KR0162300B1 - Method of manufacturing ferroelectric thin film - Google Patents

Method of manufacturing ferroelectric thin film Download PDF

Info

Publication number
KR0162300B1
KR0162300B1 KR1019910017828A KR910017828A KR0162300B1 KR 0162300 B1 KR0162300 B1 KR 0162300B1 KR 1019910017828 A KR1019910017828 A KR 1019910017828A KR 910017828 A KR910017828 A KR 910017828A KR 0162300 B1 KR0162300 B1 KR 0162300B1
Authority
KR
South Korea
Prior art keywords
thin film
pbtio
manufacturing
ferroelectric thin
ratio
Prior art date
Application number
KR1019910017828A
Other languages
Korean (ko)
Other versions
KR930008987A (en
Inventor
이돈희
Original Assignee
이헌조
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이헌조, 엘지전자주식회사 filed Critical 이헌조
Priority to KR1019910017828A priority Critical patent/KR0162300B1/en
Publication of KR930008987A publication Critical patent/KR930008987A/en
Application granted granted Critical
Publication of KR0162300B1 publication Critical patent/KR0162300B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Abstract

강유전체 박막 제조방법에 관한 것으로, Pb와 Ti 금속 타켓의 Ti/Pb 캐소우드 파워의 비가 15∼35이고, 작동 가스중 Ar/O2의 비가 9/1 인 조건으로 스퍼터링 방법으로 실리콘 기판상에 PbTiO3박막을 증착한 다음, 대기중에서 550℃∼750℃의 온도로 열처리 함으로써 초전 및 압전 특성이 우수한 것으로 알려진 PbTiO3의 특성으로 디바이스(device)의 집적화, 소형화, 그리고 고기능화에 기여할 수 있으며, 우수한 양산성으로 보다 저렴하게 디바이스를 제조하도록 한 것이다.A method for manufacturing a ferroelectric thin film, wherein the ratio of Ti / Pb cathode power of Pb and Ti metal target is 15 to 35, and the ratio of Ar / O 2 in working gas is 9/1. 3 By depositing the thin film and then heat-treating it to 550 ℃ ~ 750 ℃ in the air, PbTiO 3 is known to have excellent pyroelectric and piezoelectric properties, contributing to the integration, miniaturization, and high functionalization of devices. It is to make the device cheaper than the castle.

Description

강유전체 박막 제조방법Ferroelectric Thin Film Manufacturing Method

첨부된 도면은 본 발명에 의한 스퍼터링 방법으로 실리콘 기판상에 형성한 PbTiO3박막의 X-선 회절 분석 결과를 보인 그래프.The accompanying drawings are graphs showing the results of X-ray diffraction analysis of the PbTiO 3 thin film formed on the silicon substrate by the sputtering method according to the present invention.

본 발명은 강유전체 박막 제조방법에 관한 것으로, 특히 실리콘(sliicon) 기판상에 스퍼터링(sputtering)방법으로 PbTiO3박막을 형성하여 집적화에 기여할 수 있게 한 강유전체 박막 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a ferroelectric thin film, and more particularly, to a method of manufacturing a ferroelectric thin film which can contribute to integration by forming a PbTiO 3 thin film by sputtering on a silicon substrate.

종래 기술에 의한 인체 검지센서용 강유전체 소자의 제조방법은 일반적인 세라믹 제조공정이나 단결정 성장에 의하여 이루어져 왔다. 특히 PbTiO3의 경우에 있어서는, 제조공정중 냉각과정에서 상전이(cubic → tetragonal)현상에 의한 격자 비틀림(lattice distortion)으로 균열이 발생하게 되어 일반적인 세라믹 공정으로는 균일하고 치밀한 소자를 제조하기가 곤란하였다. 따라서, 이와 같은 결점을 해소하기 위하여 Pb에 Zr등과 같은 원소를 적당량 첨가하여 제조하게 된다. 또한, 단결정 성장방법으로는 Pb가 휘발성(volatile)이 있기 때문에 단결정 성장시 소장의 조성을 정확하게 조절하기가 매우 어려우며, 이 경우에 있어서도 단결정에 균열이 발생하기가 쉽다.The method of manufacturing a ferroelectric element for a human body detecting sensor according to the prior art has been made by a general ceramic manufacturing process or single crystal growth. Particularly, in the case of PbTiO 3 , cracking occurs due to lattice distortion due to phase transition (cubic → tetragonal) phenomenon during the cooling process, making it difficult to manufacture a uniform and dense device in a general ceramic process. . Therefore, in order to eliminate such a fault, it manufactures by adding an appropriate amount of elements, such as Zr, to Pb. In addition, in the single crystal growth method, since Pb is volatile, it is very difficult to precisely control the composition of the small intestine during single crystal growth, and cracks easily occur in the single crystal even in this case.

종래 기술에 의한 강유전체 박막 제조방법의 일예를 설명하면, 강유전체 소자는 그 조성이 주로 Pb에 Zr을 적달량 첨가한 Pb1-xZrxTiO3(PZT)로 1,200℃정도에서 소성한 시편을 원하는 크기로 자른 후, 양면을 경면 연마하고, Ag페이스트(paste)를 이용하여 소자 양면에 전극을 형성함으로써 제조한다.Referring to one example of a method for manufacturing a ferroelectric thin film according to the prior art, the ferroelectric device is a composition of Pb 1-x Zr x TiO 3 (PZT) in which the amount of Zr added to Pb mainly want a specimen baked at about 1,200 ℃ After cutting to size, both surfaces are mirror polished and manufactured by using an Ag paste to form electrodes on both sides of the device.

이와같은 방법으로 제조된 소자는 소자내의 쌍극자(dipole)방향이 무질서하게 배열되어 있으므로 유전 분극(polarization)이 거의 없는 상태로 있게 된다.Devices fabricated in this way are arranged in a disordered dipole direction, resulting in little dielectric polarization.

이에 따라 소자내의 쌍극자 방향을 되도록 한 방향으로 배열시키기 위하여 소자에 수천 볼트(volt)의 직류 전압을 인가하는 폴링(poling)처리를 반드시 실시하여야 한다. 그러나 상기한 바와 같은 종래의 제조방법에 의하여 제조된 세라믹 강유전체 소자는 단결정체이므로 동작 전압이 높을 뿐만 아니라, 대면적화가 어렵고, 주변 회로 소자와의 결합이나 집적화가 곤란하여 소형화 및 고기능화가 용이하지 못한 문제점이 있었다.Accordingly, in order to arrange the dipole direction in the device in one direction, a polling process of applying a direct current voltage of several thousand volts to the device must be performed. However, since the ceramic ferroelectric element manufactured by the conventional manufacturing method as described above is a single crystal, not only the operation voltage is high, but also the large area is difficult, and the coupling and integration with peripheral circuit elements are difficult, making it difficult to miniaturize and high functionality. There was a problem.

본 발명은 상기한 바와 같은 종래의 문제점을 해소하기 위하여 창안한 것으로, 강유전체로서 특성이 매우 우수한 PbTiO3을 실리콘 기판상에 형성시킴으로써 실리콘집적 기술과의 접합으로 집적화 및 고기능화을 가능하게 한 PbTiO3박막의 제조방법을 제공하려는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The PbTiO 3 thin film enables the integration and high functionalization of a PbTiO 3 thin film by forming a PbTiO 3 having excellent characteristics as a ferroelectric on a silicon substrate. It is to provide a manufacturing method.

이하, 본 발명의 일실시예를 설명하면 다음과 같다. 본 발명의 의한 PbTiO3박막 제조는 각각 2개의 독립적인 마그네트론 캐소우드(magnetron cathode) 및 DC 파워 서플라이 (power supply)를 이용하여 코스퍼터(cosputter)를 하였다. 이때, 타켓(target)은 순도가 4N(99.99%)이상인 Pb와 Ti 금속 타켓을 이용하였으며, 기판은 (100) 실리콘 웨이퍼(wafer)를 사용하였고, 스퍼터링 조건은 아래와 같다.Hereinafter, an embodiment of the present invention will be described. The PbTiO 3 thin film according to the present invention was cosputtered using two independent magnetron cathodes and a DC power supply. In this case, the target (Pb) and Ti metal targets having a purity of 4N (99.99%) or more were used, the substrate was a (100) silicon wafer (wafer), and the sputtering conditions are as follows.

상기한 바와같은 스퍼터링 조건에서 스퍼터 챔버(sputter chamber)에 흘려 보내는 작동 가스(working gas)에 의한 분압이 너무 낮을 경우에는 플라즈마(plasma)의 형성이 어렵게 되며, 너무 높을 경우에는 스퍼터드(sputtered)된 입자들이 기판까지 가는 도중에 작동 가스의 입자들과 충돌하여 산란되기 때문에 기판에 증착되는 비율(rate)이 감소하게 된다. 또한, 작동 가스를 구성하는 Ar과 O의 비도 O가 Ar에 대하여 10%이상을 초과하게 되면, Ti 금속타켓 표면이 산소(O)와 반응하여 TiO가 됨으로써 더 이상의 스퍼터링은 일어나지 않게 된다. 또한, 캐소우드에 가한 DC 입력 파워는 Pb와 Ti 의 스퍼터링 수율(sputtering yield)이 차이남을 고려하여 상기한 도표와 같이 Ti/Pb 캐소우드 파워(cathode power)의 비를 10∼55까지 변화시켰다.If the partial pressure by the working gas flowing into the sputter chamber under the sputtering conditions as described above is too low, it is difficult to form a plasma, and when too high, the sputtered As the particles collide with and scatter particles of the working gas on the way to the substrate, the rate of deposition on the substrate is reduced. In addition, when the ratio of Ar to O constituting the working gas exceeds 10% with respect to Ar, the Ti metal target surface reacts with oxygen (O) to become TiO, so that no further sputtering occurs. In addition, in consideration of the difference in the sputtering yield of Pb and Ti, the DC input power applied to the cathode changed the ratio of Ti / Pb cathode power to 10 to 55 as shown in the above diagram.

이상의 방법으로 실리콘 기판상에 비정질 상태의 PbTiO박막을 형성 시킨 후, 이것을 대기중에서 500℃ ∼ 800℃로 열처리하여 PbTiOpervskite 결정상(첨부된 도면 참조)을 갖는 박막을 제조하였다.After the amorphous PbTiO thin film was formed on the silicon substrate by the above method, it was heat-treated at 500 ° C. to 800 ° C. in the air to prepare a thin film having a PbTiOpervskite crystal phase (see attached drawing).

상기 Ti/Pb 캐소우드 파워의 비가 35이상인 경우에는 Ti의 과잉으로 인하여 PbTiO결정이외에 TiO결정이 생성되었으며, 15이하일 경우에는 Pb의 부족으로 pyrochlore 상이 생성되었다. 따라서, 순수한 PbTiOperovskite 결정상을 갖는 박막을 제조하기 위하여 Ti/Pb 캐소우드 파워의 비는 15 ∼ 35 정도가 가장 바람직하다. 또한, 열처리 온도는 550℃이하가 되면, PbTiO결정상의 생성이 낮은 온도로 인하여 잘 이루어지지 않았으며, 750℃이상으로 너무 높게될 경우에는 Pb의 손실로 인하여 PbTiO결정외에 pyrochlore 결정이 생성되므로 열처리 온도는 550℃ ∼ 750℃가 가장 바람직하다. 첨부된 도면은 본 발명에 의한 스퍼터링 방법으로 실리콘 기판상에 형성한 PbTiO박막의 X-선 회절 분석 결과를 보인 그래프를 보인 것이다. 이상에서 설명한 바와 같이 본 발명은 초전 및 압전 특성이 우수한 것으로 알려진 PbTiO을 실리콘 기판상에 박막으로 형성함으로써 강유전체를 이용한 디바이스(device)의 집적화, 소형화 그리고 고기능화에 기여할 수 있으며, 우수한 양산성으로 보다 저렴하게 디바이스를 제조할 수 있는 이점이 있다.When the Ti / Pb cathode power ratio was 35 or more, TiO crystals were formed in addition to the PbTiO crystals due to the excess of Ti. When the Ti / Pb cathode power ratio was 15 or less, a pyrochlore phase was formed due to a lack of Pb. Therefore, in order to produce a thin film having a pure PbTiOperovskite crystal phase, the ratio of Ti / Pb cathode power is most preferably about 15 to 35. In addition, when the heat treatment temperature is less than 550 ℃, the formation of the PbTiO crystal phase was not well achieved due to the low temperature, when the heat treatment temperature is higher than 750 ℃ too high pyrochlore crystals other than the PbTiO crystal due to the loss of Pb heat treatment temperature 550 degreeC-750 degreeC is the most preferable. The accompanying drawings show a graph showing the results of X-ray diffraction analysis of the PbTiO thin film formed on the silicon substrate by the sputtering method according to the present invention. As described above, the present invention can contribute to the integration, miniaturization, and high functionalization of devices using ferroelectrics by forming PbTiO, which is known to have excellent pyroelectric and piezoelectric properties, on a silicon substrate as a thin film. There is an advantage to be able to manufacture the device.

또한, 실리콘 집적 기술과의 접합으로 비휘발성 메모리 소자, 열 이미징(thermal imaging)소자등과 같은 신기능 소자의 개발이 가능하게 되는 효과가 있다.In addition, it is possible to develop new functional devices such as nonvolatile memory devices, thermal imaging devices, and the like by bonding with silicon integrated technology.

Claims (3)

Pb와 Ti 의 금속 타켓을 이용하여, 스퍼터링 방법으로 실리콘 기판상에 PbTiO3박막을 증착한 다음, 대기중에서 소정의 온도로 열처리함을 특징으로 하는 강유전체 박막 제조방법.A method of manufacturing a ferroelectric thin film, comprising depositing a PbTiO 3 thin film on a silicon substrate by a sputtering method by using a metal target of Pb and Ti, and then heat-treating it to a predetermined temperature in the air. 제1항에 있어서, 상기 Pb와 Ti의 금속 타켓은 Ti/Pb 캐소우드 파워의 비가 15 ∼ 35 이고, 작동 가스중 Ar/O2의 비가 9/1인 것을 특징으로 하는 강유전체 박막 제조방법.The method of claim 1, wherein the metal target of Pb and Ti has a ratio of Ti / Pb cathode power of 15 to 35, and a ratio of Ar / O 2 in a working gas of 9/1. 제1항에 있어서, 상기 열처리 온도는 550℃ ∼ 750℃인 것을 특징으로 하는 강유전체 박막 제조방법.The method of claim 1, wherein the heat treatment temperature is 550 ℃ to 750 ℃ manufacturing method of the ferroelectric thin film.
KR1019910017828A 1991-10-10 1991-10-10 Method of manufacturing ferroelectric thin film KR0162300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910017828A KR0162300B1 (en) 1991-10-10 1991-10-10 Method of manufacturing ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910017828A KR0162300B1 (en) 1991-10-10 1991-10-10 Method of manufacturing ferroelectric thin film

Publications (2)

Publication Number Publication Date
KR930008987A KR930008987A (en) 1993-05-22
KR0162300B1 true KR0162300B1 (en) 1999-02-01

Family

ID=19321082

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910017828A KR0162300B1 (en) 1991-10-10 1991-10-10 Method of manufacturing ferroelectric thin film

Country Status (1)

Country Link
KR (1) KR0162300B1 (en)

Also Published As

Publication number Publication date
KR930008987A (en) 1993-05-22

Similar Documents

Publication Publication Date Title
JP3341357B2 (en) Piezoelectric thin film element
US5308462A (en) Process for producing a ferroelectric film device
JPH08253324A (en) Ferroelectric thin film constitution body
KR19990006318A (en) Deposition of Ferroelectric Films and Ferroelectric Capacitor Devices
KR0162300B1 (en) Method of manufacturing ferroelectric thin film
JP3994163B2 (en) Manufacturing method of NBT ferroelectric thin film
CN104817320A (en) Piezoelectric composition and piezoelectric element
JPH08186182A (en) Ferroelectric thin-film element
JPH05235416A (en) Ferroelectric thin-film element
JP2001223403A (en) Ferroelectric substance thin film, its forming method and ferroelectric substance thin film element using the thin film
JPH045874A (en) Ferroelectric thin-film and manufacture thereof
TW202125852A (en) Fabrication of piezoelectric device with pmnpt layer
JPH1153935A (en) Lsro thin film and its production
JPH111768A (en) Target for ferroelectric thin film, its production and ferroelectric thin film
JP2718414B2 (en) Method for producing lead titanate thin film
JP3379796B2 (en) Ferroelectric thin film manufacturing method
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
CN112928200B (en) Lead zirconate titanate piezoelectric film and preparation method and application thereof
JPH10226572A (en) Bismuth-containing laminar perovskite sintered compact, its production and its use
JP2568505B2 (en) Ferroelectric thin film element
KR950001294B1 (en) Thin layer infrared ray sensor manufacturing method
JPH07111107A (en) Manufacture of thin film of ferroelectric substance
Ikeda et al. Dielectric properties of Nb-doped PbZrO3 thin films prepared by pulsed laser deposition
Ansari et al. PZT thin films on a lead titanate interlayer prepared by rf magnetron sputering
JPH0543242A (en) Production of lead titanate zirconate-based thin film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030701

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee