JPH06260018A - Ferroelectric thin film element and its manufacture - Google Patents

Ferroelectric thin film element and its manufacture

Info

Publication number
JPH06260018A
JPH06260018A JP4350793A JP4350793A JPH06260018A JP H06260018 A JPH06260018 A JP H06260018A JP 4350793 A JP4350793 A JP 4350793A JP 4350793 A JP4350793 A JP 4350793A JP H06260018 A JPH06260018 A JP H06260018A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
substrate
ferroelectric
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4350793A
Other languages
Japanese (ja)
Inventor
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
佳宏 冨田
Satoru Fujii
覚 藤井
Yuko Okano
祐幸 岡野
Hideo Torii
秀雄 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4350793A priority Critical patent/JPH06260018A/en
Publication of JPH06260018A publication Critical patent/JPH06260018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To manufacture a ferroelectric thin film made of lead titanate, lead zirconate, or barium titanate crystal-oriented on a substrate made of glass, metal, or Si to be used for a pyroelectric infrared sensor, a piezoelectric-applied element, or an electrochemical element. CONSTITUTION:A ferroelectric thin film element is constituted of a substrate 1, a crystalline intermediate layer 2 formed on it, and a crystal-oriented ferroelectric thin film 3. The intermediate layer 2 has the misfit ratio within 15% to the ferroelectric thin film 3, the substrate 1 has the thermal expansion coefficient of 70X10<-7>/ deg.C, and the element has the ferroelectric substance thin film with good crystalline orientation. For example, a NaCl oxide thin film with (100) plane orientation is formed on a substrate by the plasma excited MO-CVD method using organometallic complex vapor as the raw material gas, and a ferroelectric thin film of perovskite type oxide PbTiO with (001) plane orientation is formed on it by sputtering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は焦電型赤外線検出素子、
圧電素子、電気光学素子等に用いられる誘電体薄膜素子
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a pyroelectric infrared detecting element,
The present invention relates to a dielectric thin film element used for a piezoelectric element, an electro-optical element, etc. and a method for manufacturing the same.

【0002】[0002]

【従来の技術】強誘電体とは、物質自身の中に平行また
は反平行に並んだ永久双極子によって生じる自発分極が
電場がなくても存在し、これが外部電場により向きを反
転できるような性質の物質のことである。この性質をう
まく利用して、強誘電体材料は、焦電型赤外線検出素
子、圧電素子、電気光学効果を利用した光変調器、不揮
発性メモリー素子などの様々な電子部品に応用できる。
代表的な強誘電体の材料として、ペロブスカイト結晶構
造の酸化物、例えば、PbTiO3 ,Pb1-xLaxTi
1-x/43(PLT),PbZrxTi1ーx3 (PZ
T),BaTiO3 等が特に有名である。
2. Description of the Related Art Ferroelectric materials have a property that spontaneous polarization caused by permanent dipoles arranged in parallel or antiparallel in the substance itself is present even without an electric field, and it can reverse its direction by an external electric field. The substance of. Utilizing this property well, the ferroelectric material can be applied to various electronic parts such as a pyroelectric infrared detecting element, a piezoelectric element, an optical modulator using the electro-optical effect, and a non-volatile memory element.
As a typical ferroelectric material, an oxide having a perovskite crystal structure, for example, PbTiO 3 , Pb 1-x La x Ti
1-x / 4 O 3 (PLT), PbZr x Ti 1-x O 3 (PZ
T) and BaTiO 3 are especially famous.

【0003】ところで、強誘電体の自発分極Ps の変化
を出力として取り出す応用、例えば焦電型赤外線検出素
子や圧電素子等では、強誘電体材料のPs が一方向に揃
っているときに最も大きい出力が得られる。また、強誘
電体は結晶軸の方向により物性、例えば誘電率や音速な
どが異なるものが多く、特性の大幅向上や新規能デバイ
スの実現のために結晶軸を揃える技術が要望されてい
る。現在、赤外線検出素子や圧電素子に用いられる強誘
電体材料は、そのほとんどが多結晶体の磁器であり、結
晶軸の配列に方向性はなく、自発分極Ps もでたらめに
配列している。
By the way, in applications where changes in the spontaneous polarization P s of a ferroelectric substance are taken out as an output, for example, in a pyroelectric infrared detecting element or a piezoelectric element, when P s of the ferroelectric material is aligned in one direction. The largest output is obtained. In addition, many ferroelectrics have different physical properties, such as dielectric constant and sound velocity, depending on the direction of the crystal axis, and there is a demand for a technique for aligning the crystal axes in order to significantly improve the characteristics and realize a novel device. At present, most of the ferroelectric materials used for infrared detection elements and piezoelectric elements are polycrystalline porcelains, the crystal axes are not directional, and the spontaneous polarizations P s are randomly arranged.

【0004】近年の電子部品の小型化に伴って上記の強
誘電体材料応用の電子部品も小型にすることが要求され
てきており、強誘電体の薄膜化が進みつつある。特に、
エピタキシャル薄膜や配向性薄膜の研究開発が盛んにな
ってきている。
With the recent miniaturization of electronic components, it has been required to miniaturize the electronic components to which the above-mentioned ferroelectric material is applied, and the thinning of the ferroelectric is being advanced. In particular,
Research and development of epitaxial thin films and oriented thin films have become active.

【0005】強誘電体の結晶軸は、作製時に用いる基板
に大きく左右される。例えば、PbTiO3 やPZTは
(100)でへき開したMgO単結晶基板では<001
>方向、サファイアc面では<111>方向に配向する
ことが報告されている(例えば、J.Appl.Phy
s.,Vol.60,P.361(1986))。
The crystal axis of the ferroelectric substance largely depends on the substrate used for manufacturing. For example, PbTiO 3 and PZT are <001 for the MgO single crystal substrate cleaved at (100).
>, And the <111> direction on the c-plane of sapphire (for example, J. Appl. Phy).
s. , Vol. 60, P. 361 (1986)).

【0006】[0006]

【発明が解決しようとする課題】下地基板にMgOやサ
ファイアなどの単結晶を用いるため、強誘電体薄膜素子
構成が、また、それを用いて作られる電子部品素子が高
価になってしまうという問題があった。また、Si基板
上に直接エピタキシャル薄膜や配向薄膜が成長せず、素
子性能を大幅に向上する信号処理デバイスとの一体化を
実現することができない。
Since a single crystal such as MgO or sapphire is used for the underlying substrate, the structure of the ferroelectric thin film element and the electronic component element made using the same become expensive. was there. Further, since the epitaxial thin film and the oriented thin film do not grow directly on the Si substrate, it is not possible to realize integration with the signal processing device which greatly improves the device performance.

【0007】[0007]

【課題を解決するための手段】基板と、その上に形成さ
れた中間層と、さらにその上に形成された強誘電体薄膜
とからなる構成にし、前記基板に室温から前記強誘電体
薄膜の作製時の温度までの熱膨張係数が70×10ー7
℃以上のものを用い、強誘電体薄膜の作製時の温度で前
記中間層と前記強誘電体薄膜との格子定数のミスフィッ
トを15%以内にすることにより、前記強誘電体薄膜を
<001>方向に配向させる。
[Means for Solving the Problems] A substrate, an intermediate layer formed on the substrate, and a ferroelectric thin film formed on the substrate are formed. Coefficient of thermal expansion up to the temperature during production is 70 × 10 -7 /
By using a material having a temperature of at least ℃, the misalignment of the lattice constant between the intermediate layer and the ferroelectric thin film within 15% at the temperature during the production of the ferroelectric thin film, thereby making the ferroelectric thin film <001. Orient in the> direction.

【0008】また、基板と、その上に形成された中間層
と、さらにその上に形成された強誘電体薄膜とからなる
構成にし、前記基板に室温から前記強誘電体薄膜の作製
時の温度までの熱膨張係数が70×10ー7/℃以下のも
のを用い、強誘電体薄膜の作製時の温度で前記中間層と
前記強誘電体薄膜との格子定数のミスフィットを15%
以内にすることにより、前記強誘電体を<100>方向
に配向させる。
The substrate, the intermediate layer formed on the substrate, and the ferroelectric thin film formed on the substrate are formed, and the temperature of the substrate from room temperature to the temperature at the time of manufacturing the ferroelectric thin film is increased. With a coefficient of thermal expansion of 70 × 10 −7 / ° C. or less, the misfit of the lattice constant between the intermediate layer and the ferroelectric thin film is 15% at the temperature during the preparation of the ferroelectric thin film.
Within this range, the ferroelectric substance is oriented in the <100> direction.

【0009】また、製造方法として、基板上に、スパッ
タ法あるいは有機金属錯体の蒸気を原料ガスとするプラ
ズマ励起MOーCVD法によって、(100)面配向の
NaCl型結晶構造の酸化物薄膜を形成し、さらにその
上にスパッタ法あるいはプラズマ励起MOーCVD法に
よって正方晶系のペロブスカイト型強誘電体薄膜を形成
する際、前記基板に異なる熱膨張率のものを用いること
により、<001>方向あるいは<100>方向に配向
した強誘電体薄膜を形成することによって製造する。
As a manufacturing method, an oxide thin film having a (100) -oriented NaCl-type crystal structure is formed on a substrate by a sputtering method or a plasma excited MO-CVD method using a vapor of an organic metal complex as a source gas. When a tetragonal perovskite type ferroelectric thin film is further formed thereon by a sputtering method or a plasma excited MO-CVD method, by using a substrate having a different coefficient of thermal expansion, the <001> direction or It is manufactured by forming a ferroelectric thin film oriented in the <100> direction.

【0010】[0010]

【作用】ペロブスカイト型酸化物であるPbTiO3
どの配向膜は、スパッタ法で作製する場合,基板温度を
約600℃にする必要がある。この作製温度はPbTi
3 のキュリー点(490℃)より高いため、成膜終了
後、立方晶から正方晶に相転移する。したがって、相転
移時の結晶方位は基板の熱膨張率の大きさに依存するこ
とが推測される。前述したように、(100)でへき開
したMgO単結晶上に、PbTiO3 が<001>配向
する。この大きな要因の1つは、MgOの大きな熱膨張
率(〜120×10ー7)と考えられる。冷却過程で、P
bTiO3の<001>軸(熱膨張率:−900×10
-7)は急激に増大し、<100>軸(熱膨張率:380
×10-7)は減少するので、MgO基板の収縮ととも
に、<001>軸が基板に垂直に配列した方が歪のエネ
ルギーが小さくなるからである。本発明者らは、熱膨張
率の異なる基板を選択し、その上に作製した強誘電体薄
膜の配向性が制御できることを見いだした。しかし、エ
ピタキシャル薄膜や配向性薄膜には、作製温度での基板
との格子のミスフィットの小さい下地基板が望ましい。
PbTiO3,PZT,BaTiO3などは、<001>
方位の酸素ー酸素間の距離はおよそ4.0オングストロ
ーム前後の値を示す。例えば、その一つであるPb(Z
1ーxTix)O3 の<001>方位の酸素ー酸素間の距
離はおよそ3.90から4.15オングストロームの間
の値を示し、一方、<100>方位のMgOが4.21
オングストロームである。同じNaCl構造のNiOは
4.19オングストロームであり、また、同じNaCl
構造のCoOが4.26オングストロームであって、と
もにMgOと同様にミスフィットが少なく下地基板とし
て望ましい。
When the alignment film such as PbTiO 3 which is a perovskite type oxide is formed by the sputtering method, the substrate temperature needs to be about 600 ° C. This fabrication temperature is PbTi
Since it is higher than the Curie point of O 3 (490 ° C.), it undergoes a phase transition from a cubic system to a tetragonal system after completion of film formation. Therefore, it is presumed that the crystal orientation at the phase transition depends on the magnitude of the coefficient of thermal expansion of the substrate. As described above, PbTiO 3 is <001> oriented on the MgO single crystal cleaved at (100). One major factor is considered to large thermal expansion coefficient of MgO (to 120 × 10 -7). In the cooling process, P
<001> axis of bTiO 3 (coefficient of thermal expansion: −900 × 10
-7 ) increases rapidly, and the <100> axis (coefficient of thermal expansion: 380
This is because × 10 −7 ) decreases, and strain energy becomes smaller when the <001> axis is arranged perpendicularly to the substrate as the MgO substrate contracts. The present inventors have found that substrates having different coefficients of thermal expansion can be selected and the orientation of the ferroelectric thin film formed thereon can be controlled. However, for the epitaxial thin film and the oriented thin film, a base substrate having a small lattice misfit with the substrate at the manufacturing temperature is desirable.
<001> for PbTiO 3 , PZT, BaTiO 3, etc.
The oxygen-oxygen distance in the azimuth shows a value around 4.0 angstrom. For example, one of them is Pb (Z
The oxygen-oxygen distance in the <001> orientation of r 1 -x Ti x ) O 3 shows a value between approximately 3.90 and 4.15 angstroms, while MgO in the <100> orientation has 4.21.
Angstrom. NiO with the same NaCl structure is 4.19 angstroms and the same NaCl
CoO of the structure is 4.26 angstroms, both of which have less misfit like MgO and are desirable as a base substrate.

【0011】そこで、作製する強誘電体薄膜とのミスフ
ィットの小さい中間層を介して、基板の熱膨張率の大き
さにより結晶性のよい配向性強誘電体薄膜を実現できる
と考え、実験で明確にした。
Therefore, it is considered that an oriented ferroelectric thin film having good crystallinity can be realized by the magnitude of the coefficient of thermal expansion of the substrate through an intermediate layer having a small misfit with the ferroelectric thin film to be produced. Clarified.

【0012】更に、本発明者らは、金属アセチルアセト
ナート等の有機金属錯体を原料ガスに用いたプラズマ励
起MOーCDV法によって、下地基板にかかわらず、容
易に基板に対して垂直方向に<100>軸が配向したN
aCl結晶構造の各種の酸化物薄膜が得られることを見
い出した。この方法を用いると原料ガスにニッケルアセ
チルアセトナートを使用して、いろいろな材料の基板の
上に<100>軸が結晶配向したNiO薄膜を形成でき
る。コバルトアセチルアセチナートを用いると<100
>軸が結晶配向したCoO薄膜が、マグネシウムアセチ
ルアセトナートを用いると<100>軸が結晶配向した
MgO薄膜が形成できる。従来の単結晶MgO基板のか
わりに、これらの薄膜を表面に形成した基板を、上記の
強誘電体薄膜の下地として使用することができる。その
結果、高価なMgOの単結晶を用いないで、同様な性質
の誘電体薄膜構成体を作製できることになる。
Further, the inventors of the present invention can easily perform the vertical direction with respect to the substrate by the plasma-excited MO-CDV method using an organometallic complex such as metal acetylacetonate as a source gas, regardless of the underlying substrate. 100> N with the axis oriented
It has been found that various oxide thin films having an aCl crystal structure can be obtained. Using this method, nickel acetylacetonate can be used as a source gas to form NiO thin films having <100> axis crystallographic orientation on substrates made of various materials. <100 with cobalt acetyl acetylate
A CoO thin film having a <100> crystallographic orientation can be formed, and a magnesium acetylacetonate can be used to form a <100> crystallographically oriented MgO thin film. Instead of the conventional single crystal MgO substrate, a substrate having these thin films formed on its surface can be used as a base of the above ferroelectric thin film. As a result, it is possible to manufacture a dielectric thin film structure having similar properties without using an expensive MgO single crystal.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】(実施例1)本発明の強誘電体薄膜素子の
構成を示す概略断面図を図1に示す。
Example 1 FIG. 1 is a schematic sectional view showing the structure of a ferroelectric thin film element of the present invention.

【0015】基板1として、大きさが20mm×20m
mで厚さ1mmの石英ガラス(熱膨張率:5×1
ー7)、(100)面を切り出したSi基板(熱膨張率:2
5×10ー7)、ガラス基板(コーニング7059, 熱膨張
率:46×10ー7)、ガラス基板(ソーダ石灰, 熱膨張
率:90×10ー7)、ステンレス金属基板(熱膨張率:
180×10ー7)を用いた。その上に<100>軸に結
晶配向したMgO薄膜のNaCl型酸化物中間層2を形
成し、さらに、その上にスパッタ法でPbxLa1ーxTi
1-x/43 なる組成(0≦x≦0.25)の強誘電体薄膜
3を形成した薄膜構成である。
The substrate 1 has a size of 20 mm × 20 m.
m quartz glass with a thickness of 1 mm (coefficient of thermal expansion: 5 x 1
0ー 7), (100) plane cut Si substrate (coefficient of thermal expansion: 2
5 x 10ー 7), Glass substrate (Corning 7059, thermal expansion
Rate: 46 x 10ー 7), Glass substrate (soda lime, thermal expansion
Rate: 90 × 10ー 7), Stainless metal substrate (coefficient of thermal expansion:
180 x 10ー 7) Was used. Bind it to the <100> axis
Formed NaCl-type oxide intermediate layer 2 of MgO thin film with crystal orientation
And then Pb on top of it by sputtering.xLa1-xTi
1-x / 4O3 Ferroelectric thin film of composition (0 ≦ x ≦ 0.25)
3 is a thin film structure in which No. 3 is formed.

【0016】以上のように構成された強誘電体薄膜素子
4の製造方法について、以下に説明する。
A method of manufacturing the ferroelectric thin film element 4 having the above structure will be described below.

【0017】<100>結晶方位に配向したMgO薄膜
のNaCl型酸化物中間層2の形成は、上記のそれぞれ
の基板の表面上に、下記の方法で、図2に示すプラズマ
励起MO−CVD成膜装置を用いて行った。
The formation of the NaCl type oxide intermediate layer 2 of the MgO thin film oriented in the <100> crystal orientation is carried out on the surface of each of the above substrates by the following method by the plasma-enhanced MO-CVD process shown in FIG. It was performed using a membrane device.

【0018】図2に示すプラズマ励起MO−CVD成膜
装置5は、真空チャンバー6内に平行に配置したアース
側電極7とRF側電極8の二つの電極間に高周波によっ
てプラズマを発生させ、その中で有機金属の原料ガスを
分解して基板1上に化学蒸着することで薄膜を形成する
装置である。ここで、この基板1は、アース側電極7に
片側面が密着して保持され、基板加熱ヒータ9によって
あらかじめ400℃に加熱された状態にした。
The plasma-enhanced MO-CVD film forming apparatus 5 shown in FIG. 2 generates plasma by high frequency between two electrodes, a ground side electrode 7 and an RF side electrode 8, which are arranged in parallel in a vacuum chamber 6. It is an apparatus for forming a thin film by decomposing an organic metal source gas therein and performing chemical vapor deposition on the substrate 1. Here, the substrate 1 was held in a state in which one side was in close contact with the earth side electrode 7 and was previously heated to 400 ° C. by the substrate heater 9.

【0019】一方、原料気化容器10にマグネシウムア
セチルアセトナート11を入れ、190℃に保持したオ
イルバス12を用いて加熱した。このように加熱するこ
とによって気化したマグネシウムアセチルアセトナート
の蒸気を、30ml/minの流速のキャリアガス(窒
素)13を用いて、真空チャンバー6内に流し入れた。
また、反応ガスとして酸素ガス14を2ml/minで
流し、これを途中で混ぜて真空チャンバー6内に吹出ノ
ズル15を介して流入した。このとき、真空チャンバー
6内は、その排気口16から真空排気されることで7.
90Paの真空度に保持した。この状態において、RF
側電極8に13.56MHzで400Wの高周波を10
分間印加することによって、アース側電極7との間にプ
ラズマを発生させ、基板1の片側表面上に<100>方
位に結晶配向したMgO薄膜2を厚さ200nm形成し
た。この成膜中、基板1を基板回転モータ17によって
120rpmの速度で回転した。
On the other hand, magnesium acetylacetonate 11 was placed in the raw material vaporization vessel 10 and heated using an oil bath 12 kept at 190 ° C. The vapor of magnesium acetylacetonate vaporized by heating in this manner was introduced into the vacuum chamber 6 using the carrier gas (nitrogen) 13 having a flow rate of 30 ml / min.
Further, oxygen gas 14 as a reaction gas was caused to flow at 2 ml / min, this was mixed in the middle and flowed into the vacuum chamber 6 through the blowout nozzle 15. At this time, the inside of the vacuum chamber 6 is evacuated from the exhaust port 16 to 7.
The vacuum was maintained at 90 Pa. In this state, RF
A high frequency of 400 W at 13.56 MHz is applied to the side electrode 10.
By applying the voltage for a minute, plasma was generated between the ground-side electrode 7 and the MgO thin film 2 crystallized in the <100> orientation on the one-side surface of the substrate 1 to a thickness of 200 nm. During this film formation, the substrate 1 was rotated by the substrate rotation motor 17 at a speed of 120 rpm.

【0020】続いて、その中間層2の上にPbxLa1ーx
Ti1-x/43 なる組成(0≦x≦0.25)の強誘電体
薄膜3を、高周波マグネトロンスパッタ法で形成した。
基板1は、厚さ0.2mmのステンレスマスクを用い、
所望のパターンにして成膜した。ターゲットは、Pb
O.La23,TiO2 の粉末を配合し、750℃で4
時間仮焼したのち粉砕し、Pbの不足を防止するため
に、それぞれに20mol%の過剰のPbO粉末をさら
に混合して作製した。スパッタの成膜条件は、基板温度
が600℃、スパッタガスはAr(90%)と酸素(1
0%)の混合ガスで、ガス圧は0.5Pa、高周波投入
電力は90W(13.56MHz)とした。膜厚は約1
μmであった。
Then, Pb x La 1-x is formed on the intermediate layer 2.
A ferroelectric thin film 3 having a composition of Ti 1-x / 4 O 3 (0 ≦ x ≦ 0.25) was formed by a high frequency magnetron sputtering method.
The substrate 1 uses a 0.2 mm thick stainless mask,
A film was formed into a desired pattern. The target is Pb
O. La 2 O 3 and TiO 2 powders were mixed, and the mixture was mixed at 750 ° C for 4
After being calcined for a period of time, they were pulverized, and in order to prevent a shortage of Pb, an excess of 20 mol% PbO powder was further mixed and produced. The film formation conditions for sputtering are: substrate temperature of 600 ° C .; sputtering gas of Ar (90%) and oxygen (1
(0%) mixed gas, the gas pressure was 0.5 Pa, and the high-frequency input power was 90 W (13.56 MHz). The film thickness is about 1
was μm.

【0021】図3(A)〜(D)に、石英ガラス, Si,
ソーダ石灰ガラス, ステンレス上に形成した強誘電体
薄膜素子のx線回折パターンを、中間層2のない直接基
板1(ステンレス基板の場合)に形成した試料(図3
(E))と比較して示す。中間層2のない直接基板1(ス
テンレス基板の場合)に形成した試料が、多結晶のペロ
ブスカイト結晶構造を示しているのに対し、本発明によ
る強誘電体薄膜素子はペロブスカイト結晶構造の(00
1)と(100)の反射、およびその高次の反射のみが
観察された。また、基板1の熱膨張係数が大きくなるに
ともない、(001)反射の強度が(100)のそれと
比べて著しく大きくなり、<001>軸配向膜になって
いることがわかった。逆に、熱膨張係数の小さい基板で
は、<100>軸配向膜が得られた。
In FIGS. 3A to 3D, quartz glass, Si,
A sample in which an x-ray diffraction pattern of a ferroelectric thin film element formed on soda lime glass or stainless steel was formed on a direct substrate 1 (in the case of a stainless steel substrate) without the intermediate layer 2 (Fig. 3).
(E)) is shown in comparison. The sample formed directly on the substrate 1 (in the case of a stainless steel substrate) without the intermediate layer 2 shows a polycrystalline perovskite crystal structure, whereas the ferroelectric thin film element according to the present invention has a perovskite crystal structure (00
Only the 1) and (100) reflections and their higher order reflections were observed. It was also found that as the coefficient of thermal expansion of the substrate 1 increased, the intensity of (001) reflection was significantly higher than that of (100), and the film was a <001> axis oriented film. On the contrary, a <100> axis oriented film was obtained on a substrate having a small coefficient of thermal expansion.

【0022】プラズマ励起MO−CVD法によるNaC
l型酸化物中間層2の形成の際に、原料ガス源として、
上述のマグネシウムアセチルアセトナートのかわりに、
コバルトアセチルアセトナートおよびニッケルアセチル
アセトナートを用いて、それぞれ、CoOおよびNiO
の(100)面配向膜が種々の基板上に形成できた。こ
れらの中間層にPbxLa1ーxTi1-x/43 なる組成の
強誘電体薄膜3を形成した場合も、熱膨張率の大きい基
板1上には<001>軸配向薄膜が、熱膨張率の小さい
基板1上には<100>配向薄膜が得られた。
NaC by plasma enhanced MO-CVD method
When forming the l-type oxide intermediate layer 2, as a source gas source,
Instead of the magnesium acetylacetonate mentioned above,
CoA and NiO with cobalt acetylacetonate and nickel acetylacetonate, respectively.
The (100) plane alignment film of was able to be formed on various substrates. Even in the case of forming a Pb x La 1 over x Ti 1-x / 4 O 3 becomes ferroelectric thin film 3 of the composition to these intermediate layers, on a large substrate 1 in thermal expansion coefficient is <001> axis oriented thin film A <100> oriented thin film was obtained on the substrate 1 having a small coefficient of thermal expansion.

【0023】PbTiO3,PZT,BaTiO3などの強
誘電体薄膜も同様な結果が得られた。
Similar results were obtained with ferroelectric thin films such as PbTiO 3 , PZT and BaTiO 3 .

【0024】(実施例2)実施例1と同様の各種基板1
上に、<100>軸に結晶配向したMgO薄膜のNaC
l型酸化物中間層2を形成し、さらに、その上にプラズ
マ励起MOーCDV法でPbTiO3 よりなる強誘電体
薄膜3を形成した薄膜構成である。
Example 2 Various substrates 1 similar to Example 1
On top, NaC of MgO thin film with crystallographic orientation in <100> axis
This is a thin film structure in which an l-type oxide intermediate layer 2 is formed, and a ferroelectric thin film 3 made of PbTiO 3 is further formed thereon by a plasma excited MO-CDV method.

【0025】以上のように構成された強誘電体薄膜素子
4の製造方法について、以下に説明する。
A method of manufacturing the ferroelectric thin film element 4 having the above structure will be described below.

【0026】<100>結晶方位に配向したMgO薄膜
のNaCl型酸化物中間層2の形成後、連続して、その
中間層2の上にPbTiO3 の強誘電体薄膜3を、図4
に示すプラズマ励起MO−CVD成膜装置を用いて形成
した。
After forming the NaCl type oxide intermediate layer 2 of the MgO thin film oriented in the <100> crystal orientation, the ferroelectric thin film 3 of PbTiO 3 is continuously formed on the intermediate layer 2 as shown in FIG.
It was formed using the plasma-excited MO-CVD film forming apparatus shown in FIG.

【0027】図4に示すプラズマ励起MO−CVD成膜
装置21は、真空チャンバー22内に平行に配置したア
ース側電極23とRF側電極24の二つの電極間に高周
波によってプラズマを発生させ、その中で有機金属の原
料ガスを分解して基板1上に化学蒸着することで薄膜を
形成する装置である。ここで、この基板1は、アース側
電極23に片側面が密着して保持され、基板加熱ヒータ
25によってあらかじめ400℃に加熱された状態にし
た。
The plasma-enhanced MO-CVD film forming apparatus 21 shown in FIG. 4 generates plasma by high frequency between two electrodes, the earth side electrode 23 and the RF side electrode 24, which are arranged in parallel in the vacuum chamber 22. It is an apparatus for forming a thin film by decomposing an organic metal source gas therein and performing chemical vapor deposition on the substrate 1. Here, this substrate 1 was held in a state in which one side face was in close contact with the earth-side electrode 23 and was previously heated to 400 ° C. by the substrate heater 25.

【0028】一方、原料気化容器(1)26にマグネシ
ウムアセチルアセトナートを入れ、190℃に保持し
た。このように加熱することによって気化したマグネシ
ウムアセチルアセトナートの蒸気を、30ml/min
の流速のキャリアガス(窒素)27を用いて、真空チャ
ンバー22内に流し入れた。また、反応ガスとして酸素
ガス28を2ml/minで流し、これを途中で混ぜて
真空チャンバー22内に吹出ノズルから流入した。この
とき、真空チャンバー22内は、真空排気系29により
7.90Paの真空度に保持した。この状態において、
RF側電極24に13.56MHzで400Wの高周波
を10分間印加することによって、アース側電極23と
の間にプラズマを発生させ、基板1の片側表面上に<1
00>方位に結晶配向したMgO薄膜2を厚さ200n
m形成した。
On the other hand, magnesium acetylacetonate was placed in the raw material vaporization vessel (1) 26 and kept at 190 ° C. The vapor of magnesium acetylacetonate vaporized by heating in this way is changed to 30 ml / min.
The carrier gas (nitrogen) 27 having the flow rate of was used to flow into the vacuum chamber 22. Oxygen gas 28 was made to flow as a reaction gas at 2 ml / min, and this was mixed in the middle and flowed into the vacuum chamber 22 from the blowing nozzle. At this time, the inside of the vacuum chamber 22 was maintained at a vacuum degree of 7.90 Pa by the vacuum exhaust system 29. In this state,
By applying a high frequency of 400 W at 13.56 MHz for 10 minutes to the RF-side electrode 24, plasma is generated between the RF-side electrode 24 and the ground-side electrode 23, and <1 on one surface of the substrate 1.
The thickness of the MgO thin film 2 crystallized in the 00> direction is 200n.
m formed.

【0029】続いて、その中間層2の上にPbTiO3
の強誘電体薄膜3を形成する。まず、基板加熱ヒータ2
5を、400℃から500℃に加熱した。次に、原料気
化容器(2)30に鉛ジピバロイルメタネート:Pb
(C11192)を入れ、130℃に保持した。原料気化
容器(3)31に、テトライソプロピルチタネート:T
i(i−C37O)4を入れ、50℃に保持した。このよ
うに加熱して気化した鉛ジピバロイルメタネートとテト
ライソプロピルチタネートの蒸気を10ml/minの
流速のキャリアガス27を真空チャンバー22内に流し
入れた。また、反応ガスとして酸素ガス28を40ml
/minで流し、これを途中で混ぜて真空チャンバー2
2内に吹出ノズルから流入した。このとき、真空チャン
バー22内は、真空排気系29により3.90Paの真
空度に保持した。この状態において、RF側電極24に
400Wの高周波を20分間印加することによって、ア
ース側電極23との間にプラズマを発生させ、基板1上
に形成した<100>配向MgO薄膜2の上にPbTi
3 を1μm成長させた。
Then, PbTiO 3 is formed on the intermediate layer 2.
The ferroelectric thin film 3 is formed. First, the substrate heater 2
5 was heated from 400 ° C to 500 ° C. Next, lead dipivaloylmethanate: Pb was placed in the raw material vaporization container (2) 30.
(C 11 H 19 O 2 ) was added and the temperature was maintained at 130 ° C. Tetraisopropyl titanate: T was added to the raw material vaporization container (3) 31.
It placed i (i-C 3 H 7 O) 4, and held at 50 ° C.. In this way, the vaporized lead dipivaloylmethanate and tetraisopropyl titanate vaporized by heating were poured into the vacuum chamber 22 with a carrier gas 27 at a flow rate of 10 ml / min. Also, 40 ml of oxygen gas 28 as a reaction gas
/ Min, and mix this in the middle to create a vacuum chamber 2
It flowed into 2 through the blowing nozzle. At this time, the vacuum chamber 22 was maintained at a vacuum degree of 3.90 Pa by the vacuum exhaust system 29. In this state, by applying a high frequency of 400 W to the RF electrode 24 for 20 minutes, plasma is generated between the RF electrode 24 and the ground electrode 23, and PbTi is deposited on the <100> -oriented MgO thin film 2 formed on the substrate 1.
O 3 was grown to 1 μm.

【0030】種ゝの基板上に形成した強誘電体薄膜素子
のx線回折パターンは、実施例1と同様の結果を得た。
本発明による強誘電体薄膜素子はペロブスカイト結晶構
造の(001)と(100)の反射、およびその高次の
反射のみが観察された。また、熱膨張係数が大きい基板
1の場合、<001>軸配向膜が、逆に、熱膨張係数の
小さい基板では、<100>軸配向膜が得られた。実施
例1と比較して、強誘電体薄膜3の成膜速度は3倍に向
上した。
The x-ray diffraction pattern of the ferroelectric thin film element formed on the substrate of the type "A" was similar to that of Example 1.
In the ferroelectric thin film element according to the present invention, only the (001) and (100) reflections of the perovskite crystal structure, and their higher-order reflections were observed. Further, in the case of the substrate 1 having a large thermal expansion coefficient, a <001> axis oriented film was obtained, and conversely, in the substrate having a small thermal expansion coefficient, a <100> axis oriented film was obtained. Compared with the first embodiment, the film formation rate of the ferroelectric thin film 3 was improved three times.

【0031】なお、基板上に、スパッタ法で、(10
0)面配向のNaCl型結晶構造の酸化物薄膜を形成
し、さらにその上に同じスパッタ法によって正方晶系の
ペロブスカイト型強誘電体薄膜を形成する場合も、基板
1の熱膨張率により、<001>方向あるいは<100
>方向に配向した強誘電体薄膜を形成することができ
た。しかし、結晶性は基板に依存する傾向にあった。
It should be noted that (10
Even when a 0) plane-oriented oxide thin film having a NaCl-type crystal structure is formed and a tetragonal perovskite-type ferroelectric thin film is further formed thereon by the same sputtering method, the thermal expansion coefficient of the substrate 1 causes 001> direction or <100
It was possible to form a ferroelectric thin film oriented in the> direction. However, the crystallinity tended to depend on the substrate.

【0032】以上、本発明の製造方法による本発明の強
誘電体薄膜素子は、従来のように基板として単結晶のM
gOで(100)面を切り出したものに限らず、各種の
材料の基板を用いても基板に垂直方向に結晶方位が揃っ
た強誘電体薄膜を有する強誘電体薄膜素子として提供で
きることがわかった。
As described above, the ferroelectric thin film element of the present invention produced by the manufacturing method of the present invention has a conventional single-crystal M substrate as a substrate.
It was found that it is possible to provide a ferroelectric thin film element having a ferroelectric thin film in which crystal orientations are aligned in the direction perpendicular to the substrate, not only the one obtained by cutting out the (100) plane with gO but also using substrates made of various materials. .

【0033】[0033]

【発明の効果】本発明によれば、製造される強誘電体薄
膜素子は、下地基板に単結晶MgO基板を用いる必要な
しに、安価にかつ下地基板材料を選ばずに、同様の性能
の強誘電体薄膜素子が得られるので、電子部品の分野で
より広い範囲に使用できることになり、実用面で極めて
有効である。また、Si基板上にもエピタキシャル薄膜
や配向薄膜を成長することができ、素子性能を大幅に向
上する信号処理デバイス一体化を実現することもでき
る。
According to the present invention, the manufactured ferroelectric thin film element has the same performance as that of the base material without the need of using the single crystal MgO substrate as the base substrate at a low cost. Since the dielectric thin film element can be obtained, it can be used in a wider range in the field of electronic parts and is extremely effective in practical use. Further, an epitaxial thin film and an oriented thin film can be grown on the Si substrate, and it is possible to realize the integration of signal processing devices, which greatly improves the device performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の強誘電体薄膜素子の膜構成を
示す概略断面図
FIG. 1 is a schematic sectional view showing a film structure of a ferroelectric thin film element according to an embodiment of the present invention.

【図2】本発明の実施例の強誘電体薄膜素子の製造に用
いたプラズマ励起MOーCVD成膜装置の概略断面図
FIG. 2 is a schematic cross-sectional view of a plasma-enhanced MO-CVD film forming apparatus used for manufacturing a ferroelectric thin film element according to an example of the present invention.

【図3】本発明の実施例の強誘電体薄膜素子のX線回折
パターンを示す図
FIG. 3 is a diagram showing an X-ray diffraction pattern of a ferroelectric thin film element according to an example of the present invention.

【図4】本発明の他の実施例に示した強誘電体薄膜素子
の製造に用いたプラズマ励起MOーCVD成膜装置の概
略断面図
FIG. 4 is a schematic cross-sectional view of a plasma-enhanced MO-CVD film forming apparatus used for manufacturing the ferroelectric thin film element shown in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 NaCl型酸化物中間層 3 強誘電体薄膜 4 強誘電体薄膜素子 5 プラズマ励起MO−CVD成膜装置 6 真空チャンバー 7 アース側電極 8 RF側電極 9 基板加熱ヒータ 10 原料気化容器 11 マグネシウムアセチルアセトナート 12 オイルバス 13 キャリアガス 14 酸素ガス 15 吹出ノズル 16 排気口 17 基板回転モータ 23 アース側電極 24 RF側電極 25 基板加熱ヒータ 26 原料気化容器(1) 30 原料気化容器(2) 31 原料気化容器(3) DESCRIPTION OF SYMBOLS 1 Substrate 2 NaCl type oxide intermediate layer 3 Ferroelectric thin film 4 Ferroelectric thin film element 5 Plasma excited MO-CVD film forming apparatus 6 Vacuum chamber 7 Earth side electrode 8 RF side electrode 9 Substrate heating heater 10 Raw material vaporization vessel 11 Magnesium Acetylacetonate 12 Oil bath 13 Carrier gas 14 Oxygen gas 15 Blow-out nozzle 16 Exhaust port 17 Substrate rotation motor 23 Earth side electrode 24 RF side electrode 25 Substrate heating heater 26 Raw material vaporization container (1) 30 Raw material vaporization container (2) 31 Raw material Vaporization container (3)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡野 祐幸 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鳥井 秀雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuko Okano 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hideo Torii, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基板と、その上に形成された結晶性中間層
と、さらにその上に形成された<001>方向に配向し
た強誘電体薄膜とからなり、前記基板の室温から前記強
誘電体薄膜の作製時の温度までの熱膨張係数が、70×
10ー7/℃以上であり、前記強誘電体薄膜の作製時の温
度で前記中間層と前記強誘電体薄膜との格子定数のミス
フィットが15%以内であることを特徴とする強誘電体
薄膜素子。
1. A substrate, a crystalline intermediate layer formed on the substrate, and a ferroelectric thin film oriented in the <001> direction formed on the substrate. The coefficient of thermal expansion up to the temperature during production of the body thin film is 70 ×
Ferroelectric material having a temperature of 10 −7 / ° C. or more, and a misfit of lattice constant between the intermediate layer and the ferroelectric thin film within 15% at a temperature at which the ferroelectric thin film is manufactured. Thin film device.
【請求項2】基板と、その上に形成された結晶性中間層
と、さらにその上に形成された<100>方向に配向し
た強誘電体薄膜とからなり、前記基板の室温から前記強
誘電体薄膜の作製時の温度までの熱膨張係数が、70×
10ー7/℃以下であり、前記強誘電体薄膜の作製時の温
度で前記中間層と前記強誘電体薄膜との格子定数のミス
フィットが15%以内であることを特徴とする強誘電体
薄膜素子。
2. A substrate, a crystalline intermediate layer formed on the substrate, and a ferroelectric thin film oriented in the <100> direction formed on the substrate. The coefficient of thermal expansion up to the temperature during production of the body thin film is 70 ×
Ferroelectric material having a temperature of 10 −7 / ° C. or less, and a misfit of lattice constant between the intermediate layer and the ferroelectric thin film within 15% at a temperature at which the ferroelectric thin film is manufactured. Thin film device.
【請求項3】強誘電体薄膜がチタン酸鉛系、チタン酸ジ
ルコン酸鉛系、チタン酸バリウム系を主成分とする請求
項1または2記載の強誘電体薄膜素子。
3. The ferroelectric thin film element according to claim 1, wherein the ferroelectric thin film is mainly composed of lead titanate, lead zirconate titanate, and barium titanate.
【請求項4】強誘電体薄膜の結晶構造が正方晶である請
求項3記載の強誘電体薄膜素子。
4. The ferroelectric thin film element according to claim 3, wherein the crystal structure of the ferroelectric thin film is tetragonal.
【請求項5】中間層がNaCl型結晶構造の酸化物薄膜
であることを特徴とする請求項1または2記載の強誘電
体薄膜素子。
5. The ferroelectric thin film element according to claim 1, wherein the intermediate layer is an oxide thin film having a NaCl type crystal structure.
【請求項6】NaCl型結晶構造の酸化物薄膜が、(1
00)面に配向していることを特徴とする請求項5記載
の強誘電体薄膜素子。
6. An oxide thin film having a NaCl-type crystal structure comprises (1
The ferroelectric thin film element according to claim 5, which is oriented in the (00) plane.
【請求項7】NaCl型結晶構造の酸化物薄膜が、Ni
O、CoOあるいはMgOのいずれかであることを特徴
とする請求項5記載の強誘電体薄膜素子。
7. An oxide thin film having a NaCl type crystal structure is made of Ni.
The ferroelectric thin film element according to claim 5, which is one of O, CoO, and MgO.
【請求項8】基板上に、スパッタ法によって(100)
面配向のNaCl型結晶構造の酸化物薄膜を形成し、さ
らにその上にスパッタ法によって正方晶系のペロブスカ
イト型強誘電体薄膜を形成することによって製造される
強誘電体薄膜の製造方法において、前記基板に異なる熱
膨張率のものを用いることにより、<001>方向ある
いは、<100>方向に配向させることを特徴とする強
誘電体薄膜素子の製造方法。
8. (100) is formed on a substrate by a sputtering method.
A method for producing a ferroelectric thin film, which is produced by forming an oxide thin film having a plane-oriented NaCl type crystal structure, and further forming a tetragonal perovskite type ferroelectric thin film on the oxide thin film by sputtering. A method of manufacturing a ferroelectric thin film element, characterized by using a substrate having a different coefficient of thermal expansion to orient in a <001> direction or a <100> direction.
【請求項9】基板上に、有機金属錯体の蒸気を原料ガス
とするプラズマ励起MOーCVD法によって(100)
面配向のNaCl型結晶構造の酸化物薄膜を形成し、さ
らにその上にスパッタ法によって正方晶系のペロブスカ
イト型強誘電体薄膜を形成することによって製造される
強誘電体薄膜の製造方法において、前記基板に異なる熱
膨張率のものを用いることにより、<001>方向ある
いは、<100>方向に配向させることを特徴とする強
誘電体薄膜素子の製造方法。
9. A (100) plasma-enhanced MO-CVD method using a vapor of an organometallic complex as a source gas on a substrate.
A method for producing a ferroelectric thin film, which is produced by forming an oxide thin film having a plane-oriented NaCl type crystal structure, and further forming a tetragonal perovskite type ferroelectric thin film on the oxide thin film by sputtering. A method of manufacturing a ferroelectric thin film element, characterized by using a substrate having a different coefficient of thermal expansion to orient in a <001> direction or a <100> direction.
【請求項10】基板上に、有機金属錯体の蒸気を原料ガ
スとするプラズマ励起MOーCVD法によって(10
0)面配向のNaCl型結晶構造の酸化物薄膜を形成
し、さらにその上にプラズマ励起MOーCVD法によっ
て正方晶系のペロブスカイト型強誘電体薄膜を形成する
ことによって製造される強誘電体薄膜の製造方法におい
て、前記基板に異なる熱膨張率のものを用いることによ
り、<001>方向あるいは、<100>方向に配向さ
せることを特徴とする強誘電体薄膜素子の製造方法。
10. A plasma-enhanced MO-CVD method using a vapor of an organometallic complex as a source gas on a substrate (10)
(0) Ferroelectric thin film produced by forming an oxide thin film having a NaCl-type crystal structure of plane orientation and further forming a tetragonal perovskite type ferroelectric thin film on it by plasma enhanced MO-CVD method The method for manufacturing a ferroelectric thin film element according to the method of (1) above, wherein the substrates having different coefficients of thermal expansion are oriented in the <001> direction or the <100> direction.
JP4350793A 1993-03-04 1993-03-04 Ferroelectric thin film element and its manufacture Pending JPH06260018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4350793A JPH06260018A (en) 1993-03-04 1993-03-04 Ferroelectric thin film element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4350793A JPH06260018A (en) 1993-03-04 1993-03-04 Ferroelectric thin film element and its manufacture

Publications (1)

Publication Number Publication Date
JPH06260018A true JPH06260018A (en) 1994-09-16

Family

ID=12665651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4350793A Pending JPH06260018A (en) 1993-03-04 1993-03-04 Ferroelectric thin film element and its manufacture

Country Status (1)

Country Link
JP (1) JPH06260018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063639A (en) * 1998-10-28 2000-05-16 Hyundai Electronics Industries Co., Ltd. Method for fabricating ferroelectric capacitor of nonvolatile semiconductor memory device using plasma
US6699521B1 (en) * 2000-04-17 2004-03-02 The United States Of America As Represented By The Secretary Of The Army Method of fabricating a ferroelectric/pyroelectric infrared detector using a crystallographically oriented electrode and a rock salt structure material substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063639A (en) * 1998-10-28 2000-05-16 Hyundai Electronics Industries Co., Ltd. Method for fabricating ferroelectric capacitor of nonvolatile semiconductor memory device using plasma
US6699521B1 (en) * 2000-04-17 2004-03-02 The United States Of America As Represented By The Secretary Of The Army Method of fabricating a ferroelectric/pyroelectric infrared detector using a crystallographically oriented electrode and a rock salt structure material substrate

Similar Documents

Publication Publication Date Title
Kato et al. Sol‐gel route to ferroelectric layer‐structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin films
US7642693B2 (en) Wurtzite thin film, laminate containing wurtzite crystalline layer and their manufacturing methods
Aratani et al. Epitaxial-grade polycrystalline Pb (Zr, Ti) O 3 film deposited at low temperature by pulsed-metalorganic chemical vapor deposition
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
US5866238A (en) Ferroelectric thin film device and its process
JPH08253324A (en) Ferroelectric thin film constitution body
JPH06317465A (en) Pyroelectric infrared detector and fabrication thereof
KR19990006318A (en) Deposition of Ferroelectric Films and Ferroelectric Capacitor Devices
JP2003086586A (en) Orientational ferroelectric thin film element and method for manufacturing the same
JP2834355B2 (en) Method of manufacturing ferroelectric thin film construct
Fujii et al. Preparation of La‐modified PbTiO3 thin films on the oxide buffer layers with NaCl‐type structure
JPH07300397A (en) Ferroelectric thin film element and its production
JPH0797296A (en) Substrate for forming oriented thin film and its production
JPS6096599A (en) Production of superconductive thin film of oxide
JPH06260018A (en) Ferroelectric thin film element and its manufacture
JP2718414B2 (en) Method for producing lead titanate thin film
JPH045874A (en) Ferroelectric thin-film and manufacture thereof
JPH02258700A (en) Ferroelectric thin film and production thereof
Wang et al. Preparation of Zr-rich PZT and La-doped PbTiO3 thin films by RF magnetron sputtering and their properties for pyroelectric applications
JP2529438B2 (en) Method of manufacturing oxide thin film
JPH053439B2 (en)
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
WO2004055876A1 (en) Method for preparation of ferroelectric single crystal film structure using deposition method
FRANCOMBE Ferroelectric Films for Integrated Electronics
Yoon et al. Fabrication and characterization of ferroelectric oxide thin films