JPS63266705A - Manufacture of ferroelectric thin film element - Google Patents

Manufacture of ferroelectric thin film element

Info

Publication number
JPS63266705A
JPS63266705A JP10225787A JP10225787A JPS63266705A JP S63266705 A JPS63266705 A JP S63266705A JP 10225787 A JP10225787 A JP 10225787A JP 10225787 A JP10225787 A JP 10225787A JP S63266705 A JPS63266705 A JP S63266705A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
substrate
ferroelectric
film element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10225787A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tomita
富田 佳宏
Ryoichi Takayama
良一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10225787A priority Critical patent/JPS63266705A/en
Publication of JPS63266705A publication Critical patent/JPS63266705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To make a polarization process needless by keeping a substrate's potential positive to a wall of an evaporation room to perform film formation when a ferroelectric thin film with prescribed compositions is manufactured by a sputtering evaporation method. CONSTITUTION:A ferroelectric thin film is made of a material which is expressed in a chemical formula PbxLayZrwTizO3 and has either of the following compositions:a) o.7<=x<=1, 0.9<=x+y<=1, 0.95<=z<=1, w=0, b) x=1, y=0, 0.45<=z<1, Z+w=1, c) 0.83<=x<=1, x+y=1, 0.5<=z<1, 0.96<=z+w<=1. When this ferroelectric thin film is manufactured on a conductive substrate by a sputtering evaporation method, a substrate's potential to a wall of an evaporation room is kept 30V or more to perform film formation. Even if the substrate is conductive, a ferroelectric thin film, in which Ps has already been naturally polarized, is obtained accordingly and so a polarization process can be made needless.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線検出素子、圧電素子、電気光学素
子に用いられる強誘電体薄膜素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a ferroelectric thin film element used in a pyroelectric infrared detection element, a piezoelectric element, and an electro-optical element.

従来の技術 強誘電体のエレクトロニクス分野における応用は、赤外
線検出素子、圧電素子、光変調素子、メモリー素子等さ
まざまなものがある。近年の半導体技術の進歩による電
子部品の小型化に伴い、強誘電体素子も薄膜化が進みつ
つある。
BACKGROUND ART There are various applications of ferroelectric materials in the electronics field, such as infrared detection elements, piezoelectric elements, light modulation elements, and memory elements. With the miniaturization of electronic components due to recent advances in semiconductor technology, ferroelectric elements are also becoming thinner.

ところで、強誘電体の自発分極Psの変化を出力として
取り出す、例えば焦電型赤外線検出素子や圧電素子等で
は、強誘電体材料のPsが一方向に揃っているとき最も
大きい出力が得られる。
By the way, in, for example, a pyroelectric infrared detection element or a piezoelectric element that extracts a change in the spontaneous polarization Ps of a ferroelectric material as an output, the largest output can be obtained when the Ps of the ferroelectric material is aligned in one direction.

発明が解決しようとする問題点 現在、赤外線検出素子や圧電素子等に用いられている強
誘電体磁器は多結晶体であり、結晶軸の配列に方向性は
無い。従って自発分極Psも、でたらめに配列している
。エピタキシャル強誘電体薄膜、配向性強誘電体薄膜は
結晶の分極軸は揃っているが、電気的な自発分極Psは
180°ドメインを作り交互に配列している。そこで、
これら材料を上述のようなエレクトロニクス素子として
用いる場合、材料に高電界(〜100kV/cw )を
印加してPsの方向を揃える分極処理が必要である。
Problems to be Solved by the Invention Ferroelectric ceramics currently used for infrared detection elements, piezoelectric elements, etc. are polycrystalline bodies, and the arrangement of crystal axes has no directionality. Therefore, the spontaneous polarizations Ps are also arranged randomly. Although the crystal polarization axes of epitaxial ferroelectric thin films and oriented ferroelectric thin films are aligned, electrical spontaneous polarization Ps forms 180° domains and is arranged alternately. Therefore,
When these materials are used as electronic devices as described above, it is necessary to apply a high electric field (~100 kV/cw) to the materials to perform polarization treatment to align the directions of Ps.

また、P b T i O3やPLZT等の薄膜の作製
に関しては多くの報告があるが、それらの強誘電相の領
域の薄膜について、その分極軸であるC軸に配向した薄
膜、自発分極までも一方向に配列した薄膜の製造方法に
ついては全(解明されていない。
In addition, there are many reports on the production of thin films such as P b Ti O3 and PLZT, but for thin films in the ferroelectric phase region, thin films oriented along the C axis, which is the polarization axis, and even spontaneous polarization have been reported. The method for producing thin films aligned in one direction is not entirely clear.

強誘電体材料に高電界を印加してPsを揃える方法では
次のような問題が生じる。
The following problem occurs with the method of aligning Ps by applying a high electric field to a ferroelectric material.

(1)  分極処理により絶縁破壊が生ずる場合があり
、歩留まりが下がる。
(1) Polarization treatment may cause dielectric breakdown, reducing yield.

■ 高分解能アレイ素子のように多くの微小素子が高密
度に配列しているものでは、それらを均一に分極するこ
とが困難である。
■ In devices such as high-resolution array devices in which many microelements are arranged at high density, it is difficult to polarize them uniformly.

(3)半導体デバイス上に強誘電体薄膜を形成した集積
化デバイスでは、分極処理そのものが不可能な場合があ
る。
(3) In an integrated device in which a ferroelectric thin film is formed on a semiconductor device, polarization itself may not be possible in some cases.

また、PbTiOs系薄膜をスパッタリング蒸着により
成膜する場合、基板が導電性であると結晶性が悪(なり
、C軸への配向も悪くなる。これは自発分極が揃わなく
なることを意味し、分極処理を行わな(ではならなくな
る。
In addition, when forming a PbTiOs thin film by sputtering deposition, if the substrate is conductive, the crystallinity will be poor (and the orientation to the C axis will be poor. This means that the spontaneous polarization will not be aligned, and the polarization No more processing.

問題点を解決するための手段 化学式がPbxLaZrwTi203で表され、a) 
0.7≦×≦L0.9≦x+y≦1,0.95≦Z≦L
w=0b) x=1、 y−0,0,45≦z < l
 、 z+w−1、又はc)0.83≦x≦Lx+y−
10,5≦zくLo、96≦z+w≦1のいずれかの組
成のを有する強誘電体薄膜をスパッタリング蒸着により
作製するに際して、蒸着室の壁に対して基板を正の電位
に保ちながら前記強誘電体薄膜を成膜する。
Means for solving the problem The chemical formula is expressed as PbxLaZrwTi203, a)
0.7≦×≦L0.9≦x+y≦1, 0.95≦Z≦L
w=0b) x=1, y-0,0,45≦z<l
, z+w-1, or c) 0.83≦x≦Lx+y-
When producing a ferroelectric thin film having a composition of either 10,5≦zLo, 96≦z+w≦1 by sputtering deposition, the substrate is kept at a positive potential with respect to the wall of the deposition chamber. Deposit a dielectric thin film.

作用 上記のような製造方法によれば、基板が導電性であって
もPsがすでに揃って自然分極した強誘電体薄膜が得ら
れ、分極処理を行う必要が無(、歩留まり良(、高性能
の強誘電体薄膜素子が実現できる。
Effects According to the above manufacturing method, even if the substrate is conductive, a ferroelectric thin film with Ps already aligned and naturally polarized can be obtained, and there is no need for polarization treatment (, good yield (, high performance). ferroelectric thin film devices can be realized.

実施例 (100)でへき開し鏡面研摩したMgO単結晶上に膜
厚0.2μIの白金薄膜をスパッタリング蒸着により形
成し、これを基板とした。この上に強誘電体薄膜Pb、
9La。、、Tio、、7503(PLT)を2um成
膜した。方法は高周波マグネトロンスパッタリング法で
、スパッタリングターゲットは0.8 Pb  La 
 Ti    O+0.2 PbO0,9G、1   
 0.975   3の粉末である。表1に成膜条件を
示す。
A platinum thin film having a thickness of 0.2 μI was formed by sputtering vapor deposition on the MgO single crystal that had been cleaved and mirror-polished in Example (100), and this was used as a substrate. On top of this, a ferroelectric thin film Pb,
9La. ,,Tio,,7503 (PLT) was deposited to a thickness of 2 um. The method is high-frequency magnetron sputtering, and the sputtering target is 0.8 Pb La.
TiO+0.2 PbO0.9G, 1
0.975 3 powder. Table 1 shows the film forming conditions.

(以下余白) 表   1 次いでこの強誘電体薄膜上に、上部電極としてNiCr
電極を蒸着し、強誘電体薄膜素子とした。
(Left below) Table 1 Next, NiCr was applied as an upper electrode on this ferroelectric thin film.
Electrodes were deposited to form a ferroelectric thin film element.

さらに、強誘電体薄膜の下部における基板には開口部を
設けた。
Furthermore, an opening was provided in the substrate below the ferroelectric thin film.

第1図に代表的な薄膜のX線回折パターンを示す。ペロ
ブスカイト構造の(001)と(100)反射、および
その高次の反射のみ観測される。また(001)反射の
強度が(100)反射の強度に比べて著しく太き(、c
軸配向薄膜であることがわがる。C軸配向率αを次の式
で定義する。
Figure 1 shows the X-ray diffraction pattern of a typical thin film. Only the (001) and (100) reflections of the perovskite structure and their higher-order reflections are observed. Also, the intensity of the (001) reflection is significantly thicker than the intensity of the (100) reflection (,c
It can be seen that it is an axially oriented thin film. The C-axis orientation rate α is defined by the following equation.

α= 1(00+)/ l I(001)+ 1<+o
o+)ここで1(oo+)と1(+001は、それぞれ
(001)と< 100 >反射の回折強度を表す。
α= 1(00+)/l I(001)+ 1<+o
o+) where 1(oo+) and 1(+001 represent the diffraction intensities of (001) and <100> reflections, respectively.

強誘電体薄膜を成膜するさいに蒸着室をアースとして、
基板ホルダーに電圧をかけ下部電極にも電圧がかかるよ
うにした。この結果、基板にかける電圧により1(00
11およびC軸配向率が変化することが明確になった。
When depositing a ferroelectric thin film, the deposition chamber is grounded.
A voltage was applied to the substrate holder so that voltage was also applied to the lower electrode. As a result, the voltage applied to the substrate is 1(00
It became clear that the 11 and C axis orientation rates changed.

基板にかけたバイアス電圧に対するI (00口とC軸
配向率との変化を、それぞれ第2図と第3図に示す。基
板がアースされている状態(Ov)では鋭いX線ピーク
は現れず、C軸配向率を見積もることが不可能であった
。バイアスとして正の電圧をかけていくと1(00+)
が増加し、結晶性が良(なって行(のがわかる。C軸配
向率においても、バイアス電圧を太き(していくにつれ
て太き(なっていることがわかる。
Figures 2 and 3 show the changes in I (00) and C-axis orientation ratios with respect to the bias voltage applied to the substrate, respectively.When the substrate is grounded (Ov), no sharp X-ray peaks appear; It was impossible to estimate the C-axis orientation rate.When a positive voltage was applied as a bias, it became 1 (00+).
It can be seen that the crystallinity increases and the crystallinity becomes good.It can be seen that the C-axis orientation rate also becomes thicker as the bias voltage is increased.

アースされている状態では、プラズマ中のアルゴンイオ
ン等が基板へ衝突し強誘電一体薄膜の結晶成長を妨げて
いる。そこで、基板を正電位としてイオン衝撃をな(し
、結晶成長への妨害をなくしてやることによってC軸配
向率が向上する。
In a grounded state, argon ions and the like in the plasma collide with the substrate, hindering crystal growth of the ferroelectric integrated thin film. Therefore, by setting the substrate at a positive potential and performing ion bombardment, the C-axis orientation rate can be improved by eliminating interference with crystal growth.

第4図にC軸配向率αに対するPLT薄膜の焦電係数:
γの変化、第5図に誘電率:εの変化を示す。焦電係数
は自発分極Psの配向に比例して大きくなる。焦電係数
は配向率の増加とともに大きくなり、誘電率は小さくな
る。第4図および第5図は分極処理(200℃テ100
kV/cm 10分印加)、 ヲ行った場合の結果につ
いても示しである。配向率が小さい場合、分極処理前後
で焦電係数および誘電率の値は太き(変化する。一方、
配向率が75%になると焦電係数は5.0×10−” 
C/cjKとなり、この値は分極処理(200℃で10
0kV/cm印加)を行ったPbTiO3セラミック(
r =1.8xlO−eC/cJK)と比べてかなり大
きい。さらに、配向率90%の場合焦電係数は6.8×
10−8 C/cdKである。この値は分極処理後の値
と変わらないばかりでなく、配向率が小さい場合の分極
処理後の値より大きい。誘電率は、配向率90%の場合
、セラミックとほぼ同等の値で約200である。
Figure 4 shows the pyroelectric coefficient of the PLT thin film with respect to the C-axis orientation rate α:
Changes in γ and changes in dielectric constant: ε are shown in FIG. The pyroelectric coefficient increases in proportion to the orientation of the spontaneous polarization Ps. The pyroelectric coefficient increases as the orientation rate increases, and the dielectric constant decreases. Figures 4 and 5 show polarization treatment (200°C, 100°C).
(kV/cm applied for 10 minutes), the results are also shown. When the orientation rate is small, the values of the pyroelectric coefficient and permittivity become thick (change) before and after polarization treatment.
When the orientation rate is 75%, the pyroelectric coefficient is 5.0×10-”
C/cjK, and this value is changed by polarization treatment (10
PbTiO3 ceramic (0 kV/cm applied)
r = 1.8xlO-eC/cJK). Furthermore, when the orientation rate is 90%, the pyroelectric coefficient is 6.8×
10-8 C/cdK. This value is not only the same as the value after polarization treatment, but also larger than the value after polarization treatment when the orientation rate is small. When the orientation rate is 90%, the dielectric constant is approximately 200, which is approximately the same value as ceramic.

以上述べたとおり、PLTM膜では成膜時に十分にC軸
配向しておれば分極処理を行わな(でも自発分極が揃っ
ており、特に配向率75%以上の薄膜でその効果が大き
いことが明らかになった。
As mentioned above, in a PLTM film, if the C-axis is sufficiently oriented during film formation, polarization treatment is not necessary (although the spontaneous polarization is uniform, and it is clear that this effect is especially large for thin films with an orientation rate of 75% or more). Became.

本実施例で作製した強誘電体薄膜素子を赤外線センサと
して利用する場合、焦電材料としての性能指数である[
焦電係数/誘電率]の値は大きなものとなる。P b 
T i Osセラミックに比べて3倍強の値を示す。つ
まり、本発明による強誘電体薄膜を用いると、全(分極
処理を行わな(でも優れた特性の赤外線センサが作製さ
れることがわかる。また、第3図によれば、例えばバイ
アス電圧が+50VのときC軸配向率が70%で分極処
理を行わなくてもセラミックに比べて高い性能指数を示
す焦電材料が得られる。
When the ferroelectric thin film element produced in this example is used as an infrared sensor, the figure of merit as a pyroelectric material is [
The value of [pyroelectric coefficient/permittivity] becomes large. Pb
The value is more than three times that of TiOs ceramic. In other words, it can be seen that by using the ferroelectric thin film according to the present invention, an infrared sensor with excellent characteristics can be fabricated even without polarization treatment. Also, according to FIG. When the C-axis orientation rate is 70%, a pyroelectric material exhibiting a higher figure of merit than ceramic can be obtained even without polarization treatment.

上記の例でもわかるように本発明の強誘電体薄膜を用い
た素子では分極処理を行わな(でも大きな出力が取り出
せる。これは赤外線センサばかりでな(圧電素子、光ス
ィッチなど電気光学素子等においても同様である。
As can be seen from the above example, the device using the ferroelectric thin film of the present invention can produce a large output even without polarization processing. The same is true.

実施例は代表的なPLT薄膜を用いた強誘電体薄膜素子
についてのものであるが、化学式がPbxLa、Zr二
Ti20.で表され、a)0.7≦x≦1,0.9≦)
(+y≦110.95≦2≦l 1w−0b) x”l
 s y−0,0,45≦z<l 1z”w−1c) 
0.83≦x≦Lx+y=1、o、 5≦z<110.
96≦2十−≦1のいずれかの組成を有する強誘電体薄
膜においても同様の効果が得られる。
The example is about a ferroelectric thin film element using a typical PLT thin film, but the chemical formula is PbxLa, Zr2Ti20. a) 0.7≦x≦1, 0.9≦)
(+y≦110.95≦2≦l 1w-0b) x”l
s y-0,0,45≦z<l 1z"w-1c)
0.83≦x≦Lx+y=1, o, 5≦z<110.
A similar effect can be obtained with a ferroelectric thin film having a composition of 96≦20-≦1.

発明の効果 本発明の製造方法によって作製した強誘電体薄膜素子は
、分極処理が不要であり、また特性も優れていて、作製
も容易であるため、実用的にきわめて有効である。
Effects of the Invention The ferroelectric thin film element produced by the production method of the present invention does not require polarization treatment, has excellent characteristics, and is easy to produce, so it is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発明の一実施例における強誘電体薄膜のX線回
折パターンを示す図、第2図および第3図は本発明の一
実施例における強誘電体薄膜のC軸配向率および(00
1)強度とバイアス電圧との関係を示す図、第4図およ
び第5図はC軸配向率に対する焦電係数および誘電率の
関係を示す図である。 代理人の氏名 弁理士 中尾敏男 ばか1名第1図 ze 第2図 バイアス電圧 (VJ 第3図 Og)     100 バイアヌ電圧 (VJ 第4図 C袖配向牟:メ
FIG. 1 is a diagram showing the X-ray diffraction pattern of a ferroelectric thin film in an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing the C-axis orientation ratio and (00
1) A diagram showing the relationship between intensity and bias voltage. FIGS. 4 and 5 are diagrams showing the relationship between the pyroelectric coefficient and the dielectric constant with respect to the C-axis orientation rate. Name of agent Patent attorney Toshio Nakao One idiot Figure 1 ze Figure 2 Bias voltage (VJ Figure 3 Og) 100 Byanu voltage (VJ Figure 4 C sleeve orientation: Me

Claims (3)

【特許請求の範囲】[Claims] (1)化学式が Pb_xLa_yZr_wTi_zO
_3で表され、a)0.7≦x≦1、0.9≦x+y≦
1、0.95≦z≦1、w=0b)x=1、y=0、0
.45≦z<1、z+w=1、又はc)0.83≦x≦
1、x+y=1、0.5≦z<1、0.96≦z+w≦
1のいずれかの組成を有する強誘電体薄膜を導電性の基
板上にスパッタリング蒸着により作製するに際して、蒸
着室の壁に対して基板を正の電位に保ちながら前記強誘
電体薄膜を成膜することを特徴とする強誘電体薄膜素子
の製造方法。
(1) The chemical formula is Pb_xLa_yZr_wTi_zO
Represented by _3, a) 0.7≦x≦1, 0.9≦x+y≦
1, 0.95≦z≦1, w=0b) x=1, y=0, 0
.. 45≦z<1, z+w=1, or c) 0.83≦x≦
1, x+y=1, 0.5≦z<1, 0.96≦z+w≦
When producing a ferroelectric thin film having one of the compositions of 1 on a conductive substrate by sputtering deposition, the ferroelectric thin film is formed while keeping the substrate at a positive potential with respect to the wall of the deposition chamber. A method for manufacturing a ferroelectric thin film element, characterized by:
(2)基板の電位を30V以上に保つことを特徴とする
特許請求の範囲第1項記載の強誘電体薄膜素子の製造方
法。
(2) A method for manufacturing a ferroelectric thin film element according to claim 1, characterized in that the potential of the substrate is maintained at 30 V or higher.
(3)基板として、MgO単結晶の(100)面上に白
金電極を成膜したものを用いることを特徴する特許請求
の範囲第1項記載の強誘電体薄膜素子の製造方法。
(3) A method for manufacturing a ferroelectric thin film element according to claim 1, characterized in that the substrate is a MgO single crystal with a platinum electrode formed on the (100) plane.
JP10225787A 1987-04-24 1987-04-24 Manufacture of ferroelectric thin film element Pending JPS63266705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10225787A JPS63266705A (en) 1987-04-24 1987-04-24 Manufacture of ferroelectric thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10225787A JPS63266705A (en) 1987-04-24 1987-04-24 Manufacture of ferroelectric thin film element

Publications (1)

Publication Number Publication Date
JPS63266705A true JPS63266705A (en) 1988-11-02

Family

ID=14322538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10225787A Pending JPS63266705A (en) 1987-04-24 1987-04-24 Manufacture of ferroelectric thin film element

Country Status (1)

Country Link
JP (1) JPS63266705A (en)

Similar Documents

Publication Publication Date Title
US5308462A (en) Process for producing a ferroelectric film device
Zhang et al. Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films
JPH08186182A (en) Ferroelectric thin-film element
JPS63266705A (en) Manufacture of ferroelectric thin film element
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JP3589354B2 (en) Manufacturing method of dielectric thin film
JP2564526B2 (en) Pyroelectric infrared array element and manufacturing method thereof
JP3124849B2 (en) Method and apparatus for manufacturing dielectric thin film
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
JP2568505B2 (en) Ferroelectric thin film element
KR0162300B1 (en) Method of manufacturing ferroelectric thin film
JP2529438B2 (en) Method of manufacturing oxide thin film
KR950001294B1 (en) Thin layer infrared ray sensor manufacturing method
US20040106014A1 (en) Microwave tunable device having ferroelectric/dielectric BST film
JPH07111107A (en) Manufacture of thin film of ferroelectric substance
Remiens et al. Structural and electrical properties of PbTiO3 thin films grown on silicon substrates
JPH0757535A (en) Manufacture for ferroelectric thin film
JPS62252005A (en) Ferrodielectric thin film device
JPH0749998B2 (en) Pyroelectric infrared array element
KR100219834B1 (en) Manufacturing method of ferroelectric thin film having a preferred orientation
JPH06260018A (en) Ferroelectric thin film element and its manufacture
JPS63171870A (en) Formation of thin bismuth titanate film
JPS6369104A (en) Manufacture of ferrodielectric thin film element
JPH04333559A (en) Production of thin dielectric film
JPS626597A (en) Manufacture of piezoelectric element