JP3267278B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3267278B2
JP3267278B2 JP25597299A JP25597299A JP3267278B2 JP 3267278 B2 JP3267278 B2 JP 3267278B2 JP 25597299 A JP25597299 A JP 25597299A JP 25597299 A JP25597299 A JP 25597299A JP 3267278 B2 JP3267278 B2 JP 3267278B2
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
lower electrode
ferroelectric thin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25597299A
Other languages
Japanese (ja)
Other versions
JP2000082787A (en
Inventor
勝人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25597299A priority Critical patent/JP3267278B2/en
Publication of JP2000082787A publication Critical patent/JP2000082787A/en
Application granted granted Critical
Publication of JP3267278B2 publication Critical patent/JP3267278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に不揮発性メモ
リ装置に使用される強誘電体キャパシタを有する半導体
装置及びその製造方法に関し、特に鉛を1成分として含
む強誘電体キャパシタに注目する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a ferroelectric capacitor mainly used for a nonvolatile memory device and a method of manufacturing the same, and particularly focuses on a ferroelectric capacitor containing lead as one component.

【0002】[0002]

【従来の技術】従来、例えばジャーナル・オブ・アプラ
イド・フィジックス(Journalof Appli
ed Physics)第64巻、1484項〜149
3項に記載されていた様に、強誘電体メモリ装置等に使
用される強誘電体キャパシタには、組成比が一様な前駆
体薄膜を形成した後アニールし、強誘電体薄膜を形成し
ていた。
2. Description of the Related Art Conventionally, for example, Journal of Applied Physics (Journal of Appli Physics)
Physics) Vol. 64, pp. 1484-149
As described in item 3, in a ferroelectric capacitor used in a ferroelectric memory device or the like, a precursor thin film having a uniform composition ratio is formed and then annealed to form a ferroelectric thin film. I was

【0003】図2の断面構造図を基に従来例を説明す
る。
A conventional example will be described with reference to the sectional structural view of FIG.

【0004】すなわち、シリコン基板101上に下部電
極103を形成し、下部電極103上に酸化鉛を過剰に
含む、一様な組成比を持つ強誘電体薄膜の前駆体である
PZT200をスパッタ法により形成した後、ペロブス
カイト構造の強誘電相を得るため、500℃から900
℃の温度でアニールしていた。
That is, a lower electrode 103 is formed on a silicon substrate 101, and PZT200, which is a precursor of a ferroelectric thin film having a uniform composition ratio and containing excess lead oxide, is formed on the lower electrode 103 by sputtering. After the formation, to obtain a ferroelectric phase having a perovskite structure, the temperature is increased from 500 ° C. to 900 ° C.
Annealed at a temperature of ° C.

【0005】その後上部電極110を形成していた。After that, an upper electrode 110 was formed.

【0006】この様に、スパッタ法に於て、強誘電体薄
膜を得るには、強誘電体の前駆体薄膜を形成した後に後
処理として500℃から900℃程度の温度で、酸素雰
囲気中で1時間程度アニールを行い完全な強誘電相、す
なわちペロブスカイト構造を得ていた。
As described above, in order to obtain a ferroelectric thin film by sputtering, after forming a ferroelectric precursor thin film, post-processing is performed at a temperature of about 500 ° C. to 900 ° C. in an oxygen atmosphere. Annealing was performed for about one hour to obtain a complete ferroelectric phase, that is, a perovskite structure.

【0007】また、従来ゾル−ゲル法に於いてもPZT
を形成する場合、Pb、チタン(Ti)、ジルコニウム
(Zr)の金属アルコキシドを化学量論組成のモル比で
均一溶液とし、これを下部電極上に塗布し、その後、7
00℃で焼成してはじめて強誘電相を得ることが出来
る。
[0007] In the conventional sol-gel method, PZT
Is formed, a metal alkoxide of Pb, titanium (Ti), and zirconium (Zr) is made into a uniform solution in a molar ratio of the stoichiometric composition, and the solution is applied on the lower electrode.
A ferroelectric phase can be obtained only after firing at 00 ° C.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来Pbを1
成分として含む強誘電体薄膜を形成する場合、この様に
して下部電極上に形成された強誘電体の前駆体薄膜は、
アニール時に蒸気圧の高いPbが前駆体薄膜表面から蒸
発し、強誘電体薄膜の厚さ方向にPbの濃度分布が出来
てしまい、化学量論的組成に非常に近い一様な強誘電性
薄膜が有する特性に比べ、強誘電体薄膜の特性が著しく
劣化してしまうという問題点を有していた。
However, the conventional Pb is 1
When forming a ferroelectric thin film containing as a component, the ferroelectric precursor thin film thus formed on the lower electrode,
During annealing, Pb with a high vapor pressure evaporates from the surface of the precursor thin film, resulting in a Pb concentration distribution in the thickness direction of the ferroelectric thin film, and a uniform ferroelectric thin film very close to the stoichiometric composition. However, there is a problem that the characteristics of the ferroelectric thin film are significantly deteriorated as compared with the characteristics of the ferroelectric thin film.

【0009】そこで、本発明は従来のこの様な課題を解
決しようとするもので、その目的とするところは、アニ
ール後に於いて強誘電体薄膜の厚さ方向のPb濃度分布
の変化を少なくし薄膜全体に於いて一様な組成、すなわ
ち化学量論的組成に非常に近い膜を形成し、強誘電体特
性の非常に良い膜を得る強誘電体薄膜の製造方法を提供
するところにある。
Therefore, the present invention is to solve such a conventional problem, and an object of the present invention is to reduce the change in the Pb concentration distribution in the thickness direction of the ferroelectric thin film after annealing. It is an object of the present invention to provide a method for producing a ferroelectric thin film in which a film having a uniform composition in the whole thin film, that is, a film having a very close stoichiometric composition, is obtained to obtain a film having excellent ferroelectric characteristics.

【0010】[0010]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、 (1) 下部電極、上部電極、ならびに前記下部電極と
前記上部電極との間に鉛(Pb)が一成分として含まれ
る強誘電体薄膜を備えた強誘電体キャパシタを有する半
導体装置の製造方法であって、前記下部電極を形成する
工程と、前記下部電極上に前記強誘電体薄膜を高周波マ
グネトロンスパッタ法を用いて形成するスパッタ工程
と、前記強誘電体薄膜をアニールする工程と、前記上部
電極を形成する工程と、を有し、前記スパッタ工程が、
第一のガス圧力下で行われる第一のスパッタ工程と、前
記第一のガス圧力よりもガス圧の高い第二のガス圧力下
で行われる第二のスパッタ工程を備えることを特徴とす
る。 (2) 前記スパッタ工程では、前記第一のガス圧力か
ら前記第二のガス圧力まで、ガス圧力を連続的に増加さ
せて行われることを特徴とする。 (3) 下部電極、上部電極、ならびに前記下部電極と
前記上部電極との間に鉛(Pb)が一成分として含まれ
る強誘電体薄膜を備えた強誘電体キャパシタを有する半
導体装置の製造方法であって、前記下部電極を形成する
工程と、前記下部電極上に前記強誘電体薄膜を高周波マ
グネトロンスパッタ法を用いて形成するスパッタ工程
と、前記強誘電体薄膜をアニールする工程と、前記上部
電極を形成する工程と、を有し、前記スパッタ工程で
は、ガス圧力を一定に保ちながら、第一のAr分圧か
ら、該第一のAr分圧より高い第二のAr分圧へAr分
圧を増加させてデポジションが行われることを特徴とす
る。 (4) 下部電極、上部電極、ならびに前記下部電極と
前記上部電極との間に鉛(Pb)が一成分として含まれ
る強誘電体薄膜を備えた強誘電体キャパシタを有する半
導体装置の製造方法であって、前記下部電極を形成する
工程と、前記下部電極上に前記強誘電体薄膜を高周波マ
グネトロンスパッタ法を用いて形成するスパッタ工程
と、前記強誘電体薄膜をアニールする工程と、前記上部
電極を形成する工程と、を有し、前記スパッタ工程で
は、ターゲットと基板との距離を増加させながらデポジ
ションが行われることを特徴とする。 (5) 下部電極、上部電極、ならびに前記下部電極と
前記上部電極との間に鉛(Pb)が一成分として含まれ
強誘電体薄膜を備えた強誘電体キャパシタを有する半
導体装置の製造方法であって、前記下部電極を形成する
工程と、前記下部電極上に、前記強誘電体薄膜の前駆体
材料を塗布する工程と、該前駆体材料を熱処理する工程
と、前記上部電極を形成する工程とを有し、前記下部電
極の形成後において、前記強誘電体薄膜の前駆体材料を
塗布する工程と該前駆体材料を熱処理する工程が複数回
繰り返し行われ、且つ、前記前駆体材料中の鉛の濃度が
前記下部電極側と比べて前記上部電極側で増加するよう
に形成することを特徴とする。
According to the present invention, there is provided a method of manufacturing a semiconductor device, comprising: (1) a lower electrode, an upper electrode, and one component of lead (Pb) between the lower electrode and the upper electrode. A method of manufacturing a semiconductor device having a ferroelectric capacitor having a ferroelectric thin film, comprising: forming the lower electrode; and forming the ferroelectric thin film on the lower electrode by using a high-frequency magnetron sputtering method. And a step of annealing the ferroelectric thin film, and a step of forming the upper electrode, wherein the sputtering step
It is characterized by comprising a first sputtering step performed under a first gas pressure and a second sputtering step performed under a second gas pressure having a gas pressure higher than the first gas pressure. (2) The sputtering is performed by continuously increasing the gas pressure from the first gas pressure to the second gas pressure. (3) A method of manufacturing a semiconductor device including a lower electrode, an upper electrode, and a ferroelectric capacitor including a ferroelectric thin film containing lead (Pb) as one component between the lower electrode and the upper electrode. A step of forming the lower electrode; a step of forming the ferroelectric thin film on the lower electrode by using a high-frequency magnetron sputtering method; a step of annealing the ferroelectric thin film; And forming a partial pressure in the sputtering step from the first Ar partial pressure to a second Ar partial pressure higher than the first Ar partial pressure while keeping the gas pressure constant. Is increased, and the deposition is performed. (4) A method of manufacturing a semiconductor device including a lower electrode, an upper electrode, and a ferroelectric capacitor including a ferroelectric thin film containing lead (Pb) as one component between the lower electrode and the upper electrode. A step of forming the lower electrode; a step of forming the ferroelectric thin film on the lower electrode by using a high-frequency magnetron sputtering method; a step of annealing the ferroelectric thin film; And depositing while increasing the distance between the target and the substrate in the sputtering step. (5) Lead (Pb) is contained as one component between the lower electrode, the upper electrode, and the lower electrode and the upper electrode.
A method of manufacturing a semiconductor device having a ferroelectric capacitor provided with a ferroelectric thin film, comprising: forming the lower electrode; and applying a precursor material of the ferroelectric thin film on the lower electrode. And a step of heat-treating the precursor material; and a step of forming the upper electrode. After forming the lower electrode, a step of applying a precursor material for the ferroelectric thin film and the precursor The step of heat-treating the material is repeated a plurality of times, and the concentration of lead in the precursor material is reduced.
As it increases on the upper electrode side compared to the lower electrode side
Is formed .

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【実施例】本発明の強誘電体薄膜の製造方法の第1の実
施例を図1(a)〜(e)の製造工程断面図に基づき説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a method of manufacturing a ferroelectric thin film according to the present invention will be described with reference to FIGS.

【0015】ここでは簡単のため、強誘電体特性を調べ
るための試料の製造方法について述べることにする。
Here, for simplicity, a method of manufacturing a sample for examining ferroelectric characteristics will be described.

【0016】勿論この製造方法を半導体装置にそのまま
応用すれば、強誘電体を用いた半導体メモリ装置を作る
ことが出来る。
Of course, if this manufacturing method is applied to a semiconductor device as it is, a semiconductor memory device using a ferroelectric can be manufactured.

【0017】第1の実施例では、強誘電体薄膜の製造方
法としてゾル−ゲル法を用いた。
In the first embodiment, a sol-gel method was used as a method for producing a ferroelectric thin film.

【0018】まず、図1(a)のように、n型シリコン
基板101上に、化学的気相成長法により約5000Å
の二酸化珪素膜102を、更にスパッタ法により約20
00Åの白金(Pt)を下部電極103として順次形成
する。
First, as shown in FIG. 1A, about 5000 ° C. is formed on an n-type silicon substrate 101 by a chemical vapor deposition method.
Silicon dioxide film 102 is further
Platinum (Pt) of 00 ° is sequentially formed as the lower electrode 103.

【0019】次に、図1(b)のように、500Åの第
1の強誘電体前駆体薄膜104を塗布する。この強誘電
体前駆体薄膜104は、Pb、Zr、Tiの金属アルコ
キシドを1.00:0.52:0.48のモル比で均一
溶液としたものである。
Next, as shown in FIG. 1B, a first ferroelectric precursor thin film 104 of 500 ° is applied. This ferroelectric precursor thin film 104 is a uniform solution of metal alkoxides of Pb, Zr and Ti at a molar ratio of 1.00: 0.52: 0.48.

【0020】この強誘電体前駆体薄膜104を下部電極
103上に塗布した後、酸素雰囲気中、200℃で20
分の仮焼成を行う。
After this ferroelectric precursor thin film 104 is applied on the lower electrode 103, the thin film is heated at 200 ° C. in an oxygen atmosphere.
For a minute.

【0021】その後、図1(c)に示すようにそれぞれ
500Åの第2から第6の強誘電体前駆体薄膜105、
106、107、108、109を同様にして形成す
る。
Thereafter, as shown in FIG. 1 (c), the second to sixth ferroelectric precursor thin films 105
106, 107, 108, and 109 are formed in the same manner.

【0022】但し第2から第6の強誘電体前駆体薄膜1
05、106、107、108、109はPb、Zr、
Tiの金属アルコキシドを下記に示すモル比で均一溶液
としたものである。
However, the second to sixth ferroelectric precursor thin films 1
05, 106, 107, 108 and 109 are Pb, Zr,
It is a uniform solution of Ti metal alkoxide in the following molar ratio.

【0023】Pb : Zr : Ti 第2の強誘電体前駆体薄膜105 1.01:0.52:0.48 第3の強誘電体前駆体薄膜106 1.02:0.52:0.48 第4の強誘電体前駆体薄膜107 1.03:0.5
2:0.48 第5の強誘電体前駆体薄膜108 1.04:0.52:0.48 第6の強誘電体前駆体薄膜109 1.05:0.52:0.48 すなわち、どんどん強誘電体前駆体薄膜が積み重なるに
つれ、Pb濃度を増加するようにした。
Pb: Zr: Ti Second ferroelectric precursor thin film 105 1.01: 0.52: 0.48 Third ferroelectric precursor thin film 106 1.02: 0.52: 0.48 Fourth ferroelectric precursor thin film 107 03: 0.5
2: 0.48 Fifth ferroelectric precursor thin film 108 1.04: 0.52: 0.48 Sixth ferroelectric precursor thin film 109 1.05: 0.52: 0.48 That is, as the ferroelectric precursor thin films accumulate, the Pb concentration increases. Was increased.

【0024】第6の強誘電体前駆体薄膜109形成後に
も仮焼成を行なった。
Preliminary firing was also performed after the formation of the sixth ferroelectric precursor thin film 109.

【0025】その後、酸素雰囲気中、700℃で焼成を
1時間行うことにより、PZTの多結晶薄膜を形成する
ことが出来た。
After that, baking was performed at 700 ° C. for 1 hour in an oxygen atmosphere, thereby forming a polycrystalline thin film of PZT.

【0026】次に図1(d)に示すように、上部電極1
10として厚さ1000ÅのPtをスパッタ法で形成し
た後、図1(e)の様に、普通のフォトリソグラフィー
を用いて上部電極110のPtを100μm角にパター
ニングした。
Next, as shown in FIG.
After forming Pt with a thickness of 1000 ° by sputtering as 10, as shown in FIG. 1E, the Pt of the upper electrode 110 was patterned into a 100 μm square by using ordinary photolithography.

【0027】図3に700℃での焼成を行った前後のP
b濃度の深さプロファイルを示す。
FIG. 3 shows P before and after firing at 700 ° C.
4 shows a depth profile of b concentration.

【0028】このように焼成後のPb濃度の深さ分布
は、ほぼ一様となり化学量論的組成に非常に近いもので
あった。
As described above, the depth distribution of the Pb concentration after firing was almost uniform and was very close to the stoichiometric composition.

【0029】図4に示すように、この強誘電体薄膜の強
誘電体特性はソーヤ・タワー回路によるヒステリシスカ
ーブで測定された。測定は室温、50Hzの周波数で行
った。
As shown in FIG. 4, the ferroelectric characteristics of this ferroelectric thin film were measured by a hysteresis curve using a Sawyer tower circuit. The measurement was performed at room temperature at a frequency of 50 Hz.

【0030】残留分極30μC/cm2、抗電界30k
V/cmと良好な強誘電性特性が 得られた。
Residual polarization 30 μC / cm 2 , coercive electric field 30 k
Good ferroelectric properties of V / cm were obtained.

【0031】第1の実施例では、強誘電体前駆体薄膜の
塗布を6回行ったが、2回としてもよい。
In the first embodiment, the ferroelectric precursor thin film is applied six times, but may be applied twice.

【0032】その時は、1回目に塗布する強誘電体前駆
体薄膜のPbモル比に比べて2回目に塗布する強誘電体
前駆体薄膜のPbモル比を上げてやればよい。
At this time, the Pb molar ratio of the ferroelectric precursor thin film applied second time may be increased as compared with the Pb molar ratio of the ferroelectric precursor thin film applied first.

【0033】本発明の強誘電体薄膜の製造方法の第2の
実施例を図5(a)〜(d)の製造工程断面図に基づき
説明する。
A second embodiment of the method for producing a ferroelectric thin film according to the present invention will be described with reference to the sectional views of the production steps shown in FIGS.

【0034】第2の実施例では、強誘電体薄膜の製造方
法として高周波マグネトロンスパッタ法を用いた。
In the second embodiment, a high-frequency magnetron sputtering method was used as a method for manufacturing a ferroelectric thin film.

【0035】まず、図5(a)のように、第1の実施例
と同様にして、シリコン基板101上に二酸化珪素膜1
02、下部電極103を形成する。
First, as shown in FIG. 5A, a silicon dioxide film 1 is formed on a silicon substrate 101 in the same manner as in the first embodiment.
02, the lower electrode 103 is formed.

【0036】次に、図5(b)のように、2500Åの
第1の強誘電体薄膜504を高周波マグネトロンスパッ
タ法により形成する。
Next, as shown in FIG. 5B, a first ferroelectric thin film 504 of 2500 ° is formed by a high-frequency magnetron sputtering method.

【0037】この時ターゲットにPb1.1Zr0.5Ti
0.53を用いた。
At this time, the target was Pb 1.1 Zr 0.5 Ti
0.5 O 3 was used.

【0038】基板温度300℃、Ar:O2=9:1の
雰囲気ガスとし、20mTorr、パワー300Wとし
た。
The substrate temperature was 300 ° C., the atmosphere gas was Ar: O 2 = 9: 1, the pressure was 20 mTorr, and the power was 300 W.

【0039】次に図5(c)に示すように、ガス圧力だ
けを25mTorrに増加してイン・シチュでスパッタ
デポジションを行ない、500Åの第2の強誘電体薄膜
505を形成した。
Next, as shown in FIG. 5 (c), only the gas pressure was increased to 25 mTorr, and a sputter deposition was performed in situ to form a second ferroelectric thin film 505 of 500 °.

【0040】同じターゲットを用いても雰囲気ガスの圧
力だけを変化させることにより、デポジションされた薄
膜の組成比を変化させることは可能である。
Even when the same target is used, it is possible to change the composition ratio of the deposited thin film by changing only the pressure of the atmospheric gas.

【0041】上に示した今のスパッタ条件に於いては、
圧力を増加させることによりPb濃度を増加させること
が出来る。
Under the current sputtering conditions shown above,
The Pb concentration can be increased by increasing the pressure.

【0042】スパッタ直後の強誘電体薄膜504、50
5は完全な強誘電相すなわちペロブスカイト構造を示さ
ない。
Ferroelectric thin films 504 and 50 immediately after sputtering
No. 5 does not show a perfect ferroelectric phase, that is, a perovskite structure.

【0043】すなわち、ペロブスカイト構造と強誘電相
を示さないパイロクロア相の混合状態となっている。
That is, a mixed state of a perovskite structure and a pyrochlore phase not exhibiting a ferroelectric phase is obtained.

【0044】そこで、次に酸素雰囲気中、750℃で1
時間アニールを行い多結晶の完全な強誘電体相を形成す
る。
Then, next, at 750.degree.
Perform time annealing to form a complete polycrystalline ferroelectric phase.

【0045】最後に図5(d)に示すように、第1の実
施例と同様にして、100μm角のPtからなる上部電
極110を形成した。
Finally, as shown in FIG. 5D, an upper electrode 110 of 100 μm square made of Pt was formed in the same manner as in the first embodiment.

【0046】図6に750℃でのアニールを行った前後
のPb濃度の深さプロファイルを示す。
FIG. 6 shows a depth profile of the Pb concentration before and after annealing at 750 ° C.

【0047】このようにアニール後のPb濃度の深さ分
布は、ほぼ一様となり化学量論的組成に非常に近いもの
であった。
As described above, the depth distribution of the Pb concentration after annealing was almost uniform and very close to the stoichiometric composition.

【0048】又、ターゲットにPb1.1Zr0.5Ti0.5
3.1を用い、実施例2と同様の方法を用いて強誘電体
膜を製造した場合にもアニール後のPbの濃度の深さ分
布はほぼ一様となった。
The target was Pb 1.1 Zr 0.5 Ti 0.5
Also in the case where a ferroelectric film was manufactured using O3.1 and using the same method as in Example 2, the depth distribution of the Pb concentration after annealing was almost uniform.

【0049】この強誘電体薄膜の残留分極は50μC/
cm2、抗電界は35kV/cmと良好な強誘電性特性
が得られた。
The remanent polarization of this ferroelectric thin film is 50 μC /
cm 2 and a coercive electric field of 35 kV / cm, indicating good ferroelectric properties.

【0050】第2の実施例では、スパッタ中にガス圧力
を2段階に分けてデポジションを行ったが、コンピュー
タ制御により、ガス圧力を連続的に増加させ、それにと
もなって強誘電体薄膜中のPb濃度を徐々に、増加させ
ることも可能である。
In the second embodiment, the deposition was performed by dividing the gas pressure into two stages during sputtering. However, the gas pressure was continuously increased by computer control, and accordingly, the deposition in the ferroelectric thin film was performed. It is also possible to gradually increase the Pb concentration.

【0051】また、全ガス圧力を一定に保ちながら、A
r分圧を増加させることによっても強誘電体薄膜中のP
b濃度を増加させることもできるし、ターゲットとシリ
コン基板の距離を増加させることによっても、強誘電体
薄膜中のPb濃度を増加させることが可能である。
Further, while keeping the total gas pressure constant, A
The partial pressure of P in the ferroelectric thin film can be increased by increasing the
The Pb concentration in the ferroelectric thin film can be increased by increasing the b concentration, or by increasing the distance between the target and the silicon substrate.

【0052】第2の実施例において、アニールを行なっ
てから上部電極110を形成したが、上部電極110を
形成した後、アニールを行なってもよい。
In the second embodiment, the upper electrode 110 is formed after annealing is performed. However, the annealing may be performed after the upper electrode 110 is formed.

【0053】第1及び第2の実施例に於いて、シリコン
基板を用いたがマグネシア(MgO)、サファイア等他
の基板を用いても良い。
In the first and second embodiments, a silicon substrate is used, but another substrate such as magnesia (MgO) or sapphire may be used.

【0054】また、強誘電体薄膜として、PZTすなわ
ちPb(ZrXTi1-X)O3、X=0.48、0.5を
用いて説明したが、他の組成比を持つPZTであっても
よいし、ランタン(La)をドーピングしたPLZTで
も勿論良いし、カルシウム(Ca)、バリウム(B
a)、マグネシウム(Mg)、ナイオビウム(Nb)、
ストロンチウム(Sr)等がドーピングされていても勿
論良い。
Further, PZT, that is, Pb (Zr x Ti 1 -x) O 3 , where X = 0.48 and 0.5 is used as the ferroelectric thin film, but PZT having another composition ratio is used. PLZT doped with lanthanum (La) may of course be used, and calcium (Ca), barium (B
a), magnesium (Mg), niobium (Nb),
Of course, strontium (Sr) or the like may be doped.

【0055】[0055]

【発明の効果】本発明の強誘電体薄膜の製造方法は、以
上説明したように下部電極と上部電極の間に鉛(Pb)
を1成分として含む強誘電体薄膜が挟まれた構造を持つ
強誘電体薄膜の製造方法に於いて、前記下部電極上に前
記強誘電体の前駆体薄膜を前記下部電極側で鉛の濃度を
低濃度に、前記上部電極側で鉛の濃度を高濃度に形成す
ることによって、アニールを行い完全な強誘電相を得た
後のPb組成比の上下方向のずれを極力無くす事によ
り、強誘電体特性の良好な薄膜を得ることが出来る効果
を有する。
As described above, the method of manufacturing a ferroelectric thin film according to the present invention uses lead (Pb) between the lower electrode and the upper electrode.
In a method of manufacturing a ferroelectric thin film having a structure in which a ferroelectric thin film containing as one component is sandwiched, a precursor thin film of the ferroelectric is placed on the lower electrode, and a concentration of lead is reduced on the lower electrode side. By forming a high concentration of lead on the side of the upper electrode to a low concentration, annealing is performed to obtain a complete ferroelectric phase, thereby minimizing the vertical shift of the Pb composition ratio, thereby reducing ferroelectricity. This has the effect that a thin film having good body characteristics can be obtained.

【0056】更に、この強誘電体薄膜の製造方法を用い
れば、不揮発性メモリや、光スイッチ、キャパシタ、赤
外線センサ、超音波センサ、薄膜圧電振動子として利用
できるといった効果を有する。
Further, the use of the method for manufacturing a ferroelectric thin film has an effect that it can be used as a nonvolatile memory, an optical switch, a capacitor, an infrared sensor, an ultrasonic sensor, and a thin film piezoelectric vibrator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の強誘電体薄膜の製造方法の第1実施例
を示す製造工程断面図である。
FIG. 1 is a sectional view showing a manufacturing process of a first embodiment of a method for manufacturing a ferroelectric thin film according to the present invention.

【図2】従来の強誘電体薄膜の製造方法を説明するため
の断面構造図である。
FIG. 2 is a sectional structural view for explaining a conventional method for manufacturing a ferroelectric thin film.

【図3】本発明の第1実施例の強誘電体薄膜のPb濃度
の表面からの深さ依存性を示すグラフである。
FIG. 3 is a graph showing the dependence of the Pb concentration of the ferroelectric thin film of the first embodiment of the present invention on the depth from the surface.

【図4】本発明の第1実施例の強誘電体薄膜の強誘電体
特性を示す図である。
FIG. 4 is a diagram showing ferroelectric characteristics of the ferroelectric thin film according to the first embodiment of the present invention.

【図5】本発明の強誘電体薄膜の製造方法の第2実施例
を示す製造工程断面図である。
FIG. 5 is a sectional view of a manufacturing process showing a second embodiment of the method for manufacturing a ferroelectric thin film of the present invention.

【図6】本発明の第2実施例の強誘電体薄膜のPb濃度
の表面からの深さ依存性を示すグラフである。
FIG. 6 is a graph showing the dependence of the Pb concentration of the ferroelectric thin film of the second embodiment of the present invention on the depth from the surface.

【符号の説明】[Explanation of symbols]

101 シリコン基板 102 二酸化珪素膜 103 下部電極 104 第1の強誘電体前駆体薄膜 105 第2の強誘電体前駆体薄膜 106 第3の強誘電体前駆体薄膜 107 第4の強誘電体前駆体薄膜 108 第5の強誘電体前駆体薄膜 109 第6の強誘電体前駆体薄膜 110 上部電極 200 PZT 504 第1の強誘電体薄膜 505 第2の強誘電体薄膜 Reference Signs List 101 silicon substrate 102 silicon dioxide film 103 lower electrode 104 first ferroelectric precursor thin film 105 second ferroelectric precursor thin film 106 third ferroelectric precursor thin film 107 fourth fourth ferroelectric precursor thin film 108 Fifth Ferroelectric Precursor Thin Film 109 Sixth Ferroelectric Precursor Thin Film 110 Upper Electrode 200 PZT 504 First Ferroelectric Thin Film 505 Second Ferroelectric Thin Film

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下部電極、上部電極、ならびに前記下部
電極と前記上部電極との間に鉛(Pb)が一成分として
含まれる強誘電体薄膜を備えた強誘電体キャパシタを有
する半導体装置の製造方法であって、 前記下部電極を形成する工程と、 前記下部電極上に前記強誘電体薄膜を高周波マグネトロ
ンスパッタ法を用いて形成するスパッタ工程と、 前記強誘電体薄膜をアニールする工程と、 前記上部電極を形成する工程と、を有し、 前記スパッタ工程が、第一のガス圧力下で行われる第一
のスパッタ工程と、前記第一のガス圧力よりもガス圧の
高い第二のガス圧力下で行われる第二のスパッタ工程を
備えることを特徴とする半導体装置の製造方法。
1. Manufacturing of a semiconductor device having a lower electrode, an upper electrode, and a ferroelectric capacitor including a ferroelectric thin film containing lead (Pb) as one component between the lower electrode and the upper electrode. A method of forming the lower electrode, a sputtering step of forming the ferroelectric thin film on the lower electrode by using a high-frequency magnetron sputtering method, and a step of annealing the ferroelectric thin film; A step of forming an upper electrode, wherein the sputtering step is a first sputtering step performed under a first gas pressure, and a second gas pressure having a gas pressure higher than the first gas pressure. A method for manufacturing a semiconductor device, comprising: a second sputtering step performed below.
【請求項2】 前記スパッタ工程では、前記第一のガス
圧力から前記第二のガス圧力まで、ガス圧力を連続的に
増加させて行われることを特徴とする請求項1記載の半
導体装置の製造方法。
2. The manufacturing of a semiconductor device according to claim 1, wherein the sputtering is performed by continuously increasing the gas pressure from the first gas pressure to the second gas pressure. Method.
【請求項3】 下部電極、上部電極、ならびに前記下部
電極と前記上部電極との間に鉛(Pb)が一成分として
含まれる強誘電体薄膜を備えた強誘電体キャパシタを有
する半導体装置の製造方法であって、 前記下部電極を形成する工程と、 前記下部電極上に前記強誘電体薄膜を高周波マグネトロ
ンスパッタ法を用いて形成するスパッタ工程と、 前記強誘電体薄膜をアニールする工程と、 前記上部電極を形成する工程と、を有し、 前記スパッタ工程では、ガス圧力を一定に保ちながら、 第一のAr分圧から、該第一のAr分圧より高い第二の
Ar分圧へAr分圧を増加させてデポジションが行われ
ることを特徴とする半導体装置の製造方法。
3. Manufacturing of a semiconductor device having a lower electrode, an upper electrode, and a ferroelectric capacitor including a ferroelectric thin film containing lead (Pb) as one component between the lower electrode and the upper electrode. A method of forming the lower electrode, a sputtering step of forming the ferroelectric thin film on the lower electrode by using a high-frequency magnetron sputtering method, and a step of annealing the ferroelectric thin film; Forming an upper electrode. In the sputtering step, the gas pressure is kept constant, and the Ar pressure is changed from the first Ar partial pressure to a second Ar partial pressure higher than the first Ar partial pressure. A method of manufacturing a semiconductor device, wherein deposition is performed by increasing a partial pressure.
【請求項4】 下部電極、上部電極、ならびに前記下部
電極と前記上部電極との間に鉛(Pb)が一成分として
含まれる強誘電体薄膜を備えた強誘電体キャパシタを有
する半導体装置の製造方法であって、 前記下部電極を形成する工程と、 前記下部電極上に前記強誘電体薄膜を高周波マグネトロ
ンスパッタ法を用いて形成するスパッタ工程と、 前記強誘電体薄膜をアニールする工程と、 前記上部電極を形成する工程と、を有し、 前記スパッタ工程では、ターゲットと基板との距離を増
加させながらデポジションが行われることを特徴とする
半導体装置の製造方法。
4. Manufacture of a semiconductor device having a lower electrode, an upper electrode, and a ferroelectric capacitor including a ferroelectric thin film containing lead (Pb) as one component between the lower electrode and the upper electrode. A method of forming the lower electrode, a sputtering step of forming the ferroelectric thin film on the lower electrode by using a high-frequency magnetron sputtering method, and a step of annealing the ferroelectric thin film; Forming an upper electrode, wherein in the sputtering step, deposition is performed while increasing a distance between a target and a substrate.
【請求項5】 下部電極、上部電極、ならびに前記下部
電極と前記上部電極との間に鉛(Pb)が一成分として
含まれる強誘電体薄膜を備えた強誘電体キャパシタを有
する半導体装置の製造方法であって、 前記下部電極を形成する工程と、 前記下部電極上に、前記強誘電体薄膜の前駆体材料を塗
布する工程と、 該前駆体材料を熱処理する工程と、 前記上部電極を形成する工程とを有し、 前記下部電極の形成後において、前記強誘電体薄膜の前
駆体材料を塗布する工程と該前駆体材料を熱処理する工
程が複数回繰り返し行われ、且つ、前記前駆体材料中の鉛の濃度が前記下部電極側と
比べて前記上部電極側で増加するように形成すること
特徴とする半導体装置の製造方法。
5. A lower electrode, an upper electrode, and lead (Pb) as a component between the lower electrode and the upper electrode.
A method of manufacturing a semiconductor device having a ferroelectric capacitor provided with a ferroelectric thin film included therein , comprising: a step of forming the lower electrode; and coating a precursor material of the ferroelectric thin film on the lower electrode. A step of heat-treating the precursor material; and a step of forming the upper electrode. A step of applying the precursor material for the ferroelectric thin film after the formation of the lower electrode, and The step of heat-treating the body material is performed a plurality of times, and the concentration of lead in the precursor material is lower than that of the lower electrode.
A method of manufacturing a semiconductor device, wherein the semiconductor device is formed so as to increase on the upper electrode side .
JP25597299A 1991-09-25 1999-09-09 Method for manufacturing semiconductor device Expired - Lifetime JP3267278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25597299A JP3267278B2 (en) 1991-09-25 1999-09-09 Method for manufacturing semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24585591 1991-09-25
JP3-245855 1991-09-25
JP25597299A JP3267278B2 (en) 1991-09-25 1999-09-09 Method for manufacturing semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24090892A Division JP3182909B2 (en) 1991-09-25 1992-09-09 Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device

Publications (2)

Publication Number Publication Date
JP2000082787A JP2000082787A (en) 2000-03-21
JP3267278B2 true JP3267278B2 (en) 2002-03-18

Family

ID=26537439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25597299A Expired - Lifetime JP3267278B2 (en) 1991-09-25 1999-09-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3267278B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572488A (en) * 2017-12-08 2018-09-25 北京航空航天大学 A kind of photoswitch based on electrolysis screw type ferroelectric liquid crystals

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944372B2 (en) * 2001-09-21 2007-07-11 株式会社東芝 Piezoelectric thin film vibrator and frequency variable resonator using the same
JP4663216B2 (en) * 2003-06-10 2011-04-06 ルネサスエレクトロニクス株式会社 Semiconductor memory device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572488A (en) * 2017-12-08 2018-09-25 北京航空航天大学 A kind of photoswitch based on electrolysis screw type ferroelectric liquid crystals
CN108572488B (en) * 2017-12-08 2021-07-06 北京航空航天大学 Optical switch based on electrolytic spiral ferroelectric liquid crystal

Also Published As

Publication number Publication date
JP2000082787A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JP3480624B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
JP2877618B2 (en) Method of forming ferroelectric film
JP2008042069A (en) Piezoelectric element, and its manufacturing method
JPH08502628A (en) Method for producing layered superlattice material and electronic device including the same
JP2000169297A (en) Production of thin ferroelectric oxide film, thin ferroelectric oxide film and thin ferroelectric oxide film element
JPH09186376A (en) Ferroelectric thin film, substrate coated with ferrorelectric thin film, capacitor structure element and deposition of ferroelectric thin film
JPH08335676A (en) Manufacture of crystalline thin film of composite oxide
JP3267278B2 (en) Method for manufacturing semiconductor device
JP3144799B2 (en) Semiconductor device and method of manufacturing the same
JP3267277B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
JPH104181A (en) Ferroelectric element and semiconductor device
JPH08186182A (en) Ferroelectric thin-film element
JP2001223403A (en) Ferroelectric substance thin film, its forming method and ferroelectric substance thin film element using the thin film
JP2000082796A (en) Semiconductor device
JPH0969614A (en) Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film
JPH1056140A (en) Ferroelectric memory element and manufacturing method
KR100362169B1 (en) Non-destructive read-out (NDRO) type Field Effect Transistor (FET) and Method for Fabricating The Same
JPH05251351A (en) Formation method of ferroelectric thin film
JP2000082795A (en) Semiconductor device and fabrication thereof
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JP2000106420A (en) Semiconductor device and manufacture thereof
JPH09321234A (en) Ferroelectric thin film device, manufacture thereof and ferroelectric memory device
JP2001048645A (en) Ferroelectric thin film and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11