JPS626597A - Manufacture of piezoelectric element - Google Patents

Manufacture of piezoelectric element

Info

Publication number
JPS626597A
JPS626597A JP14472285A JP14472285A JPS626597A JP S626597 A JPS626597 A JP S626597A JP 14472285 A JP14472285 A JP 14472285A JP 14472285 A JP14472285 A JP 14472285A JP S626597 A JPS626597 A JP S626597A
Authority
JP
Japan
Prior art keywords
thin film
lead titanate
film
electrode
monocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14472285A
Other languages
Japanese (ja)
Inventor
Keiko Kushida
恵子 櫛田
Hiroyuki Takeuchi
裕之 竹内
Toshio Kobayashi
俊雄 小林
Kazumasa Takagi
高木 一正
Kenzo Susa
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14472285A priority Critical patent/JPS626597A/en
Publication of JPS626597A publication Critical patent/JPS626597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

PURPOSE:To obtain a monocrystal lead titanate thin film having an excellent crystallizing/property by forming an electrode material having an opening on a monocrystal substrate such as SrTiO3 and forming a PbTiO3 monocrystal thin film by a lateral epitaxy method through the opening part. CONSTITUTION:On a surface (100) of strontium titanate monocrystal 1, a platinum of an electrode is vapor deposited to a thickness of about 50nm and a resist pattern having a line off 1mu width and a space of 1mum width is formed by a photolithography method. At first, by using CF4 gas, a platinum film is etched by a reactive ion etching, then, the resist is removed in an oxygen plasma to form a pattern 2 of the platinum film. Then, through an opening 3, a thin film having a main component of lead titanate of 150nm is formed by a high frequency magnetron spattering method. This is thermally processed and crystallized, thereafter, on this thin film, further a lead titanate thin film 4 is formed to about 3mum by the high frequency spattering method. Then, by using a mask of 5mmphi, Cr and Au are vapor deposited to form an upper electrode 5.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は強誘電体材料チタン酸鉛PbTi0□を用いた
薄膜圧電素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a thin film piezoelectric element using a ferroelectric material lead titanate PbTi0□.

〔発明の背景〕[Background of the invention]

チタン酸鉛PbTi0.は強誘電相(正方品系)で大き
な結晶格子異方性および自発分極Psをもち。
Lead titanate PbTi0. has a ferroelectric phase (tetragonal system) with large crystal lattice anisotropy and spontaneous polarization Ps.

分極軸(C軸)方向の圧電性、焦電性が非常に大きい。Piezoelectricity and pyroelectricity in the polarization axis (C-axis) direction are extremely large.

しかしこのチタン酸鉛PbTi0.をスパッタリング法
等により薄膜として形成した場合、結晶軸方向がランダ
ムな多結晶膜となりC軸方向の圧電性が大きいというチ
タン酸鉛PbTiO3の特性が充分活かされない。
However, this lead titanate PbTi0. When it is formed as a thin film by sputtering or the like, it becomes a polycrystalline film with random crystal axes, and the characteristic of lead titanate PbTiO3, which has high piezoelectricity in the C-axis direction, cannot be fully utilized.

一方、MgO等の単結晶基板上にチタン酸鉛薄膜がエピ
タキシャル成長することが知られている。
On the other hand, it is known that a lead titanate thin film is epitaxially grown on a single crystal substrate such as MgO.

しかし、チタン酸鉛PbTiO3薄膜を圧電素子もしく
は焦電素子として用いるためには、下地に電極を設ける
必要がある。そのため単結晶基板を用いてまず電極膜を
配向させ、その上に圧電性薄膜を配向させる試みがなさ
れるようになった。例えば、1984年春季第31回応
用物理学会関係連講演会講演予稿集p、240、(講演
番号IP−H−6)における“C軸配向PbTiO3薄
膜の誘電特性°”と題する文献に論じられているように
、酸化マグネシウムMgO単結晶基板上に白金(Pt)
膜を(100)配向させ、この電極上にチタン酸鉛Pb
TiO3薄膜をC軸配向させている。この方法において
はチタン酸鉛PbTi0.のC軸配向膜が得られている
ものの、中間にPt膜を介しているため単結晶基板上な
直接形成したものと比較して特性の低下が避けられない
However, in order to use the lead titanate PbTiO3 thin film as a piezoelectric element or a pyroelectric element, it is necessary to provide an electrode on the base. Therefore, attempts have been made to first orient an electrode film using a single crystal substrate, and then to orient a piezoelectric thin film thereon. For example, it is discussed in the document titled "Dielectric properties of C-axis oriented PbTiO3 thin film" in the Proceedings of the 31st Japan Society of Applied Physics related lectures, Spring 1984, p. 240 (lecture number IP-H-6). Platinum (Pt) on a magnesium oxide MgO single crystal substrate as shown in
The film is (100) oriented, and lead titanate Pb is deposited on this electrode.
The TiO3 thin film is C-axis oriented. In this method, lead titanate PbTi0. Although a C-axis oriented film has been obtained, since a Pt film is interposed in between, the characteristics inevitably deteriorate compared to a film formed directly on a single crystal substrate.

〔発明の目的〕[Purpose of the invention]

そこで、本発明の目的は優れた結晶性を有する単結晶チ
タン酸鉛薄膜の得られる構成の圧電素子を提供すること
にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a piezoelectric element having a structure in which a single-crystal lead titanate thin film having excellent crystallinity can be obtained.

〔発明の概要〕[Summary of the invention]

本発明の圧電素子はチタン酸ストロンチウムSrTiO
3等の単結晶基板上に開口部を有する電極材料を形成し
、開口部を通してラテラルエピタキシー法によってチタ
ン酸鉛PbTiO3単結晶薄膜を形成することを特徴と
している。ラテラルエピタキシー法とはシリコンSiか
らなる素子を絶縁体上に形成する際に用いられる手法で
ある。〔例えば、J、C,C,Fan、M、W、Ga1
s and B、Y。
The piezoelectric element of the present invention is made of strontium titanate SrTiO
The method is characterized in that an electrode material having an opening is formed on a single crystal substrate such as No. 3, and a lead titanate PbTiO3 single crystal thin film is formed through the opening by a lateral epitaxy method. The lateral epitaxy method is a method used when forming an element made of silicon Si on an insulator. [For example, J, C, C, Fan, M, W, Ga1
s and B, Y.

Tsaur、 Appl、 Phys、 Lett、、
 38 (5) 、 365(1981) )この方法
によれば、電極材料の開口部においてチタン酸ストロン
チウム5rTiO,等の単結晶上にエピタキシー成長し
たチタン酸鉛薄膜をさらに電極材料上に横方向に成長を
続けさせ、電極材料を包みこんだ単結晶薄膜にすること
ができる。
Tsaur, Appl, Phys, Lett.
38 (5), 365 (1981)) According to this method, a lead titanate thin film epitaxially grown on a single crystal of strontium titanate 5rTiO, etc. in the opening of the electrode material is further grown laterally on the electrode material. can be made into a single-crystal thin film that envelops the electrode material.

この結果、結晶性の優れたチタン酸鉛薄膜を下地電極材
料上に形成することができ、さらに蒸着などにより上部
電極を設けることで、チタン酸鉛本来の特性を生かした
優れた圧電素子を得ることができる。
As a result, a lead titanate thin film with excellent crystallinity can be formed on the base electrode material, and by further providing an upper electrode by vapor deposition, an excellent piezoelectric element that takes advantage of the original characteristics of lead titanate can be obtained. be able to.

チタン酸鉛薄膜の形成法としてはスパッタリング法が比
較的簡単でしかも膜形成速度が速いことから広く利用さ
れている。スパッタリング法で形成する方法には人別し
て2通りあって、1つは基板温度を約600℃に保持し
て直接結晶化した薄膜を得る方法であり、もう1つは非
晶質膜として形成した後レーザー光あるいは電気炉で熱
処理を行う方法である。ラテラルエピタキシーにおいて
は単結晶基板上から優先的に核発生が起り電極膜上へ横
方向に成長していくことが望ましい、この点から考える
と後者の方法、すなわち非晶質膜を熱処理により結晶化
させる方法が望ましい。、しかし、膜厚が厚くなると膜
の表面でもランダムな核発生が起って多結晶化が起るた
め、厚い膜が形成しにくいという問題がある0反対に前
者の方法を用いると単結晶基板上では比較的厚い(数μ
m)単結晶膜が得られる反面、白金電極膜上で多結晶化
したグレインが形成されやすいという問題がある。
As a method for forming a lead titanate thin film, the sputtering method is widely used because it is relatively simple and the film formation speed is fast. There are two methods for forming a sputtering method depending on the person. One is to maintain the substrate temperature at about 600°C and obtain a directly crystallized thin film, and the other is to form an amorphous film. This method is followed by heat treatment using laser light or an electric furnace. In lateral epitaxy, it is desirable that nucleation occurs preferentially from the single crystal substrate and grows laterally onto the electrode film.From this point of view, the latter method is preferred, that is, crystallization of an amorphous film by heat treatment. The preferred method is to However, as the film thickness increases, random nucleation occurs on the surface of the film and polycrystallization occurs, making it difficult to form a thick film.On the contrary, when the former method is used, it is difficult to form a thick film. It is relatively thick at the top (several μ
m) Although a single crystal film can be obtained, there is a problem in that polycrystalline grains are likely to be formed on the platinum electrode film.

そこで、本発明になるチタン酸鉛薄膜を用いた圧電素子
は、まずはじめに電極膜を覆う程度の非晶質膜を熱処理
により結晶化させて単結晶化し、その後所望の厚さまで
!形成を行うことを特徴としている。
Therefore, in the piezoelectric element using the lead titanate thin film according to the present invention, first, an amorphous film that covers the electrode film is crystallized by heat treatment to become a single crystal, and then the desired thickness is achieved! It is characterized by forming.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を、図面を用いて詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail using the drawings.

第1図に本発明になる圧電素子の外観構造を第2図に素
子の断面構造を示す。図中1はチタン酸ストロンチウム
等よりなる単結晶基板、2は下部電極、3は開口部、4
はチタン酸鉛を主成分とする薄膜、5は上部電極を示し
ている。
FIG. 1 shows the external structure of the piezoelectric element according to the present invention, and FIG. 2 shows the cross-sectional structure of the element. In the figure, 1 is a single crystal substrate made of strontium titanate, etc., 2 is a lower electrode, 3 is an opening, and 4
5 indicates a thin film whose main component is lead titanate, and 5 indicates an upper electrode.

チタン酸ストロンチウム単結晶lの(Zoo)面上に電
極の白金を約50nmの厚さに蒸着し。
Platinum as an electrode was evaporated to a thickness of about 50 nm on the (Zoo) plane of a strontium titanate single crystal l.

さらにフォトリソグラフィ法によって1μm幅のライン
1μm幅のスペースのレジストパターンを形成した。ま
ずフレオンCF、ガスを用い反応性イオンエツチングに
より白金膜をエツチングし、次に酸素プラズマ中でレジ
ストを除去して白金膜のパターン2を形成した。白金膜
パターンの形成は、予め形成されたレジストパターン上
に、Pt膜を蒸着した後、レジストを除去するりフトオ
フ法によっても作成できる。ついで、高周波マグネトロ
ンスパッタリング法により150nmのチタン酸鉛を主
成分とする薄膜を形成した0作成条件は、基板温度20
0℃、導入ガス(Ar90%−〇、10%)の圧力4P
aとした。この膜をX線回折で評価したところ1回折ピ
ークは現われず非晶質膜であることがわかった0次にこ
れを熱処理し結晶化させた後、再びXS回折で評価した
ところ。
Furthermore, a resist pattern of 1 μm wide lines and 1 μm wide spaces was formed by photolithography. First, the platinum film was etched by reactive ion etching using Freon CF gas, and then the resist was removed in oxygen plasma to form pattern 2 of the platinum film. The platinum film pattern can also be formed by depositing a Pt film on a previously formed resist pattern and then removing the resist, or by a lift-off method. Next, a 150 nm thin film mainly composed of lead titanate was formed by high frequency magnetron sputtering.
0℃, pressure of introduced gas (Ar90%-〇, 10%) 4P
It was set as a. When this film was evaluated by X-ray diffraction, no diffraction peak appeared and it was found to be an amorphous film. After being heat-treated to crystallize it, it was evaluated again by XS diffraction.

(001)の強いピークと(002)、(003)のピ
ークが現われC軸配向していることがわかった。この薄
膜上にさらにチタン酸鉛薄膜を高周波スパッタリングに
より約3μm形成した0作成条件は基板温度550℃、
ガス圧は前と同様4Paである。再びX線回折で評価し
たところ、 (001)。
A strong peak of (001) and peaks of (002) and (003) appeared, indicating C-axis orientation. On this thin film, a lead titanate thin film was further formed to a thickness of approximately 3 μm by high frequency sputtering.The manufacturing conditions were: substrate temperature 550°C;
The gas pressure is 4 Pa as before. When evaluated again by X-ray diffraction, it was found to be (001).

(002)、(003)の強度が増加し、他の回折線が
現われなかった。さらに反射電子線回折法により評価し
たところスポット状のパ之−ンが現われ、一様な配向膜
が得られたことが確認された。
The intensity of (002) and (003) increased, and no other diffraction lines appeared. Further evaluation by reflection electron beam diffraction revealed spot-like patterns, confirming that a uniform alignment film was obtained.

次に、5■φのマスクを用いてクロムCrと金Auを蒸
着し上部電極を形成した。試料の温度を200℃に保ち
両電極間にl OOKV/cmの直流電圧を20分間印
加して超音波を発生させ、円柱状チタン酸ストロンチウ
ムの他端面から反射して戻ってきたエコーの強度を周波
数0.1〜1.2G七の範囲で測定し、この周波数特性
から電気機械結合係数を計算したところ0.65 とい
う値を得た。これはチタン酸鉛セラミックスの結合係数
0.5 を上回るものであり、ラテラルエピタキシーに
より白金電極上にもC軸配向膜が形成された効果が現わ
れたものと考えられる。
Next, chromium Cr and gold Au were deposited using a 5 .phi. mask to form an upper electrode. Keeping the temperature of the sample at 200°C, a DC voltage of 1 OOKV/cm was applied between both electrodes for 20 minutes to generate ultrasonic waves, and the intensity of the echo reflected from the other end of the cylindrical strontium titanate was measured. Measurements were made in the frequency range of 0.1 to 1.2G7, and the electromechanical coupling coefficient was calculated from this frequency characteristic, and a value of 0.65 was obtained. This exceeds the coupling coefficient of lead titanate ceramics, which is 0.5, and is thought to be due to the effect of forming a C-axis oriented film also on the platinum electrode by lateral epitaxy.

尚、電極を覆う程度のチタン酸鉛薄膜を形成した後、適
当な厚さの一非晶質膜を形成、熱処理する行程を繰り返
して所望の膜厚の薄膜を形成してもよい。
Incidentally, after forming a lead titanate thin film to cover the electrode, a process of forming an amorphous film of an appropriate thickness and heat treatment may be repeated to form a thin film of a desired thickness.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、開口部を有する白金電極膜上にま
ず電極膜を覆う程度の膜厚に非晶質膜として形成し熱処
理を行って結晶化させた後、スパッタtングにより所望
の厚さの薄膜を形成することにより、白金電極上にもC
軸配向し結晶性の優れたチタン酸鉛薄膜が形成可能とな
る。この方法で作成されたチタン酸鉛薄膜上にさらに上
部電極を形成することにより、高感度の圧電素子を得る
ことができる。
As explained above, an amorphous film is first formed on a platinum electrode film having an opening to a thickness that covers the electrode film, and then heat-treated to crystallize it, and then sputtered to a desired thickness. By forming a thin film of C on the platinum electrode,
A lead titanate thin film with axial orientation and excellent crystallinity can be formed. By further forming an upper electrode on the lead titanate thin film created by this method, a highly sensitive piezoelectric element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる圧電素子の一構成例を示す立体図
、第2図はその部分断面図である。 1・・・チタン酸ストロンチウム等の単結晶基板、2・
・・下部電極、3・・・開口部、4・・・チタン酸鉛を
主成分とする薄膜、5・・・上部電極。
FIG. 1 is a three-dimensional view showing an example of the structure of a piezoelectric element according to the present invention, and FIG. 2 is a partial sectional view thereof. 1...Single crystal substrate of strontium titanate, etc., 2.
... lower electrode, 3 ... opening, 4 ... thin film mainly composed of lead titanate, 5 ... upper electrode.

Claims (1)

【特許請求の範囲】 1、チタン酸ストロンチウムSrTiO_3、酸化マグ
ネシウムMgO単結晶基板上に開口部を有する電極が形
成され、その上にチタン酸鉛PbTiO_3を主成分と
する薄膜が形成され、さらに上部電極が設けられた圧電
素子において、上記チタン酸鉛薄膜をまず電極を覆う程
度の膜厚に非晶質膜として形成し熱処理を行つて結晶化
させた後、その上に所望の厚さまで薄膜を形成すること
を特徴とする圧電素子の製造方法。 2、上記チタン酸鉛を主成分とする薄膜を高周波スパッ
タリングで形成することを特徴とする特許請求の範囲第
1項記載の圧電素子の製造方法。
[Claims] 1. An electrode having an opening is formed on a single crystal substrate of strontium titanate SrTiO_3 and magnesium oxide MgO, and a thin film mainly composed of lead titanate PbTiO_3 is formed thereon, and an upper electrode is formed on the substrate. In the piezoelectric element provided with the lead titanate, the lead titanate thin film is first formed as an amorphous film to a thickness that covers the electrode, then heat-treated to crystallize it, and then a thin film is formed on top of it to the desired thickness. A method of manufacturing a piezoelectric element, characterized by: 2. The method of manufacturing a piezoelectric element according to claim 1, wherein the thin film containing lead titanate as a main component is formed by high-frequency sputtering.
JP14472285A 1985-07-03 1985-07-03 Manufacture of piezoelectric element Pending JPS626597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14472285A JPS626597A (en) 1985-07-03 1985-07-03 Manufacture of piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14472285A JPS626597A (en) 1985-07-03 1985-07-03 Manufacture of piezoelectric element

Publications (1)

Publication Number Publication Date
JPS626597A true JPS626597A (en) 1987-01-13

Family

ID=15368790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14472285A Pending JPS626597A (en) 1985-07-03 1985-07-03 Manufacture of piezoelectric element

Country Status (1)

Country Link
JP (1) JPS626597A (en)

Similar Documents

Publication Publication Date Title
US6709776B2 (en) Multilayer thin film and its fabrication process as well as electron device
KR100827216B1 (en) Microelectronic piezoelectric structure
US4803392A (en) Piezoelectric transducer
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
US20020006733A1 (en) Multilayer thin film and its fabrication process as well as electron device
JP2004158717A (en) Thin-film laminated body, electronic device and actuator using the same, and method for manufacturing the actuator
JPS61177900A (en) Piezo-electric element and its manufacture
JP2002029894A (en) Laminated thin film, method of producing the same and electronic device
US6482538B2 (en) Microelectronic piezoelectric structure and method of forming the same
JPS6096599A (en) Production of superconductive thin film of oxide
KR20020010950A (en) Method for making a metal film having giant single crystals
JPS626597A (en) Manufacture of piezoelectric element
JP2004281742A (en) Semiconductor device, semiconductor sensor and semiconductor memory element
JP3545850B2 (en) Ferroelectric thin film element
JP2529438B2 (en) Method of manufacturing oxide thin film
JP3214031B2 (en) Ferroelectric thin film element and method of manufacturing the same
JP2006510566A (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
JPH0576793B2 (en)
JP2568505B2 (en) Ferroelectric thin film element
JPS6369280A (en) Piezoelectric element and manufacture thereof
JPS62100099A (en) Piezoelectric element and its manufacture
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
JPH0781183B2 (en) Method for producing oriented metal thin film
JPH06107489A (en) Production of crystalline thin film
JPH04333559A (en) Production of thin dielectric film