルー
プの各吸気ポートが接続された共鳴用環状通路と、各気
筒に吸気を供給する主吸気1通路とを備え、上記共鳴用
環状通路は、拡大室を有せずに、−万の気筒グループの
各吸気ポートに通じる通路と他方の気筒グループの各吸
気ポートに通じる通路とがそれぞれ二方向に延びて両側
で相豆に連なった環状をなし、かつ、その両側連通部分
が主吸気通路からは独立して形成されているものである
(Structure of the Invention) In a multi-cylinder engine, the device of the present invention has a resonance annular passage connected to each intake port of two cylinder groups in which cylinders in which the intake order is not consecutive are in the same group, and The resonance annular passage has a passage leading to each intake port of one cylinder group and a passage leading to each intake port of the other cylinder group, without having an enlarged chamber. is annular, extending in two directions and connected to the sides on both sides, and communicating portions on both sides are formed independently of the main intake passage.

この構成により、上記の各グループ毎に、吸気ポートイ
4近に吸気行程終期に正圧となる圧力波が生じ、この圧
力波が共鳴用環状通路をほぼ一周して同・−気筒グルー
1の吸気ポートに作用することに、より共鳴効果が得ら
れる。そして、圧力波の伝播経路となる共鳴用環状通路
両側の連通部分が、吸気の供給を行なう1吸気通路から
独立して形成されていることにより、吸気流により圧力
波が減衰されることが抑制される。
With this configuration, a pressure wave that becomes positive pressure at the end of the intake stroke is generated near the intake port No. 4 for each of the above groups, and this pressure wave goes around the resonance annular passage almost all the way to the intake port No. 1 of the same cylinder. By acting on the port, a more resonant effect can be obtained. Since the communicating portions on both sides of the resonance annular passage, which serve as the pressure wave propagation path, are formed independently from the first intake passage that supplies intake air, pressure waves are prevented from being attenuated by the intake flow. be done.

(実施例) 第1図は本発明の装置をV型6気筒エンジンに適用した
場合の一実施例を示しており、V型エンジンの一方のバ
ンク1には、1番、2番、3番の3つの気筒3a、3b
、3cが設けられ、他方のバンク2には、4番、5番、
6番の3つの気筒3d、3e、3rが設けられている。
(Embodiment) Fig. 1 shows an embodiment in which the device of the present invention is applied to a V-type six-cylinder engine. three cylinders 3a, 3b
, 3c are provided, and the other bank 2 has numbers 4, 5,
Three cylinders 3d, 3e, and 3r numbered 6 are provided.

各気筒の点火順序(吸気順序)は、例えば、1番気筒3
a−94番気筒3 d −+ 2番気筒3b−+5番気
筒31+3番気筒3C→6番気筒3fとされて、一方の
バンク1における各気筒3a〜3Cが吸気順序の連続し
ない第1気筒グループを構成し、他方のバンク2におけ
る各気筒3d〜3fが吸気順序の連続しない第2気筒グ
ループを構成している。各気筒3a〜3「にはそれぞれ
吸気ポート4a〜4rおよび排気ポート5a〜5「が配
設されており、これら吸気ポート4a〜4fおよび排気
ポート5a〜5rは、図外の吸気弁および排気弁によっ
てそれぞれ所定のタイミングで開閉される。
The ignition order (intake order) of each cylinder is, for example, No. 1 cylinder 3
a-94th cylinder 3 d -+ 2nd cylinder 3b- + 5th cylinder 31 + 3rd cylinder 3C → 6th cylinder 3f, and the cylinders 3a to 3C in one bank 1 are the first cylinder group in which the intake order is not consecutive. The cylinders 3d to 3f in the other bank 2 constitute a second cylinder group in which the intake order is not consecutive. Each cylinder 3a-3" is provided with an intake port 4a-4r and an exhaust port 5a-5", respectively, and these intake ports 4a-4f and exhaust port 5a-5r are provided with an intake valve and an exhaust valve (not shown). They are opened and closed at predetermined timings.

上記各気筒の吸気ポート4a〜4rは、拡大室を有しな
い共鳴用環状通路6に接続されている。
The intake ports 4a to 4r of each cylinder are connected to a resonance annular passage 6 that does not have an enlarged chamber.

この共鳴用環状通路6は、第1気筒グループのの各吸気
ポート48〜4Cに短い枝管7a〜7Cを介して通じる
通路と、第2気筒グループの各吸気ポート4d〜4fに
短い枝管7d〜7fを介して通じる通路とが、それぞれ
両側に延びて両端部で互いに面なることにより、環状に
形成されている。
This resonance annular passage 6 includes a passage communicating with each intake port 48-4C of the first cylinder group via short branch pipes 7a-7C, and a short branch pipe 7d communicating with each intake port 4d-4f of the second cylinder group. The passages communicating through 7f extend on both sides and face each other at both ends, thereby forming an annular shape.

つまりこの共鳴用環状通路6は、両側においてそれぞれ
、第1気筒グループ間の各吸気ポート4a〜4Cに通じ
る部分と第2気筒グループ4d〜4「に通じる部分とを
連通ずる連通部分5a、5bを有しており、両気筒グル
ープ間で圧力波が互いに弱め合うような干渉が生じない
ように、上記各連通部分の長さは同一気筒グループの隣
接する気筒の吸気ポート間の長さよりも充分に大きく形
成されている。
In other words, the resonance annular passage 6 has communication portions 5a and 5b on both sides, which communicate the portions communicating with the intake ports 4a to 4C between the first cylinder groups and the portions communicating with the second cylinder groups 4d to 4, respectively. The length of each of the above-mentioned communicating portions is sufficiently longer than the length between the intake ports of adjacent cylinders in the same cylinder group, so that there is no interference that would weaken the pressure waves between the two cylinder groups. Largely formed.

また、8は吸気を供給するための主吸気通路で、この主
吸気通路8は、1アクリーナ9を介して吸気を導入する
共通吸気通路8aと、この共通吸気゛通路から二叉に分
岐した分岐吸気通路8b、8cとで構成されており、主
吸気通路8中には、吸気量を検出するモアフローメータ
10およびアクセル操作に応じて吸気量を調整するスロ
ットル弁11が配設されている。
8 is a main intake passage for supplying intake air, and this main intake passage 8 is divided into a common intake passage 8a that introduces intake air via 1acrina 9, and a branch branch that branches from this common intake passage. The main intake passage 8 is provided with a more flow meter 10 that detects the amount of intake air and a throttle valve 11 that adjusts the amount of intake air in response to accelerator operation.

上記分岐吸気通路8b、8cの各下流端は、各吸気ポー
1〜と共鳴用環状通路6との接R箇所付近に接続されて
いる。従って、共鳴用環状通路6の両側連通部分6a、
6bは主吸気通路8から独立し、つまり、主吸気通路8
から送られる吸気が上記両連通部分6a、6bを通らず
に各気筒に供給されるように、共鳴用環状通路6および
1吸気通路8が形成されている。なお、望ましくは、共
鳴用環状通路6の半周分の通路長さ1−1 と、主吸気
通路8の両分岐吸気通路8a、8bにわたっての通路長
さL2とが、はぼ等しくなるように形成しておく。
The downstream ends of the branched intake passages 8b and 8c are connected to the vicinity of the R points where each of the intake ports 1 to 1 and the resonance annular passage 6 come into contact. Therefore, both side communication portions 6a of the resonance annular passage 6,
6b is independent from the main intake passage 8, that is, the main intake passage 8
A resonance annular passage 6 and one intake passage 8 are formed so that the intake air sent from the cylinder is supplied to each cylinder without passing through the communication portions 6a and 6b. Preferably, the length 1-1 of the half circumference of the resonance annular passage 6 is approximately equal to the length L2 of the main intake passage 8 extending over both branch intake passages 8a and 8b. I'll keep it.

この実施例の装置による場合の作用を、第2図を参照し
て説明する。
The operation of the apparatus of this embodiment will be explained with reference to FIG.

吸気順序が連続しない同一気筒グループの各吸気ポート
付近、例えば第1気筒グループの各吸気ポート4a〜4
C付近には、第1気筒グループの各気筒の作動によりそ
れぞれの吸気行程途中で負圧となって吸気行程終期に正
圧となる基本的圧力振動(第2図の線A)が生じる。こ
の吸気ポート付近に生じた圧力波は、両側に分かれてそ
れぞれ共鳴用環状通路6を周回するように伝播し、共鳴
用環状通路6をほぼ一周して同一気筒グループの他の気
筒の吸気ポートに0用する。この場合、共鳴用環状通路
6は拡大室を有しないので、圧力波は反転することなく
伝播される。
Near each intake port of the same cylinder group where the intake order is not consecutive, for example, each intake port 4a to 4 of the first cylinder group
A basic pressure oscillation (line A in FIG. 2) occurs near C where the pressure becomes negative in the middle of each intake stroke and becomes positive pressure at the end of the intake stroke due to the operation of each cylinder in the first cylinder group. The pressure wave generated near the intake port is divided into both sides and propagates around the resonance annular passage 6, and then goes around the resonance annular passage 6 almost once and reaches the intake ports of other cylinders in the same cylinder group. Use 0. In this case, since the resonance annular passage 6 does not have an enlarged chamber, the pressure wave is propagated without being reversed.

そして、圧力波が共鳴用環状通路6をほぼ一周する旧聞
と上記の基本的圧力振動の周期τとが一致する状態とな
ったとき、すなわち共鳴用環状通路6全体の長さL(枝
管の容積なども考慮した等価管長)と上記周+111τ
との関係がτ=L/a    ・・・・・−■ a:音速 となったときは、第2図に矢印で示すように1番気筒3
aに生じて共鳴用環状通路6を伝播した圧力波が2番気
筒3bに生じた圧力波と重なり、同様にして2香気83
’Oから伝播した圧力波が3香気i’23 Cに牛しる
圧力波と重なり、3番気筒3cから伝播した圧力波が1
番気筒3aに生じる圧力波とΦなる。こうして、第1気
筒グループの気筒相U間で圧力波が共振して第2図に線
Bで示すように圧力振動が強められ、同様に第2気筒グ
ループの気筒相り間でも共振が生じて圧力振動が強めら
れる。このような共鳴効果により、各気筒の充填効率が
高められることとなる。
When the pressure wave goes around the resonant annular passage 6 almost once and the period τ of the basic pressure oscillation described above coincides, that is, the entire length L of the resonant annular passage 6 (the length of the branch pipe (equivalent pipe length considering volume etc.) and the above circumference + 111τ
The relationship between
The pressure wave generated in the resonance annular passage 6 overlaps with the pressure wave generated in the second cylinder 3b, and in the same way, the second aroma 83
The pressure wave propagated from 'O' overlaps with the pressure wave propagating to 3 aroma i'23 C, and the pressure wave propagated from No. 3 cylinder 3c
The pressure wave generated in the number cylinder 3a is Φ. In this way, the pressure waves resonate between the cylinder phases U of the first cylinder group, and the pressure oscillations are intensified as shown by line B in Figure 2, and resonance also occurs between the cylinder phases of the second cylinder group. Pressure vibrations are strengthened. Such a resonance effect increases the filling efficiency of each cylinder.

なお、第2図では、同一気筒グループにおいて牛しる圧
力振動の1つの圧力波が次の圧力波に市なるように伝播
する基本的共振状態を示したが、圧力波が1つおきや2
つおきの圧力波に1なるように伝播するときにも共振状
態が得られ、従って、」〜記の基本的共振状態が得られ
るエンジン回転敢の整数倍のエンジン回転数でも共振状
態が得られる。ただし、2つの気筒グループに分けると
各グループがほぼ逆位相の圧力波を発生するので、上記
−次の共振が得られる回転数の偶数倍のところでは両グ
ループの圧力波がnいにn消し合う作用□ をする1、
よって、効果的なのは、上記−次の共振が得られる回転
数の奇数倍の回転数である。
Note that Fig. 2 shows a basic resonance state in which one pressure wave of continuous pressure vibration propagates to the next pressure wave in the same cylinder group.
A resonant state is obtained even when the pressure wave propagates in such a way that it becomes 1, and therefore, the basic resonant state described in ~ is obtained.A resonant state is obtained even when the engine speed is an integral multiple of the engine speed. . However, when the cylinders are divided into two groups, each group generates pressure waves with almost opposite phases, so at even multiples of the rotation speed where the above-mentioned - next resonance is obtained, the pressure waves of both groups are greatly canceled out. Perform the matching action □ 1.
Therefore, what is effective is a rotational speed that is an odd multiple of the rotational speed at which the above-mentioned -order resonance is obtained.

このように上記共鳴用環状通路6を周回する圧力波によ
って共鳴効果をもたせるようにすると、高速域での充填
効率の向上に有利となる。
Providing a resonance effect by the pressure waves circulating in the resonance annular passage 6 in this way is advantageous in improving the filling efficiency in the high speed range.

−〕まり、仮に上記共鳴用環状通路6を用いずに、例え
ば第1気筒グループの各吸気ポートに通じる吸気通路と
第2気筒グループの各吸気ポートに通じる吸気通路との
集合部を圧力反転部として、反転圧力波により動的効果
をもたせようとする場合には、上記基本圧力振動の周期
の1/2に相当する時間に吸気ポートと上記集合部との
間の通路を圧力波が往復伝播する状態となったときに、
上記集合部で負圧から正圧に反転して反射された圧力波
が内気筒の吸気行程終期に作用して動的効果が1qられ
ることとなり、このときの圧力振動の周期でと上記通路
の長さL=(等価管長)との関係はτ/ 2 = 2 
L −/ a   ・・・・・・■となる。そして、上
記圧力振動の周期τが短くな゛るQ ’r’!ii域で
この関係を満足させようとすると、上記通路長さをかな
り短く設定する必要があるが、各気筒の吸気ポートから
通路集合部までの通路長さには、気筒相互の吸気ポート
間長さ分の較差があり、集合部までの通路長さを短くす
る稈、相対的に上記較差が大きくなるので、各気筒に作
用する圧力波のアンバランスが大きくなって、全体的な
充填効率を高めることは困難となる。
- In other words, if the resonance annular passage 6 is not used, for example, the gathering part of the intake passage leading to each intake port of the first cylinder group and the intake passage leading to each intake port of the second cylinder group is set as a pressure reversal part. When trying to create a dynamic effect using reversed pressure waves, the pressure waves propagate back and forth through the passage between the intake port and the collecting section during a time corresponding to 1/2 of the period of the basic pressure oscillation. When the situation is reached,
The pressure wave reversed from negative pressure to positive pressure at the collecting part and reflected acts on the inner cylinder at the end of the intake stroke, resulting in a dynamic effect of 1q, and the period of pressure oscillation at this time causes the pressure wave in the passage to be reflected. The relationship with length L = (equivalent pipe length) is τ/2 = 2
L −/a ・・・・・・■. Then, Q 'r' where the period τ of the pressure vibration becomes shorter! In order to satisfy this relationship in region ii, it is necessary to set the above passage length to be quite short, but the passage length from the intake port of each cylinder to the passage gathering part is determined by the length between the intake ports of each cylinder. There is a difference in the length of the culm, which shortens the passage length to the collecting part.As the difference becomes relatively large, the imbalance of pressure waves acting on each cylinder increases, reducing the overall charging efficiency. It will be difficult to increase it.

これに対し、前述のように拡大室を有しない共鳴用環状
通路6を用いると、前記0式が成立するときに共鳴効果
が得られ、この0式と0式とを比べると、圧力振動の周
期τが同じであれば、共鳴用環状通路6全体の等価管長
[は前記0式による場合の碧価管長し−の4倍となり、
高速域でも、気筒毎の圧力波伝播経路の較差が相対的に
小さいので、各気筒に作用する圧力波のアンバランスが
小さくなる。従って、高速域でも、各気筒にほぼ均等に
圧力波を作用させて、有効に各気筒の充填効率を高める
ことができる。
On the other hand, if the resonance annular passage 6 without an enlarged chamber is used as described above, a resonance effect is obtained when the above equation 0 holds, and when comparing the equation 0 and the equation 0, it is found that the pressure vibration If the period τ is the same, the equivalent pipe length of the entire resonance annular passage 6 [is 4 times the blue value pipe length - according to the above formula 0,
Even in the high-speed range, the difference in the pressure wave propagation paths for each cylinder is relatively small, so the unbalance of the pressure waves acting on each cylinder is small. Therefore, even in a high speed range, pressure waves can be applied almost equally to each cylinder, thereby effectively increasing the charging efficiency of each cylinder.

また、とくにこの吸気装置によると、主吸気通路8を通
〕て導入される吸気は、主吸気通路8の分岐吸気通路8
b、8cから直接的に各吸気ポートに供給され、共鳴用
環状通路6の両側連通部分6a、6bでは空気の流動自
体が少ないので、共鳴用環状通路6を伝播する圧力波が
吸気流により減衰されることが抑制される。その上、上
記両側連通部分6a、6bは、吸気導入部確保等のため
の制約をうけることなく、通路径、容量、長さ等を圧力
波の伝播に適するように設定できるので、これによって
も圧力波の強化が可能となる。 なお、共鳴用環状通路
6を伝播する圧力波の一部は主吸気通路8の上記分岐吸
気通路8b、8cにも伝わり、この両分岐吸気通路8b
、8Gと共鳴用環状通路6とによっても圧力波の循環経
路が構成されるので、前述のように、共鳴用環状通路6
の略半周の長さLlと上記両分岐吸気通路8b、8Cに
わたる長さし2とをほぼ等しくしておけば、これらの間
でもjt振が生じてより一層圧力波が強化されることと
なる。
Moreover, especially according to this intake device, the intake air introduced through the main intake passage 8 is transferred to the branch intake passage 8 of the main intake passage 8.
b, 8c are directly supplied to each intake port, and since there is little air flow itself in the communication portions 6a, 6b on both sides of the resonance annular passage 6, the pressure waves propagating through the resonance annular passage 6 are attenuated by the intake flow. is suppressed. Furthermore, the passage diameter, capacity, length, etc. of the communication portions 6a and 6b on both sides can be set to be suitable for the propagation of pressure waves without being subject to restrictions such as securing an intake air introduction section. It becomes possible to strengthen pressure waves. Note that a part of the pressure wave propagating through the resonance annular passage 6 is also transmitted to the branch intake passages 8b and 8c of the main intake passage 8, and these two branch intake passages 8b
, 8G and the resonance annular passage 6 also constitute a pressure wave circulation path, so as mentioned above, the resonance annular passage 6
If the length Ll of approximately half the circumference of the above-mentioned branch intake passages 8b and 8C is made approximately equal, jt vibration will occur between them and the pressure wave will be further strengthened. .

本発明装置の具体的構造は上記実施例に限定されず、種
々変更可能であり、その数例を第3図、第4図に示す。
The specific structure of the device of the present invention is not limited to the above-mentioned embodiments, but can be modified in various ways, some examples of which are shown in FIGS. 3 and 4.

第3図に示す実施例では、共鳴用環状通路6の通路良さ
を可変としている。すなわち、共鳴用環状通路6におけ
る両気筒グループ間の片側の連通部分6aに、その途中
をyj)絡するnl格絡連通6Cが設けられ、この短絡
連通部6cとこれを迂回する部分との分岐箇所に、短絡
連通部6Cを閉じて迂回部分を聞く状態と短絡連通部6
Cを開いて迂回部分を閉じる状態とに切替える切替弁1
2が設けられている1、この構造によると、短絡連通部
6Cを閉じた状態では共鳴用環状通路6が比較的良く、
短絡連通部6Cを開いた状態では共鳴用11状通路6の
実質的な長さが短くなる。従って、図外の制御手段によ
り、エンジン回転数に応じて上記切昌弁12の開閉fI
勅を切替えることにより、異なる回転数域でそれぞれ共
鳴効果を高めることができる。
In the embodiment shown in FIG. 3, the passage quality of the resonance annular passage 6 is variable. That is, in the communication part 6a on one side between both cylinder groups in the resonance annular passage 6, an nl grid communication 6C is provided which connects the middle of the communication part 6a, and this short-circuit communication part 6c and a part bypassing this are provided. In the state where the short circuit communication part 6C is closed and the detour part is heard, and the short circuit communication part 6
Switching valve 1 that switches between opening C and closing the bypass portion
2. According to this structure, the resonance annular passage 6 is relatively good when the short-circuit communication part 6C is closed,
When the short-circuit communication portion 6C is open, the substantial length of the resonance eleven-shaped passage 6 is shortened. Therefore, a control means (not shown) controls the opening/closing fI of the switching valve 12 according to the engine speed.
By switching the speed, the resonance effect can be enhanced in different rotation speed ranges.

第4図は本発明を直列6気筒エンジンに適用した場合の
実施例を示している。この場合も、吸気順序が連続しな
い1番〜3番気筒3 a!−3cを第1気筒グループ、
吸気順序が連続しない4番〜6番気筒3d〜3fを第2
気筒グループとし、第1気筒グループの各吸気ポート4
a〜4Cに通じる通路と第2グループの各吸気ポート4
d〜4fに通じる通路とがそれぞれ両側に延出されてそ
れぞれの延出部分が互いに連なることにより、両気筒グ
ループ間の両側にそれぞれ適当な長さの連通部分6a、
6bを有する共鳴用環状通路6が構成されている。そし
てこの場合も、主吸気通路8の両分岐吸気通路8b、8
cの下流端が吸気ポート近傍に接続されることにより、
共鳴用環状通路6の両側連通部分6a、6bが主吸気通
路8から独立して形成されている。
FIG. 4 shows an embodiment in which the present invention is applied to an in-line six-cylinder engine. In this case as well, the intake order of the first to third cylinders 3a! is not consecutive. -3c is the 1st cylinder group,
The 4th to 6th cylinders 3d to 3f whose intake order is not consecutive are the second cylinders.
cylinder group, each intake port 4 of the first cylinder group
Passages leading to a to 4C and each intake port 4 of the second group
d to 4f are extended to both sides, and the respective extending portions are connected to each other, thereby creating communication portions 6a of appropriate lengths on both sides between both cylinder groups, respectively.
A resonance annular passage 6 having a diameter 6b is configured. Also in this case, both branch intake passages 8b, 8 of the main intake passage 8
By connecting the downstream end of c to the vicinity of the intake port,
Communication portions 6 a and 6 b on both sides of the resonance annular passage 6 are formed independently from the main intake passage 8 .

(発明の効果) 以上のように本発明は、吸気順序が連続しない気筒を同
・グループとする2つの気筒グループの各吸気通路が共
鳴用環状通路に接続され、各気筒グループにおいてそれ
ぞれ、1つの気筒の吸気ポートから伝播して共鳴用環状
通路をほぼ一周した圧力波が同・グループの気筒の吸気
ポートに作用することにより、共鳴効果が得られるよう
にしているので、上記共鳴用環状通路に拡大室をもしな
い一]ンバクトな構造によりながら、上記j1j鳴効果
で各気筒の充填効率を高めることができる。とくに、共
鳴用環状通路における両気筒グループ間の両側連通部分
が、吸気の供給を行なう]吸気通路から独立して形成さ
れているので、3i:鳴用環状通路を通る圧力波が吸気
流により減食されることを抑制し、これによって圧力波
を強め、共鳴効果をより一層高めることができるもので
ある。
(Effects of the Invention) As described above, in the present invention, each intake passage of two cylinder groups in which cylinders whose intake order is not consecutive is connected to the resonance annular passage, and one cylinder group is connected to the resonance annular passage. The pressure wave that propagates from the intake port of the cylinder and goes around the resonance annular passage acts on the intake ports of the cylinders in the same group, thereby producing a resonance effect. Despite having a compact structure that does not include an expansion chamber, the filling efficiency of each cylinder can be increased by the above-mentioned noise effect. In particular, since the communication portions on both sides between both cylinder groups in the resonance annular passage are formed independently from the intake passage, which supplies intake air, 3i: the pressure waves passing through the resonance annular passage are reduced by the intake flow. This makes it possible to strengthen the pressure waves and further enhance the resonance effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す吸気装置概略図、第2
図は吸気ポートイ1近の圧力振動を示す図、第3図およ
び第4図は各々別の実施例を示す吸気装置概略図である
。 38〜3C・・・第1気筒グループの各気筒、3d〜3
「・・・第2気筒グループの各気筒、4a〜4f・・・
吸気ポート、6・・・共鳴用環状通路、6a、6b・・
・共鳴用環状通路にa)ける両気筒グループ間の連通部
分、8・・・主吸気通路。 特許出願人      マ ツ ダ 株式会社代 理 
人      弁理t  小書 悦司同       
 弁理i  長1) 正向        弁理士  
板谷 康夫第  1  図 7g 第  2  図
Fig. 1 is a schematic diagram of an intake system showing one embodiment of the present invention;
The figure shows pressure vibration near the intake port 1, and FIGS. 3 and 4 are schematic diagrams of the intake device showing different embodiments. 38~3C...Each cylinder of the first cylinder group, 3d~3
"...Each cylinder in the second cylinder group, 4a to 4f...
Intake port, 6... Resonance annular passage, 6a, 6b...
- Communication portion between both cylinder groups in resonance annular passage a), 8...main intake passage. Patent applicant Mazda Co., Ltd. Agent
Person Patent Attorney T Kosho Etsushi Dou
Patent Attorney I Chief 1) Masamukai Patent Attorney
Yasuo Itaya 1st Figure 7g Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、多気筒エンジンにおいて、吸気順序が連続しない気
筒を同一グループとする2つの気筒グループの各吸気ポ
ートが接続された共鳴用環状通路と、各気筒に吸気を供
給する主吸気通路とを備え、上記共鳴用環状通路は、拡
大室を有せずに、一方の気筒グループの各吸気ポートに
通じる通路と他方の気筒グループの各吸気ポートに通じ
る通路とがそれぞれ二方向に延びて両側で相互に連なっ
た環状をなし、かつ、その両側連通部分が主吸気通路か
らは独立して形成されていることを特徴とするエンジン
の吸気装置。
1. A multi-cylinder engine, comprising a resonance annular passage connected to each intake port of two cylinder groups in which cylinders whose intake order is not consecutive are in the same group, and a main intake passage supplying intake air to each cylinder, The resonance annular passage does not have an enlarged chamber, and has a passage leading to each intake port of one cylinder group and a passage leading to each intake port of the other cylinder group, which extend in two directions and are interconnected on both sides. An intake device for an engine, which has a continuous annular shape, and communication portions on both sides thereof are formed independently of a main intake passage.
JP62103951A 1987-04-27 1987-04-27 Engine intake system Expired - Fee Related JP2552284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62103951A JP2552284B2 (en) 1987-04-27 1987-04-27 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62103951A JP2552284B2 (en) 1987-04-27 1987-04-27 Engine intake system

Publications (2)

Publication Number Publication Date
JPS63268918A true JPS63268918A (en) 1988-11-07
JP2552284B2 JP2552284B2 (en) 1996-11-06

Family

ID=14367724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62103951A Expired - Fee Related JP2552284B2 (en) 1987-04-27 1987-04-27 Engine intake system

Country Status (1)

Country Link
JP (1) JP2552284B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652522A (en) * 1979-10-06 1981-05-11 Nissan Diesel Motor Co Ltd Air suction device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652522A (en) * 1979-10-06 1981-05-11 Nissan Diesel Motor Co Ltd Air suction device for internal combustion engine

Also Published As

Publication number Publication date
JP2552284B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JP2543537B2 (en) Intake device for V-type multi-cylinder engine
JP3034258B2 (en) Engine intake silencer
KR930009746B1 (en) Intake system for multiple cylinder engine
JPH03286129A (en) Air intake device for multiple cylinder engine
JPH03202622A (en) Intake system for multi-cylinder engine
JPS63268918A (en) Intake device of engine
JPS63215822A (en) Intake device for v-type engine
JP2562465B2 (en) Engine intake system
JP2820411B2 (en) Engine intake system
JP2547409B2 (en) V-type engine intake device
JPH03286133A (en) Air intake device for multiple cylinder engine
JPS61229925A (en) Intake device for multi-cylinder engine
JPH0392534A (en) Intake device for multi-cylinder engine
JPH01117918A (en) Intake device of engine
JPH03286135A (en) Exhaust for multiple cylinder engine
JP2583529B2 (en) Engine intake system
JP2750122B2 (en) Engine intake system
JP2611798B2 (en) Engine intake system
JP2583526B2 (en) Engine intake system
JPS63263218A (en) Intake device for engine
JPS60222524A (en) Suction device of engine
JPS63268922A (en) Intake device of engine
JPH07101007B2 (en) V-type engine intake device
JP2771176B2 (en) Engine intake system
JP2583527B2 (en) Engine intake system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees