JPH0543242A - Production of lead titanate zirconate-based thin film - Google Patents

Production of lead titanate zirconate-based thin film

Info

Publication number
JPH0543242A
JPH0543242A JP3197722A JP19772291A JPH0543242A JP H0543242 A JPH0543242 A JP H0543242A JP 3197722 A JP3197722 A JP 3197722A JP 19772291 A JP19772291 A JP 19772291A JP H0543242 A JPH0543242 A JP H0543242A
Authority
JP
Japan
Prior art keywords
thin film
composition
sputtering
lead titanate
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197722A
Other languages
Japanese (ja)
Inventor
Kazunari Torii
和功 鳥居
Toru Kaga
徹 加賀
Keiko Kushida
恵子 櫛田
Eiji Takeda
英次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3197722A priority Critical patent/JPH0543242A/en
Publication of JPH0543242A publication Critical patent/JPH0543242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To easily obtain a thin film contg. lead titanate zirconate with good reproducibility by sputtering the lead composition in the thin film by a controlled high-frequency power. CONSTITUTION:A thermally oxidized film is formed on a substrate of quartz glass, etc., and then a platinum film, etc., are formed thereon by DC sputtering to obtain a desired substrate. The substrate is heated to <=200 deg.C, and a lead titanate zirconate sintered body as the target is sputtered by the high-frequency magnetron sputtering method to form a thin film on the substrate. The obtained thin film is heat-treated in an oxidizing atmosphere at the heating and cooling rate of <=2 deg.C/min to produce a lead titanate zirconate-based thin film consisting essentially of the lead titanate zirconate Pb(ZrxTi1-x)O3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路、光学素
子、焦電素子、圧電素子などに用いるチタン酸ジルコン
酸鉛 Pb(ZrxTi1-x)O3 を主成分とする薄膜に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film containing lead zirconate titanate Pb (Zr x Ti 1-x ) O 3 as a main component used in semiconductor integrated circuits, optical elements, pyroelectric elements, piezoelectric elements and the like. Is.

【0002】[0002]

【従来の技術】チタン酸ジルコン酸鉛 Pb(ZrxTi1-x)O3
系固溶体は、ペロブスカイト構造をした強誘電体であ
り、大きな圧電性、焦電性を持ち、圧電素子、赤外線検
出器等に応用されている。また、鉛の一部をLaで置換し
たものは、PLZTとして知られ、透明であるため電気光学
素子への応用が試みられている。最近では、その大きな
比誘電率と分極反転特性を利用して、不揮発性半導体メ
モリやDRAMに応用されている。
2. Description of the Related Art Lead zirconate titanate Pb (Zr x Ti 1-x ) O 3
The system solid solution is a ferroelectric substance having a perovskite structure, has large piezoelectricity and pyroelectricity, and is applied to piezoelectric elements, infrared detectors, and the like. Moreover, what replaced a part of lead by La is known as PLZT, and since it is transparent, application to an electro-optic element is tried. Recently, it has been applied to nonvolatile semiconductor memories and DRAMs by utilizing its large relative permittivity and polarization inversion characteristics.

【0003】チタン酸ジルコン酸鉛 Pb(ZrxTi1-x)O3
固溶体の薄膜をスパッタ法で形成する場合、化学量論比
の原料を混合、焼結して作られるセラミックスと違い、
鉛、ジルコニウム、チタン相互のスパッタ率、基板への
付着率の違いから、不確定な要素が大きく、化学量論比
の組成を得る方法は確立されていない。
When a thin film of lead zirconate titanate Pb (Zr x Ti 1-x ) O 3 type solid solution is formed by the sputtering method, different from ceramics produced by mixing and sintering stoichiometric raw materials,
Due to the difference in the sputtering rate among lead, zirconium, and titanium and the adhesion rate to the substrate, there are many uncertain factors, and a method for obtaining a stoichiometric composition has not been established.

【0004】タ−ゲット組成、スパッタ条件、スパッタ
ガス組成等が、それぞれの場合について検討されている
が、薄膜の組成を精密に制御する方法は確立されていな
いのが現状である。タ−ゲットの組成を変えず、スパッ
タ条件を変えることにより薄膜の組成を制御する方法と
しては、特開昭61-88403にスパッタガス圧により組成を
制御する方法が述べられている。
Although the target composition, sputtering conditions, sputtering gas composition, etc. have been investigated for each case, the present situation is that a method for precisely controlling the composition of the thin film has not been established. As a method of controlling the composition of the thin film by changing the sputtering conditions without changing the composition of the target, JP-A-61-88403 describes a method of controlling the composition by the sputtering gas pressure.

【0005】[0005]

【発明が解決しようとする課題】特開昭61-88403に述べ
られているスパッタガス圧により組成を制御する方法で
は、ガス圧を精密に制御することは難しく、従って組成
を、再現性良く、精密に制御することも困難である。
With the method of controlling the composition by the sputtering gas pressure described in JP-A-61-88403, it is difficult to precisely control the gas pressure. Therefore, the composition can be reproduced with good reproducibility. It is also difficult to control precisely.

【0006】[0006]

【課題を解決するための手段】スパッタ法によりチタン
酸ジルコン酸鉛系固溶体の薄膜を形成する際の、薄膜組
成の高周波電力依存性を詳細に調べた結果、薄膜中の鉛
の含有量は高周波電力に比例して変化することがわかっ
た。他のスパッタ条件を固定して、高周波電力を調整す
ることにより、所望の組成の薄膜を得る。
[Means for Solving the Problems] When a thin film of a lead zirconate titanate solid solution thin film was formed by a sputtering method, the high frequency power dependence of the thin film composition was investigated in detail. It was found to change in proportion to power. By fixing other sputtering conditions and adjusting the high frequency power, a thin film having a desired composition is obtained.

【0007】[0007]

【作用】高周波電力はガス圧と比べ容易に精密に制御す
ることができるので、チタン酸ジルコン酸鉛系固溶体の
薄膜の組成を再現性良く、精密に制御する方法を提供す
る。
Since the high frequency power can be easily and precisely controlled as compared with the gas pressure, a method for precisely and precisely controlling the composition of the thin film of the lead zirconate titanate solid solution is provided.

【0008】[0008]

【実施例】チタン酸ジルコン酸鉛(Pb(Zr0.5Ti0.5)O3)焼
結体をタ−ゲットとして、高周波マグネトロンスパッタ
法によりチタン酸ジルコン酸鉛薄膜を形成した。Zr/Ti
の組成比を50/50としたが、目的の用途に応じて適当な
組成比とすれば良い。基板には、石英ガラス基板や、シ
リコン基板上に厚さ約1000Åの熱酸化膜を形成した後、
その上に、DCスパッタ法により厚さ約1000Åの白金膜を
形成したものを用いた。
Example A lead zirconate titanate thin film was formed by a high frequency magnetron sputtering method using a lead zirconate titanate (Pb (Zr 0.5 Ti 0.5 ) O 3 ) sintered body as a target. Zr / Ti
Although the composition ratio of is set to 50/50, it may be set to an appropriate composition ratio according to the intended use. For the substrate, after forming a thermal oxide film with a thickness of about 1000 Å on a quartz glass substrate or a silicon substrate,
A platinum film having a thickness of about 1000 Å was formed on it by DC sputtering.

【0009】スパッタガスにアルゴンと酸素の混合ガス
を用いた。スパッタガス圧は15Paとした。薄膜の組成は
誘導結合プラズマ発光分光分析法により分析した。図1
に示したように、薄膜中に含まれるチタンとジルコニウ
ムの組成比は、スパッタする高周波電力を変えてもタ−
ゲットのそれとほとんど変化しないが、鉛のチタンとジ
ルコニウムに対する組成比は、高周波電力に比例して変
化している。この図に示したスパッタ条件のもとでは、
高周波電力を360Wとすれば、鉛の量に過不足がなく、
タ−ゲットと同じ組成の薄膜が得られる。高周波電力以
外のスパッタ条件、例えばスパッタガス圧や酸素とアル
ゴンの混合比を変えると、鉛のチタンとジルコニウムに
対する組成比が1(Pb/Zr+Ti=1)となる高周波電力は変わ
るが、高周波電力に比例して変化することに変わりは無
い。したがって、幾つかの高周波電力でスパッタを行
い、得られた薄膜の組成を分析すれば、容易に、Pb/Zr+
Ti=1となる高周波電力を決定することができる。このよ
うにして決めた高周波電力でスパッタを行えば、タ−ゲ
ットと同じ組成の薄膜を形成することができる。
A mixed gas of argon and oxygen was used as the sputtering gas. The sputtering gas pressure was 15 Pa. The composition of the thin film was analyzed by inductively coupled plasma emission spectroscopy. Figure 1
As shown in Fig. 3, the composition ratio of titanium and zirconium contained in the thin film varies depending on the high frequency power to be sputtered.
The composition ratio of lead to titanium and zirconium is almost the same as that of Get, but the composition ratio of lead to titanium and zirconium is changed in proportion to the high frequency power. Under the sputtering conditions shown in this figure,
If the high frequency power is 360 W, there will be no excess or deficiency in the amount of lead,
A thin film having the same composition as the target can be obtained. If the sputtering conditions other than high-frequency power, such as the sputtering gas pressure or the mixing ratio of oxygen and argon, are changed, the high-frequency power at which the composition ratio of lead to titanium and zirconium is 1 (Pb / Zr + Ti = 1) will change. There is no change in that it changes in proportion to electric power. Therefore, if sputtering is performed with some high-frequency power and the composition of the obtained thin film is analyzed, Pb / Zr +
The high frequency power that Ti = 1 can be determined. By performing the sputtering with the high frequency power thus determined, a thin film having the same composition as the target can be formed.

【0010】基板温度を600℃以上にするとスパッタ終
了時には(as-depo)ペロブスカイト構造が得られる
が、図2に示したように鉛の組成変化は大きくなり、組
成の制御は低温でスパッタする場合に比べて難しくな
る。
When the substrate temperature is set to 600 ° C. or higher, an (as-depo) perovskite structure is obtained at the end of sputtering. However, as shown in FIG. 2, the composition change of lead becomes large, and the composition is controlled when sputtering is performed at a low temperature. It becomes more difficult than

【0011】200℃以下でスパッタした薄膜は、熱処理
することによりペロブスカイト構造が得られる。図3に
示したように590℃以上で熱処理すれば良い。また、熱
処理を行う際、急速に温度を上げたり、下げたりすると
薄膜が基板から剥離してしまう。これを防ぐには、昇
温、降温速度を2℃/min以下とすれば良い。
A thin film sputtered at 200 ° C. or lower can be heat-treated to obtain a perovskite structure. As shown in FIG. 3, heat treatment may be performed at 590 ° C. or higher. In addition, when heat treatment is performed, if the temperature is rapidly raised or lowered, the thin film may peel off from the substrate. In order to prevent this, the temperature rising / falling rate may be set to 2 ° C./min or less.

【0012】以上のような方法で形成した薄膜の電気特
性は、図4に示したように鉛の組成によって大きく変化
する。X線回折で見るといずれの薄膜もペロブスカイト
型構造を持つPZTの単相に見えるが、焼結体と同等の
比誘電率と残留分極を持つのは、鉛の組成に過不足が無
く、Pb/Zr+Ti=1を満たす組成を持つ膜だけである。ま
た、分極を反転させるのに必要な電場(抗電場)もPb/Zr+
Ti=1を満たす組成から、一定になっている。比誘電率、
残留分極、抗電場の大きさは強誘電体を電気素子に応用
する際には特に重要な特性である。たとえば、強誘電体
薄膜を不揮発性メモリに応用する際には、残留分極が大
きく、かつ、抗電場が小さいことが条件となる。また、
強誘電体薄膜をDRAMのキャパシタ絶縁膜に用いる際に
は、比誘電率が大きくなければならない。所望の電気特
性を得るためには鉛の組成を制御することが重要であ
り、薄膜中の鉛の組成は、スパッタ時の高周波電力で精
密に制御できることが明らかとなった。
The electrical characteristics of the thin film formed by the above method greatly vary depending on the lead composition, as shown in FIG. When viewed by X-ray diffraction, all of the thin films appear to be a single phase of PZT with a perovskite structure, but the reason why they have the same relative permittivity and remanent polarization as that of the sintered body is that there is no excess or deficiency in the Pb composition and Pb Only a film having a composition satisfying / Zr + Ti = 1. Also, the electric field (anti-electric field) required to reverse the polarization is Pb / Zr +
It is constant from the composition that satisfies Ti = 1. Relative permittivity,
The remanent polarization and the magnitude of the coercive electric field are particularly important characteristics when the ferroelectric substance is applied to an electric device. For example, when the ferroelectric thin film is applied to a non-volatile memory, it is necessary to have a large remanent polarization and a small coercive electric field. Also,
When using a ferroelectric thin film as a capacitor insulating film of DRAM, the relative dielectric constant must be large. It is important to control the lead composition in order to obtain desired electrical characteristics, and it has been clarified that the lead composition in the thin film can be precisely controlled by high frequency power during sputtering.

【0013】[0013]

【発明の効果】高周波電力を調整することにより、簡単
に、再現性よく所望の組成のチタン酸ジルコン酸鉛系固
溶体の薄膜を薄膜を作成することが可能となる。
By adjusting the high frequency power, it is possible to easily form a thin film of the lead zirconate titanate solid solution having a desired composition with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】スパッタ薄膜の組成比の高周波電力依存性を示
す図である。
FIG. 1 is a diagram showing a high frequency power dependency of a composition ratio of a sputtered thin film.

【図2】スパッタ薄膜の組成比の高周波電力依存性(600
℃でスパッタした場合)を示す図である。
FIG. 2 High frequency power dependence of composition ratio of sputtered thin film (600
It is a figure showing the case (sputtering at ° C).

【図3】スパッタ薄膜の熱処理による結晶構造変化を示
す図である。
FIG. 3 is a diagram showing a change in crystal structure due to heat treatment of a sputtered thin film.

【図4】スパッタ薄膜の電気特性の組成による変化を示
す図である。
FIG. 4 is a diagram showing changes in electrical characteristics of a sputtered thin film depending on the composition.

フロントページの続き (72)発明者 武田 英次 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front Page Continuation (72) Inventor Eiji Takeda 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】チタン酸ジルコン酸鉛 Pb(ZrxTi1-x)O3
主成分とする薄膜を高周波スパッタリング法により形成
する際に、薄膜中の鉛の組成を高周波電力により制御す
ることを特徴とするチタン酸ジルコン酸鉛系薄膜の製造
方法。
1. When forming a thin film containing lead zirconate titanate Pb (Zr x Ti 1-x ) O 3 as a main component by a high frequency sputtering method, controlling the composition of lead in the thin film by high frequency power. A method for producing a lead zirconate titanate-based thin film, comprising:
【請求項2】200℃以下の基板温度でスパッタをおこな
った後、酸化雰囲気中で熱処理することを特徴とする特
許請求の範囲第1項記載のチタン酸ジルコン酸鉛系薄膜
の製造方法。
2. The method for producing a lead zirconate titanate-based thin film according to claim 1, wherein the sputtering is performed at a substrate temperature of 200 ° C. or lower, and then the heat treatment is performed in an oxidizing atmosphere.
【請求項3】前記熱処理を、酸化雰囲気中で行い、昇温
速度、降温速度を毎分2℃以下とすることを特徴とする
特許請求の範囲第2項記載のチタン酸ジルコン酸鉛系薄
膜の製造方法。
3. The lead zirconate titanate-based thin film according to claim 2, wherein the heat treatment is performed in an oxidizing atmosphere, and the temperature rising rate and the temperature lowering rate are 2 ° C. or less per minute. Manufacturing method.
JP3197722A 1991-08-07 1991-08-07 Production of lead titanate zirconate-based thin film Pending JPH0543242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197722A JPH0543242A (en) 1991-08-07 1991-08-07 Production of lead titanate zirconate-based thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197722A JPH0543242A (en) 1991-08-07 1991-08-07 Production of lead titanate zirconate-based thin film

Publications (1)

Publication Number Publication Date
JPH0543242A true JPH0543242A (en) 1993-02-23

Family

ID=16379265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197722A Pending JPH0543242A (en) 1991-08-07 1991-08-07 Production of lead titanate zirconate-based thin film

Country Status (1)

Country Link
JP (1) JPH0543242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691693A1 (en) * 1994-07-08 1996-01-10 Seiko Epson Corporation Thin film piezoelectric device and ink jet recording head comprising the same
JP2002043641A (en) * 2000-07-19 2002-02-08 Seiko Epson Corp Piezoelectric element and ink jet recording head using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691693A1 (en) * 1994-07-08 1996-01-10 Seiko Epson Corporation Thin film piezoelectric device and ink jet recording head comprising the same
US6149968A (en) * 1994-07-08 2000-11-21 Seiko Epson Corporation Thin film piezoelectric device and ink jet recording head comprising the same
JP2002043641A (en) * 2000-07-19 2002-02-08 Seiko Epson Corp Piezoelectric element and ink jet recording head using the same

Similar Documents

Publication Publication Date Title
US5831299A (en) Thin ferroelectric film element having a multi-layered thin ferroelectric film and method for manufacturing the same
JP3341357B2 (en) Piezoelectric thin film element
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
US6162293A (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
JP2002535838A (en) Ferroelectric memory having ferroelectric thin film and manufacturing method
US5397446A (en) Method of forming a ferroelectric film
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
KR100315264B1 (en) Method for manufacturing oxide dielectric device, and memory and semiconductor device usign the device
JP3349612B2 (en) Dielectric capacitor and method of manufacturing the same
JP2004292218A (en) Ferroelectric film
JPH0543242A (en) Production of lead titanate zirconate-based thin film
JPH08186182A (en) Ferroelectric thin-film element
JP3981142B2 (en) Ferroelectric capacitor and manufacturing method thereof
JPH0969614A (en) Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film
KR970067621A (en) A method for forming a platinum thin film preferentially oriented in a (200) direction on a substrate. A substrate provided with a platinum thin film formed by the method,
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JP3267278B2 (en) Method for manufacturing semiconductor device
JP3267277B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JP2568505B2 (en) Ferroelectric thin film element
JPH0624222B2 (en) Method of manufacturing thin film capacitor
Norga et al. The effect of pb stiochiometry on switching behavior of pt/lead zirconate titanate/pt ferroelectric capacitors
KR0162300B1 (en) Method of manufacturing ferroelectric thin film
JP2000082796A (en) Semiconductor device