JPS63266877A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS63266877A
JPS63266877A JP9974087A JP9974087A JPS63266877A JP S63266877 A JPS63266877 A JP S63266877A JP 9974087 A JP9974087 A JP 9974087A JP 9974087 A JP9974087 A JP 9974087A JP S63266877 A JPS63266877 A JP S63266877A
Authority
JP
Japan
Prior art keywords
oxide film
base
microscopic
groove
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9974087A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sagara
和彦 相良
Yoichi Tamaoki
玉置 洋一
Toru Nakamura
徹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9974087A priority Critical patent/JPS63266877A/en
Publication of JPS63266877A publication Critical patent/JPS63266877A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the irregularity in a base contact width and to achieve a high integration density by a method wherein a microscopic opening with a prescribed width is made at the upper part of a single-crystal protruding region, a base electrode is pulled out from this opening and a microscopic groove whose cross section is U-shaped is formed in the circumference of an active region. CONSTITUTION:Firstly, a method to form a base contact part is explained. The surface of a P-type silicon substrate 1 is oxidized and an oxide film 17 is formed; furthermore, a silicon nitride film 18 and an oxide film 19 are deposited. Then, after the silicon nitride film 18 has been side-etched, polycrystalline Si 23 is deposited; lastly, an emitter region and a base region are formed; a structure which makes use of the polycrystalline Si film 23 as a base extraction electrode is completed. In the next step, a method to form a microscopic U-shaped groove is explained. As follows: the surface of a silicon substrate 1 is oxidized; an oxide film 25 is formed; silicon nitride 26 is deposited. After that, the microscopic U-shaped groove is formed in the semiconductor substrate by using a dry etching technique. Then, the oxide film 25 is formed inside said groove. By this setup, it is made possible to control a contact width of a base extraction part microscopically and with good accuracy; in addition, an integration density is more than doubled thanks to the microscopic U-shaped groove.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路に関し、詳しくは耐α線特性
がすぐれた自己整合型高性能、高集積なバイポーラ形半
導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and more particularly to a self-aligned, high-performance, highly integrated bipolar semiconductor integrated circuit with excellent α-ray resistance.

〔従来の技術〕[Conventional technology]

従来のバイポーラ形半導体装置は、たとえば特開昭56
−001556、および、第2図に示されているように
、単結晶凸型領域の側壁に広い面積の開孔部を設けて、
多結晶Siを接続することにより、ベース電極を取り出
していた。また、素子間の分離は、基板と埋込み層間の
PN接合により分離を用いて行なっていた。
Conventional bipolar semiconductor devices are known, for example, from Japanese Patent Application Laid-open No. 56
-001556, and as shown in FIG.
The base electrode was taken out by connecting polycrystalline Si. Further, isolation between elements has been achieved using a PN junction between the substrate and the buried layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、単結晶凸型領域と多結晶Si膜との
接続部の幅がばらつき、トランンジスタ特性が安定しな
い、といった欠点があった。また、埋込み層の抵抗を一
定値以下に抑えるために、PN接合分離方式では、これ
以上、素子間距離を縮めることは、不可能であった。
The above-mentioned conventional technology has the disadvantage that the width of the connecting portion between the single crystal convex region and the polycrystalline Si film varies, and the transistor characteristics are unstable. Further, in order to suppress the resistance of the buried layer below a certain value, it has been impossible to further reduce the distance between elements using the PN junction isolation method.

本発明の目的は、上記従来技術の欠点を除去し、ベース
コンタクト幅のばらつきを低減可能な自己整合型高性能
、高集積耐α線強化バイポーラ素子構造を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a self-aligned, high-performance, highly integrated α-ray-resistant bipolar device structure that can eliminate the drawbacks of the prior art and reduce variations in base contact width.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、単結晶凸型領域の上部に、一定幅の微細開
孔部を設け、この開孔部から多結晶Siを用いてベース
電極を取り出すことにより達成できる。また、能動領域
の周囲に微細な断面U字形の溝を形成することにより、
素子の高集積化が達成できる。
The above object can be achieved by providing a fine opening with a constant width in the upper part of the single crystal convex region and taking out the base electrode from the opening using polycrystalline Si. In addition, by forming a fine groove with a U-shaped cross section around the active area,
High integration of elements can be achieved.

〔作用〕[Effect]

単結晶凸型領域と多結晶Siとの接続部の幅は、上記凸
型領域の側壁に設けられた酸化膜のウェットエツチング
により決まるため、精密制御が困難である。従って、上
記接続部をドライエツチング技術を用いて形成すること
により、均一性、制御性を向上させることができる。
The width of the connection between the single crystal convex region and the polycrystalline Si is determined by wet etching of the oxide film provided on the side wall of the convex region, and therefore precise control is difficult. Therefore, by forming the connection portion using dry etching technology, uniformity and controllability can be improved.

また、能動領域の周囲に埋込み層をつらぬく微細な断面
U形の溝を形成することにより、素子間分離距離を低減
し、集積度を向上できる。さらに、埋込み層の横方内拡
がりを考慮する必要がなくなるので、埋込み層の低抵抗
化が可能である。
Furthermore, by forming a fine groove with a U-shaped cross section through the buried layer around the active region, the separation distance between elements can be reduced and the degree of integration can be improved. Furthermore, since there is no need to consider the lateral inward expansion of the buried layer, it is possible to reduce the resistance of the buried layer.

〔実施例〕〔Example〕

以下、本発明をベースコンタクト部の形成方法(第3図
〜第8図、第9図〜第13図)と、微細U溝の形成方法
(第14図〜第16図)とに分けて説明する。第1図は
、完成したバイポーラ型トランジスタの断面図であり、
また、第2図は、従来のトランジスタ構造の断面図であ
る。
Hereinafter, the present invention will be explained separately into a method for forming a base contact portion (FIGS. 3 to 8, FIGS. 9 to 13) and a method for forming a fine U-groove (FIGS. 14 to 16). do. FIG. 1 is a cross-sectional view of the completed bipolar transistor.
Further, FIG. 2 is a cross-sectional view of a conventional transistor structure.

始めに、ベースコンタクト部の形成方法を示す。First, a method for forming the base contact portion will be described.

p−型シリコン基板1の表面を酸化して、酸化膜17を
設け、さらに、気相成長法(CVD法)を用いて窒化シ
リコン18と酸化膜19を堆積する。
The surface of p-type silicon substrate 1 is oxidized to form oxide film 17, and silicon nitride 18 and oxide film 19 are further deposited using vapor phase growth (CVD).

この後、通常の選択ドライエツチング技術を用いて、所
望の領域にシリコン基板1を露出させる(第3図)。次
に、異方性エツチング技術を用いて上記シリコン基板1
を削り、この表面に熱酸化膜20を設ける(第4図)。
Thereafter, a desired region of the silicon substrate 1 is exposed using a conventional selective dry etching technique (FIG. 3). Next, the silicon substrate 1 is etched using anisotropic etching technology.
A thermal oxide film 20 is provided on this surface (FIG. 4).

引き続き、CVD技術を用いて、窒化シリコン21を堆
積し、異方性エツチング技術により、側壁にのみ窒化シ
リコン21を残す。この後、さらに、周知のウェットエ
ツチング技術により窒化シリコン21とその下にある部
分の5iOz膜20をマスクに用いてシリコン1の表面
を等方的にエツチングする(第5図)。
Subsequently, silicon nitride 21 is deposited using CVD technology, and silicon nitride 21 is left only on the side walls using anisotropic etching technology. Thereafter, the surface of the silicon 1 is isotropically etched using the silicon nitride 21 and the underlying 5iOz film 20 as a mask by a well-known wet etching technique (FIG. 5).

次に、露出された部分のSi基板1の酸化を行ない、酸
化膜22を設け、側壁上の窒化シリコン膜21を除去す
る(第6図)。この後、ベース開孔部の酸化膜20を除
去し、窒化シリコン膜18をサイドエツチングしてひさ
し構造を形成した後、多結晶8i23を堆積し、周知の
平坦化技術を用いて、第7図に示すように多結晶Si2
3を埋め込む。最後に、エミッタ、ベース領域を形成し
Next, the exposed portion of the Si substrate 1 is oxidized to form an oxide film 22, and the silicon nitride film 21 on the sidewalls is removed (FIG. 6). Thereafter, the oxide film 20 in the base opening is removed, and the silicon nitride film 18 is side-etched to form an eaves structure, and then polycrystalline 8i 23 is deposited and using a well-known planarization technique, as shown in FIG. As shown in polycrystalline Si2
Embed 3. Finally, form the emitter and base regions.

第8図に示すような上記多結晶Si膜8をベース取出電
極とするベース電極構造を実現できる。
A base electrode structure using the polycrystalline Si film 8 as a base lead electrode as shown in FIG. 8 can be realized.

次に、第9図〜第13図を用いて、ベースコンタクト部
形成方法の他の実施例を示す。本例では、第3図に引き
続き、露出したシリコン基板をウェットエツチング技術
によってエッチし、上記表面を酸化して、酸化膜20を
設ける(第9図)。次に、窒化シリコン21を堆積して
サイドスペーサr、1= を残し、ウェットエツチングにより等方的にシリコン基
板を削る(第10図)。この後、酸化膜22を設け、上
記側壁窒化シリコン21を除去する(第11図)。さら
に、ベース開孔部の酸化膜20を除去し、窒化シリコン
18をサイドエツチング後、多結晶Si23を平坦に埋
め込む(第12図)。この後、エミッタ、ベース領域を
形成することにより、第13図に示すようなベース電極
構造を実現できる。
Next, another example of a method for forming a base contact portion will be described using FIGS. 9 to 13. In this example, following FIG. 3, the exposed silicon substrate is etched by a wet etching technique, and the surface is oxidized to form an oxide film 20 (FIG. 9). Next, silicon nitride 21 is deposited, side spacers r,1= are left, and the silicon substrate is isotropically etched by wet etching (FIG. 10). Thereafter, an oxide film 22 is provided, and the sidewall silicon nitride 21 is removed (FIG. 11). Further, the oxide film 20 in the base opening is removed, the silicon nitride 18 is side-etched, and then polycrystalline Si 23 is flattened (FIG. 12). Thereafter, by forming an emitter and a base region, a base electrode structure as shown in FIG. 13 can be realized.

次に、微細U溝の形成方法を説明する。始めに、シリコ
ン基板1の表面を酸化して、酸化膜25を設け、CVD
技術を用いて窒化シリコン26を堆積する。この後、通
常のホト、ドライエツチング技術を用いて、シリコン基
板に微細なU溝を形成する(第14図)。この後、熱酸
化を行ない、酸化膜25を上記の溝内部に設ける。さら
に、多結晶5i27を堆積し、第15図に示すように、
上記微細U溝内部を平坦に埋め込む。尚、この材料とし
ては、他の絶縁物、例えば、酸化膜等でも、もちろん可
能である。次に、上記多結晶Si表面を酸化し、酸化膜
28を設け、窒化シリコン26を除去後、第16図に示
すような素子分離溝構造を実現できる。そして、上記で
説明したベースコンタクト部の形成方法と微細UNの形
成方法を組み合わせることにより、第1図に示すバイポ
ーラ型トランジスタ構造を実現可能である。
Next, a method for forming the fine U-groove will be explained. First, the surface of the silicon substrate 1 is oxidized to form an oxide film 25, and then CVD
Deposit silicon nitride 26 using a technique. Thereafter, a fine U-groove is formed in the silicon substrate using conventional photo-etching and dry etching techniques (FIG. 14). Thereafter, thermal oxidation is performed to form an oxide film 25 inside the trench. Furthermore, polycrystalline 5i27 is deposited, as shown in FIG.
Fill the inside of the fine U-groove flatly. Of course, other insulators such as oxide films can be used as this material. Next, the surface of the polycrystalline Si is oxidized to form an oxide film 28, and after removing the silicon nitride 26, an element isolation groove structure as shown in FIG. 16 can be realized. The bipolar transistor structure shown in FIG. 1 can be realized by combining the method for forming the base contact portion and the method for forming the fine UN described above.

〔発明の効果〕〔Effect of the invention〕

本発明によるバイポーラ型トランジスタでは、ベース取
り出し部の多結晶シリコンと単結晶シリコンとのコンタ
クト幅を微細に精度良く制御でき、さらに、微細U溝に
より素子間分離を行なうために、従来法を用いたトラン
ジスタに比べて、電流増幅率や立上り電圧(VBE)の
ばらつきが約1/2に減少し、また、集積度が約2倍以
上向」ニした。
In the bipolar transistor according to the present invention, the contact width between polycrystalline silicon and single crystal silicon in the base extraction part can be controlled finely and precisely, and furthermore, in order to perform isolation between elements using a fine U-groove, conventional methods can be used. Compared to transistors, the variation in current amplification factor and rise voltage (VBE) has been reduced to about 1/2, and the degree of integration has been increased by more than twice.

このため、回路の動作速度が向上し、例えば、ECL回
路の遅延速度として、約4. Q p s /グー1−
以下の値が得られた。
Therefore, the operating speed of the circuit is improved, and for example, the delay speed of the ECL circuit is approximately 4. Q ps / goo 1-
The following values were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
のバイポーラトランジスタの構造を示す断面図である。 また、第3図〜第8図、第9図〜第13図、第14図〜
第16図は、本発明の主要部分の製造方法を説明する図
である。 1・・・P−型シリコン基板、2・・・n生型埋込み層
、3・・・n−型エピタキシャル層、4,17,20゜
22.24,25・・・熱酸化膜(シリコン)、5゜6
.28・・・熱酸化膜(多損晶シリコン)、7゜1B、
21..26・・・窒化シリコン、8・・・p増多結晶
シリコン、9・・・p十型拡散層、10・・・P型拡散
層、11.12・・・n十型拡散層、13・・・n十型
多Ju+シリコン、14・・・エミッタ電極、15・・
・ベース電極、16・・・コレクタ電極、19・・・C
VD酸化膜、23.27・・・多結晶シリコン。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of a conventional bipolar transistor. In addition, Fig. 3 to Fig. 8, Fig. 9 to Fig. 13, Fig. 14 to
FIG. 16 is a diagram illustrating a method for manufacturing the main parts of the present invention. DESCRIPTION OF SYMBOLS 1...P-type silicon substrate, 2...N-type buried layer, 3...N-type epitaxial layer, 4,17,20°22.24,25...Thermal oxide film (silicon) ,5゜6
.. 28...Thermal oxide film (poly-loss crystal silicon), 7°1B,
21. .. 26...Silicon nitride, 8...P multiplied crystalline silicon, 9...P ten type diffusion layer, 10...P type diffusion layer, 11.12...n ten type diffusion layer, 13. ...n-type multi-Ju+ silicon, 14...emitter electrode, 15...
・Base electrode, 16...Collector electrode, 19...C
VD oxide film, 23.27... polycrystalline silicon.

Claims (1)

【特許請求の範囲】 1、第1導電形を有する単結晶基体に設けられた凸部と
、該凸部の側面内に設けられた第2導電形を有する低抵
抗領域と、上記凸部の側面と接し上記半導体基体の主表
面上へ延伸する絶縁膜と、上記凸部の上記側面の上部に
おいて、上記低抵抗領域と上記低抵抗領域の面積よりも
小さな面積で接し、上記絶縁膜の表面上に延伸する第2
導電形多結晶シリコン膜を少なくとも有することを特徴
とする半導体集積回路。 2、上記半導体基体に設けられた溝と、該溝の表面を覆
つて形成された絶縁膜と、該溝を充填する多結晶シリコ
ンを有する素子分離領域をさらにそなえた特許請求の範
囲第1項記載の半導体集積回路。
[Claims] 1. A convex portion provided on a single crystal substrate having a first conductivity type, a low resistance region having a second conductivity type provided within a side surface of the convex portion, and An insulating film that is in contact with a side surface and extends onto the main surface of the semiconductor substrate is in contact with the low resistance region at an upper part of the side surface of the convex portion in an area smaller than the area of the low resistance region, and the surface of the insulating film Stretching the second
A semiconductor integrated circuit comprising at least a conductive polycrystalline silicon film. 2. Claim 1 further comprising a groove provided in the semiconductor substrate, an insulating film formed to cover the surface of the groove, and an element isolation region having polycrystalline silicon filling the groove. The semiconductor integrated circuit described.
JP9974087A 1987-04-24 1987-04-24 Semiconductor integrated circuit Pending JPS63266877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9974087A JPS63266877A (en) 1987-04-24 1987-04-24 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9974087A JPS63266877A (en) 1987-04-24 1987-04-24 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63266877A true JPS63266877A (en) 1988-11-02

Family

ID=14255413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9974087A Pending JPS63266877A (en) 1987-04-24 1987-04-24 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63266877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329699B2 (en) 1996-10-21 2001-12-11 Nec Corporation Bipolar transistor with trenched-groove isolation regions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329699B2 (en) 1996-10-21 2001-12-11 Nec Corporation Bipolar transistor with trenched-groove isolation regions

Similar Documents

Publication Publication Date Title
JP2606141B2 (en) Semiconductor device and manufacturing method thereof
JP2629644B2 (en) Method for manufacturing semiconductor device
JP2654607B2 (en) Method for manufacturing semiconductor device
JPH098053A (en) Semiconductor device and manufacture thereof
JPH06163563A (en) Semiconductor device
JP3107806B2 (en) Method for manufacturing semiconductor device
JP3142336B2 (en) Semiconductor device and manufacturing method thereof
JPS63266877A (en) Semiconductor integrated circuit
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JPH07235547A (en) Manufacture of semiconductor integrated circuit
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
KR940010915B1 (en) Manufacturing method of homo-,hetero-bipolar transistor
JP2690740B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPH05121535A (en) Diffusion method for impurity and dielectric isolation method of wafer
JPH04241422A (en) Semiconductor integrated circuit device
JP2524079B2 (en) Upward structure type bipolar transistor and manufacturing method thereof
JP2765864B2 (en) Method for manufacturing semiconductor device
JPH04137733A (en) Bipolar transistor and manufacture thereof
JP2002208597A (en) Bipolar transistor and manufacturing method thereof
JPH11289082A (en) Semiconductor device and its manufacture
JPH04348037A (en) Semiconductor device and its manufacture
JPH01149463A (en) Semiconductor device
JPH10261647A (en) Bipolar semiconductor device and manufacture therefor
JPH10125691A (en) Manufacture of semiconductor device