JPH01117918A - Intake device of engine - Google Patents

Intake device of engine

Info

Publication number
JPH01117918A
JPH01117918A JP27670187A JP27670187A JPH01117918A JP H01117918 A JPH01117918 A JP H01117918A JP 27670187 A JP27670187 A JP 27670187A JP 27670187 A JP27670187 A JP 27670187A JP H01117918 A JPH01117918 A JP H01117918A
Authority
JP
Japan
Prior art keywords
intake
passage
cylinder
cylinders
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27670187A
Other languages
Japanese (ja)
Other versions
JP2589710B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Akinori Yamashita
山下 昭則
Toshihiko Hattori
服部 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62276701A priority Critical patent/JP2589710B2/en
Publication of JPH01117918A publication Critical patent/JPH01117918A/en
Application granted granted Critical
Publication of JP2589710B2 publication Critical patent/JP2589710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve both the resonating effect and charging efficiency of intake air by forming a resonating annular passage to which intake air ports of two cylinder groups of a multi-cylinder engine are connected on both sides of the passage and connecting intake air supply passages to the opposing approximately middle positions of the passage. CONSTITUTION:Primary and secondary cylinder groups consisting of cylinders wherein intake actions are not executed successively are respectively connected to a pair of banks 1 and 2 of a V-shaped six-cylinder engine, and intake ports 4a to 4f of the cylinders 3a to 3f of the groups are to a resonating annular passage 6. Said annular passage 6 is connected to an upper stream resonance intake passage 7 via an air flow meter 8 and a throttle valve 9. In such constitution the upper stream intake passage 7 is connected to the annular passage 6 at one middle point B thereof where the passage portions 6a and 6b of said passage 6 on the sides of banks 1 and 2 are connected to each other. On the opposite side, a lower stream intake passage 12 is connected to the passage 6 at the other middle point B' where the passage portions 6a and 6b are connected to each other, so communicating said point B' with the upper stream intake passage 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は共鳴効果によって吸気の充填効率を高めるよう
にしたエンジンの吸気H@に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an engine intake H@ that improves intake air filling efficiency by a resonance effect.

(従来技術) 従来から、吸気の動的効果によって充填効率を高めるよ
うにしたエンジンの吸気IIIが種々知られている。例
えば、特公昭60−14169@公報に示された装置で
は、多気筒エンジンにおいて、吸気順序が連続しない気
筒を同一グループとする2グループの気筒群にそれぞれ
2つの吸気通路が接続され、吸気マニホールドブランチ
の上流端が接続された拡大室(容積大の集合室)と、こ
の拡大室から上流に延びる共鳴通路とが備えられるとと
もに、上記拡大室等に、上記各吸気通路相互を連通遮断
可能とする切替装置を設けられ、各吸気通路の上流端が
上流側集合室に接続されている。
(Prior Art) Various engine intake IIIs have been known in the past that improve charging efficiency through the dynamic effect of intake air. For example, in a device disclosed in Japanese Patent Publication No. 60-14169@, in a multi-cylinder engine, two intake passages are connected to each of two groups of cylinders in which the same group includes cylinders whose intake order is not consecutive, and an intake manifold branch is used. is provided with an enlarged chamber (collecting chamber with a large volume) connected to the upstream end of the enlarged chamber, and a resonant passageway extending upstream from the enlarged chamber, and is capable of communicating and disconnecting each of the intake passages to the enlarged chamber, etc. A switching device is provided, and the upstream end of each intake passage is connected to the upstream gathering chamber.

この装置によると、上記切替装置が上記各吸気通路相互
を遮断した状態にあるときは、上流側集合室で反転して
反・射される吸気圧力波により、エンジン回転数が比較
的低い領域で慣性過給効果が得られ、上記切替装置が上
記各吸気通路を連通する状態となったときは、圧力波の
反転反射位置が吸気ポートに近づけられることにより、
エンジン回転数が比較的高い領域で慣性過給効果が得ら
れる。
According to this device, when the switching device is in a state where each of the intake passages is cut off from each other, the intake pressure wave that is reversed and reflected in the upstream gathering chamber causes the engine rotation speed to be relatively low. When the inertial supercharging effect is obtained and the switching device communicates with each intake passage, the position of the inverted reflection of the pressure wave is brought closer to the intake port.
The inertial supercharging effect can be obtained in a region where the engine speed is relatively high.

ところが、この吸気装置によると、吸気マニホールドブ
ランチ部が集合する部分に大きな容積の拡大室が設けら
れているため、吸気系が大型化し、自動車に搭載する場
合に大ぎな設置スペースが必要となる等の不都合がある
However, according to this intake system, a large volume expansion chamber is provided in the part where the intake manifold branches gather, which results in an increase in the size of the intake system and requires a large installation space when installed in a car. There are some inconveniences.

また、■型エンジンにおいては、例えば特開昭59−5
65号公報に見られるように、両バンク間の空間に、ブ
ランチ部に相当する湾曲した個々の吸気通路と、この個
々の吸気通路に連通した拡大室に相当する空間とを有す
る吸気マニホールドを配置することにより、慣性過給効
果をもたせつつ、全体の小型化を図るようにしたものが
ある。
In addition, in the ■ type engine, for example, JP-A-59-5
As seen in Publication No. 65, an intake manifold having individual curved intake passages corresponding to branch portions and spaces corresponding to enlarged chambers communicating with these individual intake passages is arranged in the space between both banks. By doing so, there is a system that achieves an inertial supercharging effect while reducing the overall size.

しかしこの構造によっても、両バンク間に配置された吸
気マニホールドに、ブランチ部に通じる拡大室が設けら
れているため、吸気マニホールドがバンク上端より上方
に相当M突出することは避けられず、このためエンジン
全体の高さが大きくなり、自動車に搭載する場合、ボン
ネット高さを低く抑えることが困難となる。
However, even with this structure, since the intake manifold located between both banks is provided with an enlarged chamber that communicates with the branch part, it is unavoidable that the intake manifold protrudes upward by an amount of M from the upper end of the bank. The overall height of the engine increases, making it difficult to keep the hood height low when installed in a car.

つまり、これら従来装置のように吸気マニホールドの各
ブランチ部をそれぞれ長く形成して拡大室に接続する構
造によると、コンパクト化(特に高さの低減)には限界
がある。
In other words, with the structure of these conventional devices in which each branch portion of the intake manifold is formed long and connected to the enlarged chamber, there is a limit to compactness (especially reduction in height).

このような問題点を解決する手段として、上記拡大室を
廃止し、例えば、吸気順序が連続しない気筒を同一グル
ープとする2つの気筒グループの各吸気ポートにそれぞ
れ、拡大室を有しない2つのパイプ状の吸気通路を、短
い枝管を介して接続し、この両吸気通路を上流側適宜箇
所で集合させてこの部分で圧力波を反転反射させるよう
にすることが考えられる。しかしこの場合、吸気ポート
と圧力波反転反射部との間の圧力波伝播経路の良さに気
筒毎の較差が生じ、とくに高速域での過給効果を期待し
て上記吸気通路を短くすると、相対的に上記較差が大き
くなって、各気筒に対する圧力波の作用にアンバランス
が生じるため、各気筒に充分な過給効果を及ぼすことが
困難になる。
As a means to solve such problems, the expansion chamber described above can be abolished, and, for example, two pipes without an expansion chamber can be installed at each intake port of two cylinder groups in which cylinders whose intake order is not consecutive are in the same group. It is conceivable to connect two intake passages via a short branch pipe, and to converge the two intake passages at an appropriate point on the upstream side so that the pressure waves are inverted and reflected at this section. However, in this case, the quality of the pressure wave propagation path between the intake port and the pressure wave inversion/reflection section varies from cylinder to cylinder. As a result, the above-mentioned difference becomes large and an imbalance occurs in the action of pressure waves on each cylinder, making it difficult to exert a sufficient supercharging effect on each cylinder.

そこで本出願人は、多気筒エンジンにおいて、吸気順序
が連続しない気筒を同一グループとする2つの気筒グル
ープの各吸気ポートを、拡大室を有しない共通の共鳴用
環状通路に接続し、この共鳴用環状通路を、一方の気筒
グループの各吸気ポートに通じる通路と他方の気筒グル
ープの各吸気ポートに通じる通路とがそれぞれ二方向に
延びて両側で相互に連なる環状に形成したものを先に提
案している。この5A置によると、各グループ毎に吸気
ポート付近に吸気終期に正圧となる圧力波が生じ、この
圧力波が共鳴用環状通路をほぼ一周して同一気筒グルー
プの吸気ポートに作用することにより共鳴効果が得られ
るとともに、両気筒グループ間で圧力波が互いに弱め合
うような干渉が生じることが避けられる。
Therefore, in a multi-cylinder engine, the applicant connects each intake port of two groups of cylinders in which the cylinders with different intake orders are in the same group to a common resonance annular passage that does not have an enlarged chamber. We have previously proposed an annular passage in which a passage leading to each intake port of one cylinder group and a passage leading to each intake port of the other cylinder group extend in two directions and are connected to each other on both sides. ing. According to this 5A configuration, a pressure wave that becomes positive pressure at the end of intake is generated near the intake port for each group, and this pressure wave goes around the resonance annular passage and acts on the intake ports of the same cylinder group. A resonance effect is obtained, and interference between the two groups of cylinders that weakens each other's pressure waves is avoided.

ところが、この構造の場合、吸気方向の上流側に配置さ
れた吸気ポートに比べ、下流側に配置された吸気ポート
までの通路が長いため、これらの吸気ポートに対しては
比較的吸気抵抗が大きく、空気充填効率の面では不利と
なっている。そこで、エンジン全体の空気充填量を総合
的に向上させることができる装置の出現が望まれていた
However, with this structure, the passage to the intake ports located on the downstream side is longer than the intake ports located on the upstream side in the intake direction, so the intake resistance is relatively large for these intake ports. , which is disadvantageous in terms of air filling efficiency. Therefore, it has been desired to develop a device that can comprehensively improve the air filling amount of the entire engine.

(発明の目的) 本発明は上記の事情に鑑み、拡大室を不要にしてエンジ
ン高さを低く抑えることができるようにしつつ、有効に
吸気の動的効果を発揮させることができ、しかも、吸気
下流側の吸気ポートへの空気充填量を増やすことにより
総合的に充填効率の向上を図ることができるエンジンの
吸気装置を提供するものである。
(Object of the Invention) In view of the above circumstances, the present invention makes it possible to reduce the height of the engine by eliminating the need for an expansion chamber, while effectively exhibiting the dynamic effect of the intake air. An object of the present invention is to provide an engine intake device that can improve overall filling efficiency by increasing the amount of air filled into a downstream intake port.

(発明の構成) 本発明は、多気筒エンジンにおいて、吸気順序が連続し
ない気筒を同一グループとする2つの気筒グループの各
吸気ポートが、拡大室を有しない共通の共鳴用環状通路
に接続され、この共鳴用環状通路は、一方の気筒グルー
プの各吸気ポートに通じる通路と他方の気筒グループの
各吸気ポートに通じる通路とがそれぞれ二方向に延びて
両側で相互に連なる環状をなし、かつ、この両側で連な
った部分の略中央部に、それぞれ吸気を供給する吸気供
給用通路が接続されているものである。
(Structure of the Invention) The present invention provides a multi-cylinder engine in which each intake port of two cylinder groups in which the same group includes cylinders in which the intake order is not consecutive is connected to a common resonance annular passage having no enlarged chamber, This resonance annular passage has an annular shape in which a passage leading to each intake port of one cylinder group and a passage leading to each intake port of the other cylinder group extend in two directions and are interconnected on both sides. Intake air supply passages for supplying intake air are connected to substantially central portions of the continuous portions on both sides.

この構成によると、共鳴用環状通路の両側から吸気が供
給されるので、各吸気ポートへの吸気抵抗が軽減され、
エンジン全体としての空気充填量が総合的に向上する。
According to this configuration, since intake air is supplied from both sides of the resonance annular passage, intake resistance to each intake port is reduced.
The air filling amount of the engine as a whole is improved overall.

しかも、吸気供給用通路は両グループに通ずる通路が連
なった部分の略中央部、すなわち共鳴時において圧力変
動の節となる部分に接続されているので、共鳴時に関し
ては通路内の圧力変動に影響を与えることがなく、従っ
て、吸気ポート付近に吸気終期に正圧となる圧力波が生
じるとともにこの圧力波が共鳴用環状通路をほぼ一周し
て同一気筒グループの吸気ポートに作用することにより
、高い共鳴効渠が得られる。
Moreover, since the intake air supply passage is connected to the approximate center of the part where the passages leading to both groups are connected, that is, the part that becomes a node of pressure fluctuation during resonance, it affects the pressure fluctuation in the passage during resonance. Therefore, a pressure wave that becomes positive pressure at the end of intake is generated near the intake port, and this pressure wave goes around the resonance annular passage and acts on the intake ports of the same cylinder group. A resonance effect can be obtained.

(実施例) 第1図は本発明の装置をV型6気筒エンジンに適用した
場合の一実施例を示しており、V型エンジンの一方のバ
ンク1には、1番、2番、3番の3つの気筒3a、3b
、3cが設けられ、他方のバンク2には、4番、5番、
6番の3つの気筒3d、3e、3fが設けられている。
(Embodiment) Fig. 1 shows an embodiment in which the device of the present invention is applied to a V-type six-cylinder engine. three cylinders 3a, 3b
, 3c are provided, and the other bank 2 has numbers 4, 5,
Three cylinders 3d, 3e, and 3f numbered 6 are provided.

各気筒の点火順序(吸気順序)は、例えば、1番気筒3
a→4番気筒3d→2番気筒3b−15番気筒3 e 
−> 3番気筒3G−)6番気筒3fとされて、一方の
バンク1における各気筒3a〜3Cが吸気順序の連続し
ない第1気筒グループを構成し、他方のバンク′2にお
ける各気筒3d〜3fが吸気順序の連続しない第2気筒
グループを構成している。
The ignition order (intake order) of each cylinder is, for example, No. 1 cylinder 3
a → No. 4 cylinder 3d → No. 2 cylinder 3b-No. 15 cylinder 3 e
-> No. 3 cylinder 3G-) No. 6 cylinder 3f, each cylinder 3a to 3C in one bank 1 constitutes a first cylinder group in which the intake order is not consecutive, and each cylinder 3d to 3d in the other bank '2 3f constitutes a second cylinder group in which the intake order is not consecutive.

各気筒3a〜3fにはそれぞれ吸気ポート4a〜4fお
よび排気ポート(図示せず)が配設されており°、これ
ら吸気ポート4a〜4fおよび排気ポートは、図外の吸
気弁および排気弁によってそれぞれ所定のタイミングで
開閉される。
Each cylinder 3a to 3f is provided with an intake port 4a to 4f and an exhaust port (not shown), respectively. It opens and closes at predetermined timing.

上記各気筒の吸気ポート4a〜4fは、拡大室を有しな
い共鳴用環状通路6に接続され、この共鳴用環状通路6
が、エアフローメータ8およびスロットル弁9を介して
吸気を導入する上流側吸気通路(吸気供給用通路)7に
接続されている。
The intake ports 4a to 4f of each cylinder are connected to a resonance annular passage 6 that does not have an enlarged chamber, and this resonance annular passage 6
is connected to an upstream intake passage (intake air supply passage) 7 through which intake air is introduced via an air flow meter 8 and a throttle valve 9.

上記共鳴用環状通路6は、第1気筒グループのの各吸気
ポート48〜4Cに短い枝管10a〜10Cを介して通
じる通路6a、および第2気筒グループの各吸気ポート
4d〜4fに短い枝管10d〜10fを介して通じる通
路6bが、それぞれ上流側と下流側の二方向に延び、上
記上流側吸気通路7に接続される側の端部とその反対側
の端部とで互いに連なることにより、環状をなしている
The resonance annular passage 6 includes a passage 6a communicating with each intake port 48-4C of the first cylinder group via short branch pipes 10a-10C, and a short branch pipe communicating with each intake port 4d-4f of the second cylinder group. The passages 6b communicating through 10d to 10f extend in two directions, upstream and downstream, and are connected to each other at the end connected to the upstream intake passage 7 and the opposite end. , is circular.

エンジン本体に対する配置としては、両バンク1.2間
の空間部において、共鳴用環状通路6を構成する上記通
路6a、6bが互いに平行に気筒配列方向に沿って延び
、エンジン本体の前後両側において互いに運なるように
形成される。この場合、図示はしないが、エンジン本体
の両端部よりも外方に延びる共鳴用環状通路6の上流側
部分および下流側部分は、エンジン本体に沿わせて適宜
屈曲させることにより、エンジン全高を高くすることな
く、コンパクトに吸気系が装備される。
As for the arrangement with respect to the engine body, in the space between both banks 1.2, the passages 6a and 6b forming the resonance annular passage 6 extend parallel to each other along the cylinder arrangement direction, and are mutually arranged on both the front and rear sides of the engine body. Formed by luck. In this case, although not shown, the upstream and downstream portions of the resonance annular passage 6 extending outward from both ends of the engine body are appropriately bent along the engine body to increase the overall height of the engine. The intake system is compactly equipped without the need for

さらに本発明の特徴とするところは、上記上流側吸気通
路7は、両通路5a、5bが連なる部分の中央部Bに接
続されており、しかも、その反対側で両通路6a、6b
が連なる部分の中央部B′にも、この部分と上記上流側
吸気通路7とを連通ずる下流側吸気通路(吸気供給用通
路)12が接続されている。
A further feature of the present invention is that the upstream intake passage 7 is connected to a central portion B of a portion where both passages 5a and 5b are connected, and furthermore, on the opposite side, both passages 6a and 6b
A downstream intake passage (intake air supply passage) 12 that communicates this part with the upstream intake passage 7 is also connected to the central portion B' of the continuous portion.

次に、この装置による場合の作用を、第2図および第3
図を参照して説明する。
Next, the effects of this device will be explained in Figures 2 and 3.
This will be explained with reference to the figures.

各吸気ポート4a〜4fの吸気行程において、上流側吸
気通路7および下流側吸気通路12により共鳴用環状通
路6の両側から吸気の供給が行われミ吸気順序が連続し
ない同一気筒グループの各吸気ポート付近、例えば第1
気筒グループの各吸気ポート4a〜4C付近には、第1
気筒グループの各気筒の作動によりそれぞれの吸気行程
途中で負圧となって吸気行程終期に正圧となる基本的圧
力振動(第3図の線A)が生じる。この吸気ポート付近
に生じた圧力波は、第2図に矢印で示す(1蓄気1!1
3aからの圧力伝播を例示する)ように、上流側と下流
側の二方向に分かれてそれぞれ共鳴用環状通路6を周回
するように伝播し、共鳴用環状通路6をほぼ一周して同
一気筒グループの他の気筒の吸気ポートに作用する。こ
の場合、共鳴用環状通路6を周回する圧力波は反転する
ことなく伝播される。
During the intake stroke of each intake port 4a to 4f, intake air is supplied from both sides of the resonance annular passage 6 by the upstream intake passage 7 and the downstream intake passage 12, and each intake port of the same cylinder group has a non-consecutive intake order. Nearby, for example, the first
Near each intake port 4a to 4C of the cylinder group, there is a first
The operation of each cylinder in the cylinder group causes a basic pressure oscillation (line A in FIG. 3) that becomes negative pressure during the respective intake stroke and becomes positive pressure at the end of the intake stroke. The pressure waves generated near this intake port are shown by arrows in Figure 2 (1 air storage 1!1
3a), the pressure propagates in two directions, the upstream side and the downstream side, and propagates around the resonance annular passage 6, and almost goes around the resonance annular passage 6 to connect to the same cylinder group. acts on the intake ports of other cylinders. In this case, the pressure waves circulating in the resonance annular passage 6 are propagated without being reversed.

そして、エンジン回転数の変化により、圧力波が共鳴用
環状通路6をほぼ一周する時間と上記の基本的圧力振動
の周期τとが・一致する状態となったとき、第3図に実
線矢印で示すように1番気筒3aに生じて共鳴用環状通
路6を伝播した圧力波が2番気筒3bに生じた圧力波と
重なり、同様にして2番気筒3bから伝播した圧力波が
3番気筒3Cに生じる圧力波と重なり、3番気筒3Cか
ら伝播した圧力波が1番気筒3aに生じる圧力波と重な
る。こうして、第1気筒グループの気筒相互間で圧力波
が共振して第3図に線8で示すように圧力振動が強めら
れ、同様に第2気筒グループの気筒相U間でも共振が生
じて圧力振動が強められる(破線C)。このような共鳴
効果により、各気筒の充填効率が高められることとなる
When the time for the pressure wave to go around the resonance annular passage 6 and the period τ of the above-mentioned basic pressure oscillation coincide with the change in the engine speed, the solid line arrow in FIG. As shown, the pressure wave generated in the first cylinder 3a and propagated through the resonance annular passage 6 overlaps with the pressure wave generated in the second cylinder 3b, and the pressure wave similarly propagated from the second cylinder 3b is transmitted to the third cylinder 3C. The pressure wave propagated from the third cylinder 3C overlaps with the pressure wave generated in the first cylinder 3a. In this way, the pressure waves resonate between the cylinders in the first cylinder group, and the pressure oscillations are strengthened as shown by the line 8 in FIG. The vibration is strengthened (dashed line C). Such a resonance effect increases the filling efficiency of each cylinder.

しかも、従来の圧力反転型の装置に比べ、山気筒グルー
プ間の連通経路の長さを、同一グループの隣接する気筒
の吸気ポート間の長さよりも十分に長く設定できるので
、圧力波伝播経路の長さの気筒間較差を小さくできると
ともに、各気筒グループの独立性が保たれて、吸気順序
が連続する気筒の相互間で圧力波を弱め合うような干渉
が避けられ、これらの作用により、共鳴効果は上記圧力
反転型のものより6高くなる。
Moreover, compared to conventional pressure reversal type devices, the length of the communication path between the mountain cylinder groups can be set to be sufficiently longer than the length between the intake ports of adjacent cylinders in the same group, so the pressure wave propagation path can be In addition to reducing the length difference between cylinders, the independence of each cylinder group is maintained, and interference that weakens the pressure waves between cylinders with consecutive intake orders is avoided. The effect is 6 higher than that of the pressure reversal type mentioned above.

なお、共鳴用環状通路6には、上述のように上流側吸気
通路7および下流側吸気通路12が連通しているが、こ
れらは両道路6a、6bが連なる部分の中央部B、B’
 、すなわち共鳴時に圧力変動の節となる部分に接続さ
れているので、上記共鳴効果には影響することがない。
Note that the resonance annular passage 6 communicates with the upstream intake passage 7 and the downstream intake passage 12 as described above, but these communicate with the central portions B and B' of the portion where both roads 6a and 6b are connected.
That is, since it is connected to a part that becomes a node of pressure fluctuation during resonance, it does not affect the resonance effect.

この圧力変動の様子を、第4図のグラフを用いて説明す
る。この第4図は、環状通路6を形成する両道路6a、
6bにおいて、それぞれ中央の気筒3b、3eに連通す
る枝管10b、10eとの接続点A、C点(第1図)と
、両道路5a、5bが連なる部分の中央部8.8’点く
第1図)とにおける吸気の圧力変化を示したもので、位
置および時間に対応する圧力が三次元的にプロットされ
ている。なお、図において、吸気圧力のレベルが二点鎖
線40で示される基準レベルよりも正圧側に大きい範囲
は太い実線で記されている。
The state of this pressure fluctuation will be explained using the graph of FIG. 4. This FIG. 4 shows both roads 6a forming the annular passage 6,
6b, connecting points A and C (Fig. 1) with the branch pipes 10b and 10e communicating with the central cylinders 3b and 3e, respectively, and the central part 8.8' of the part where both roads 5a and 5b are connected. Figure 1) shows changes in the pressure of the intake air in Figure 1), where the pressure corresponding to position and time is three-dimensionally plotted. In the figure, the range where the intake pressure level is greater on the positive pressure side than the reference level indicated by the two-dot chain line 40 is indicated by a thick solid line.

この図に明らかなように、八点くまたは0点)において
は、気筒3a、3b、3c (または気筒3d、3e、
3f)の各吸気行程の終期に発生した正の圧力波が環状
通路6を周回して同じ気筒群の他の気筒3a、3b、3
C(または気筒3d。
As is clear from this figure, at 8 points or 0 points), cylinders 3a, 3b, 3c (or cylinders 3d, 3e,
3f) The positive pressure wave generated at the end of each intake stroke circulates around the annular passage 6 and moves to other cylinders 3a, 3b, 3 of the same cylinder group.
C (or cylinder 3d.

3e、3f)の吸気行程に作用することにより、これら
の気筒3a、3b、3c (または気筒3d。
3e, 3f) on the intake stroke of these cylinders 3a, 3b, 3c (or cylinder 3d).

3e、3f)の吸気行程終期の吸気圧力が基準レベルよ
りも正圧倒に変化して、吸気の共鳴過給効果が得られる
のに対し、B、B’ 点については、一方の気筒群の各
気筒3a、3b、3c (または気筒3d、3e、3f
)から伝播した店力波と、他方の気筒群の各気筒3d、
3e、3f (または気筒3a、3b、3C)から伝播
した圧力波とが打ち消し合って圧力変動の節点となるた
め、その圧力変動は極めて小さく、略基準レベルに保た
れることとなる。すなわち、この共鳴効果に関しては両
吸気通路7.12の接続による影響はほとんどない。
3e, 3f), the intake pressure at the end of the intake stroke changes to a positive overload compared to the reference level, and a resonant intake supercharging effect is obtained. Cylinders 3a, 3b, 3c (or cylinders 3d, 3e, 3f
) and each cylinder 3d of the other cylinder group,
Since the pressure waves propagated from the cylinders 3e and 3f (or the cylinders 3a, 3b, and 3C) cancel each other out and form pressure fluctuation nodes, the pressure fluctuations are extremely small and are maintained at approximately the reference level. That is, this resonance effect is hardly affected by the connection of both intake passages 7.12.

以上のようにこの装置によると、各吸気ポート4a〜4
fの両側から吸気を供給するようにしているので、吸気
ポート4a、4d、および吸気ポート4c、4fのいず
れの側にとっても吸気抵抗の少ない状態となっており、
よって、エンジン全体の空気充IIIを向上させること
ができる。しかも、上記吸気通路7.12は、いずれも
共鳴時に圧力変動の節となる部分に接続されているので
、共鳴用環状通路6の共鳴効果に影響することがなく、
従ってこの共鳴効果により、従来の圧力反転型の装置よ
りもさらに高い充填効率を得ることができる。
As described above, according to this device, each of the intake ports 4a to 4
Since intake air is supplied from both sides of f, intake resistance is low on either side of intake ports 4a, 4d, and intake ports 4c, 4f.
Therefore, the air filling III of the entire engine can be improved. Moreover, since the intake passages 7 and 12 are both connected to the portions that become nodes of pressure fluctuation during resonance, they do not affect the resonance effect of the resonance annular passage 6.
Therefore, due to this resonance effect, higher filling efficiency can be obtained than in conventional pressure reversal type devices.

なお、本発明の吸気装置は第1図に示されるような構造
に限るものではなく、例えば第5図のように、下流側吸
気通路12および環状通路6の下流側部分を上流側に折
曲げるようにすれば、エンジンの長手方向に関し、より
コンパクトな構造とすることができるし、さらに同図に
示されるように、互いに連動するバルブ13a、13b
を設けることにより、このパルプ13a、13bの開閉
により、環状通路6全体を利用する状態と、両通路6a
、6bを個別に利用する状態とに切換が可能となる。
Note that the intake device of the present invention is not limited to the structure shown in FIG. 1; for example, as shown in FIG. 5, the downstream portions of the downstream intake passage 12 and the annular passage 6 are bent upstream. By doing so, the structure of the engine can be made more compact in the longitudinal direction, and as shown in the same figure, the valves 13a and 13b that interlock with each other can be made more compact.
By opening and closing these pulps 13a and 13b, the entire annular passage 6 can be used, and both passages 6a can be used.
, 6b can be used individually.

また第6図のように、直列型エンジンに対しても、その
気筒3’ a〜3’ dの数が偶数であれば互いに吸気
順序が連続しない2つのグループに分けることにより適
用が可能であるし、さらに同図に示されるように、上流
側吸気通路7と下流側吸気通路12との合流位置よりも
下流側の部分、および下流側吸気通路12と環状通路6
の接続部分の直上流側にそれぞれ別個にスロットル弁9
を設けるようにすれば、スロットル弁9下流側の容量を
小さくすることにより、過渡時における吸気供給の応答
性を向上させることができる。
Furthermore, as shown in Fig. 6, if the number of cylinders 3'a to 3'd is an even number, it can be applied to an in-line engine by dividing it into two groups whose intake order is not consecutive. Furthermore, as shown in the same figure, the portion downstream of the confluence position of the upstream intake passage 7 and the downstream intake passage 12, and the portion between the downstream intake passage 12 and the annular passage 6
A separate throttle valve 9 is installed immediately upstream of the connection part of the
By providing this, the responsiveness of intake air supply during transient periods can be improved by reducing the capacity on the downstream side of the throttle valve 9.

(発明の効果) 以上のように本発明は、吸気順序が連続しない気筒を同
一グループとする2つの気筒グループの各吸気ポートを
共通の共鳴用環状通路に接続した吸気装置において、こ
の共鳴用環状通路の2つの通路がそれぞれ二方向に延び
て上流側および下流側で相互に連なった部分の略中央部
、すなわち共鳴時に圧力変動の節となる部分に、それぞ
れ吸気を供給する吸気供給用通路を接続したものである
ので、このような吸気供給用通路の接続に影響を受ける
ことなく優れた共鳴効果を得ることができ、これによっ
て、コンパクトな54Nによりながら上記共鳴効果で各
気筒の充填効率を高めることができる。しかも、上記吸
気供給用通路によって環状通路の両側から吸気が供給さ
れるので、各吸気ポートまについての吸気抵抗を軽減す
ることができ、これによって、エンジン全体の空気充1
1Mを総合的に向上させることができる。
(Effects of the Invention) As described above, the present invention provides an intake system in which each intake port of two cylinder groups in which cylinders whose intake order is not consecutive is connected to a common resonance annular passage. An intake air supply passage is provided for supplying intake air to approximately the center of a portion where the two passages extend in two directions and are connected to each other on the upstream and downstream sides, that is, the portion that becomes a node of pressure fluctuation during resonance. Since it is connected, it is possible to obtain an excellent resonance effect without being affected by the connection of the intake air supply passage, and as a result, the charging efficiency of each cylinder can be improved by the resonance effect despite the compact 54N. can be increased. In addition, since the intake air is supplied from both sides of the annular passage through the intake air supply passage, the intake resistance at each intake port can be reduced, thereby improving the air filling of the entire engine.
1M can be improved comprehensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における吸気装@概略図、第
2図は同装置における圧力波伝播状態を示す図、第3図
は同装置の吸気ポート付近の圧力振動を示すグラフ、第
4図は同装置の環状通路内における吸気の圧力変化を示
すグラフ、第5図および第6図は他の実施例における吸
気装置の概略図である。 3a〜3C・・・第1気筒グループの各気筒、3d〜3
f・・・第2気筒グループの各気筒、4a〜4f・・・
吸気ポート、6・・・共鳴用環状通路、7・・・上流側
吸気通路(吸気供給用通路)、12・・・下流側吸気通
路(吸気供給用通路)。 特許出願人      マ ツ ダ1株式会社代 理 
人      弁理士  小谷 悦司同       
 弁理士  長1) 正向        弁理士  
板谷 康夫第  1   図 第  2 2 第   3  図 第  5  図
Fig. 1 is a schematic diagram of an intake system in an embodiment of the present invention, Fig. 2 is a diagram showing the pressure wave propagation state in the same device, Fig. 3 is a graph showing pressure vibration near the intake port of the same device, FIG. 4 is a graph showing the change in pressure of intake air in the annular passage of the device, and FIGS. 5 and 6 are schematic diagrams of the intake device in other embodiments. 3a to 3C...Each cylinder of the first cylinder group, 3d to 3
f...Each cylinder of the second cylinder group, 4a to 4f...
Intake port, 6... Resonance annular passage, 7... Upstream intake passage (intake air supply passage), 12... Downstream intake passage (intake air supply passage). Patent applicant Mazda 1 Co., Ltd. Agent
People Patent Attorney Etsushi Kotani
Patent Attorney Chief 1) Masamukai Patent Attorney
Yasuo Itaya Figure 1 Figure 2 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、多気筒エンジンにおいて、吸気順序が連続しない気
筒を同一グループとする2つの気筒グループの各吸気ポ
ートが、拡大室を有しない共通の共鳴用環状通路に接続
され、この共鳴用環状通路は、一方の気筒グループの各
吸気ポートに通じる通路と他方の気筒グループの各吸気
ポートに通じる通路とがそれぞれ二方向に延びて両側で
相互に連なる環状をなし、かつ、この両側で連なった部
分の略中央部にそれぞれ吸気を供給する吸気供給用通路
が接続されていることを特徴とするエンジンの吸気装置
1. In a multi-cylinder engine, each intake port of two groups of cylinders in which cylinders whose intake order is not consecutive is connected to a common resonant annular passage that does not have an enlarged chamber, and this resonant annular passage is A passage leading to each intake port of one cylinder group and a passage leading to each intake port of the other cylinder group form an annular shape that extends in two directions and is connected to each other on both sides. An intake device for an engine, characterized in that intake air supply passages for supplying intake air are connected to each central portion.
JP62276701A 1987-10-30 1987-10-30 Engine intake system Expired - Fee Related JP2589710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276701A JP2589710B2 (en) 1987-10-30 1987-10-30 Engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276701A JP2589710B2 (en) 1987-10-30 1987-10-30 Engine intake system

Publications (2)

Publication Number Publication Date
JPH01117918A true JPH01117918A (en) 1989-05-10
JP2589710B2 JP2589710B2 (en) 1997-03-12

Family

ID=17573123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276701A Expired - Fee Related JP2589710B2 (en) 1987-10-30 1987-10-30 Engine intake system

Country Status (1)

Country Link
JP (1) JP2589710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063884A (en) * 1989-09-30 1991-11-12 Dr. Ing. H.C.F. Porsche Ag Air intake system of an internal-combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652522A (en) * 1979-10-06 1981-05-11 Nissan Diesel Motor Co Ltd Air suction device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652522A (en) * 1979-10-06 1981-05-11 Nissan Diesel Motor Co Ltd Air suction device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063884A (en) * 1989-09-30 1991-11-12 Dr. Ing. H.C.F. Porsche Ag Air intake system of an internal-combustion engine

Also Published As

Publication number Publication date
JP2589710B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
JP2543537B2 (en) Intake device for V-type multi-cylinder engine
KR930009746B1 (en) Intake system for multiple cylinder engine
JPH07113327B2 (en) Engine intake system
JPH03286129A (en) Air intake device for multiple cylinder engine
JPH01117918A (en) Intake device of engine
JP2541964B2 (en) V-type engine intake device
JP2583529B2 (en) Engine intake system
JP2583527B2 (en) Engine intake system
JPH0676773B2 (en) Engine intake system
JP2583528B2 (en) Engine intake system
JP2583526B2 (en) Engine intake system
JPH01117917A (en) Intake device of engine
JP2808312B2 (en) Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine
JPS63263218A (en) Intake device for engine
JP2776865B2 (en) Engine intake system
JP2543906B2 (en) Engine intake system
JPS63268918A (en) Intake device of engine
JPH03286133A (en) Air intake device for multiple cylinder engine
JP2750122B2 (en) Engine intake system
JP2552478B2 (en) V-type engine exhaust system
JPS6241922A (en) Intake-air device for v-type engine
JP2547409B2 (en) V-type engine intake device
JPH0450424Y2 (en)
JPH03286131A (en) Air intake passage structure for multiple cylinder engine
JPS63268922A (en) Intake device of engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees