JPH08335676A - Manufacture of crystalline thin film of composite oxide - Google Patents

Manufacture of crystalline thin film of composite oxide

Info

Publication number
JPH08335676A
JPH08335676A JP14275795A JP14275795A JPH08335676A JP H08335676 A JPH08335676 A JP H08335676A JP 14275795 A JP14275795 A JP 14275795A JP 14275795 A JP14275795 A JP 14275795A JP H08335676 A JPH08335676 A JP H08335676A
Authority
JP
Japan
Prior art keywords
thin film
crystalline thin
lower electrode
complex oxide
iridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14275795A
Other languages
Japanese (ja)
Inventor
Takashi Nakamura
孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP14275795A priority Critical patent/JPH08335676A/en
Publication of JPH08335676A publication Critical patent/JPH08335676A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To improve surface morphology of a ferroelectric layer. CONSTITUTION: A core 14 of titanium is formed on a lower electrode 12 of iridium by a sputtering method as shown in a figure. A PZT film 8 is formed on the lower electrode 12 and the core 14 by applying a sol-gel method. Since the core 14 of titanium is formed on the lower electrode 12 before the PZT film 8 is formed, the PZT film 8 is formed around the core 14 of titanium. Therefore, denseness of the PZT film 8 is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は複合酸化物の結晶性薄
膜に関するものであり、特にその表面モフォロジの改善
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystalline thin film of complex oxide, and more particularly to improvement of its surface morphology.

【0002】[0002]

【従来の技術】一般に、強誘電体層を含む半導体素子の
電極として白金が用いられている。これは、第1に導電
率が高い、第2に前記強誘電体層形成工程における高温
に耐え得る、第3に強誘電体膜の配向性が担保できるか
らである。
2. Description of the Related Art Generally, platinum is used as an electrode of a semiconductor device including a ferroelectric layer. This is because firstly, the conductivity is high, secondly, it can withstand the high temperature in the step of forming the ferroelectric layer, and thirdly, the orientation of the ferroelectric film can be secured.

【0003】配向性の担保について簡単に説明する。白
金はアモルファス膜の上に形成された場合にも、配向膜
となる性質を有している。したがって、アモルファス膜
である酸化シリコン膜4の上に下部電極を形成し、さら
にその上にPZT膜8に形成しても、この下部電極を白
金で構成すれば、PZT膜8は配向するため、強誘電性
が損なわれることがない。
Securing the orientation will be briefly described. Platinum has the property of forming an alignment film even when formed on an amorphous film. Therefore, even if the lower electrode is formed on the amorphous silicon oxide film 4 and the PZT film 8 is further formed thereon, the PZT film 8 is oriented if the lower electrode is made of platinum. Ferroelectricity is not impaired.

【0004】ただ、白金をポリシリコン層の上に形成す
ると、シリサイド化するという問題があった。この問題
を解決する為、発明者は、白金以外の電極材料として、
イリジウム(Ir)を用いると、前記シリサイド化の問
題を解決できることを見い出した。
However, when platinum is formed on the polysilicon layer, there is a problem that it is silicidized. In order to solve this problem, the inventor, as an electrode material other than platinum,
It has been found that the problem of silicidation can be solved by using iridium (Ir).

【0005】図4に、白金とイリジウムの物性を比較し
て掲げる。この表からも明らかなように、イリジウムの
抵抗率は、白金と比較して小さく電極材料として問題は
ない。
FIG. 4 compares the physical properties of platinum and iridium. As is clear from this table, the resistivity of iridium is smaller than that of platinum and there is no problem as an electrode material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、数々の
実験を繰返した結果、イリジウムを下部電極として用い
た場合には、白金と比較して、上に形成される強誘電体
膜の緻密性が低いことが判明した。すなわち、均一な強
誘電体膜が形成されない。したがって、かかる強誘電体
膜を分割して素子を形成した時に、素子同志の特性にば
らつきが生ずるおそれがあった。かかる問題は、微細化
が進むほど重要な問題となる。
However, as a result of repeating a number of experiments, when iridium is used as the lower electrode, the denseness of the ferroelectric film formed above is lower than that of platinum. It has been found. That is, a uniform ferroelectric film is not formed. Therefore, when elements are formed by dividing the ferroelectric film, the characteristics of the elements may vary. This problem becomes more important as miniaturization progresses.

【0007】この発明は、上記の問題点を解決して、緻
密性の高い複合酸化物の結晶性薄膜を提供することを目
的とする。
It is an object of the present invention to solve the above problems and provide a highly dense crystalline oxide thin film of complex oxide.

【0008】[0008]

【課題を解決するための手段】請求項1の複合酸化物の
結晶性薄膜の製造方法においては、イリジウムを含む下
部電極の上に、複合酸化物の結晶性薄膜を生成する方法
であって、前記下部電極の一部に、前記結晶性薄膜の成
分元素の核、または、この成分元素の酸化物の核を形成
する核形成ステップ、前記核を形成した後、前記複合酸
化物の結晶性薄膜を形成する結晶性薄膜形成ステップ、
を備えたことを特徴とする。
A method for producing a crystalline thin film of a complex oxide according to claim 1 is a method of forming a crystalline thin film of a complex oxide on a lower electrode containing iridium. A nucleation step of forming a nucleus of a component element of the crystalline thin film or a nucleus of an oxide of the component element in a part of the lower electrode, and after forming the nucleus, a crystalline thin film of the complex oxide. Forming a crystalline thin film,
It is characterized by having.

【0009】請求項2の複合酸化物の結晶性薄膜の製造
方法においては、前記下部電極はイリジウムで構成され
ていることを特徴とする。
In the method for producing a crystalline thin film of a complex oxide according to a second aspect, the lower electrode is composed of iridium.

【0010】請求項3の複合酸化物の結晶性薄膜の製造
方法においては、前記下部電極は、イリジウムと白金の
合金で構成されていることを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing a crystalline thin film of a complex oxide, wherein the lower electrode is composed of an alloy of iridium and platinum.

【0011】請求項4の複合酸化物の結晶性薄膜の製造
方法においては、前記下部電極は、イリジウム層および
このイリジウム層の上に形成された白金層を有すること
を特徴とする。
In the method for producing a crystalline thin film of a complex oxide according to claim 4, the lower electrode has an iridium layer and a platinum layer formed on the iridium layer.

【0012】請求項5の複合酸化物の結晶性薄膜の製造
方法においては、前記核形成ステップで形成される核の
成分元素は、前記結晶性薄膜を構成する元素のうち、そ
の酸化物が前記複合酸化物より結晶化温度の低い元素で
あることを特徴とする。
In the method for producing a crystalline thin film of a complex oxide according to claim 5, the constituent element of the nucleus formed in the nucleation step is one of the elements constituting the crystalline thin film whose oxide is the It is characterized in that it is an element having a lower crystallization temperature than the complex oxide.

【0013】請求項6の複合酸化物の結晶性薄膜の製造
方法においては、前記核形成ステップで形成される核
は、厚みが1nm〜10nmであることを特徴とする。
In the method for producing a crystalline thin film of a complex oxide according to claim 6, the nuclei formed in the nucleation step have a thickness of 1 nm to 10 nm.

【0014】請求項7の複合酸化物の結晶性薄膜の製造
方法においては、下部電極の上に、複合酸化物の結晶性
薄膜を生成する方法であって、前記下部電極の一部に、
前記結晶性薄膜の成分元素の核、または、この成分元素
の酸化物の核を形成する核形成ステップ、前記核を形成
した後、前記複合酸化物の結晶性薄膜を形成する結晶性
薄膜形成ステップ、を備えたことを特徴とする。
A method for producing a crystalline thin film of a complex oxide according to claim 7 is a method of forming a crystalline thin film of a complex oxide on a lower electrode, wherein a part of the lower electrode comprises:
Nucleation step of forming a nucleus of a component element of the crystalline thin film, or a nucleus of an oxide of the component element, and a crystalline thin film forming step of forming a crystalline thin film of the complex oxide after forming the nucleus. , Is provided.

【0015】[0015]

【作用および発明の効果】請求項1の複合酸化物の結晶
性薄膜の製造方法においては、前記核形成ステップに
て、前記下部電極の一部に、前記結晶性薄膜の成分元素
の核、または、この成分元素の酸化物の核を形成してい
る。前記結晶性薄膜形成ステップにて、この核が中心と
なって前記複合酸化物の結晶性薄膜が形成される。これ
により、緻密性の高い複合酸化物の結晶性薄膜を提供す
ることができる。
In the method for producing a crystalline thin film of a complex oxide according to claim 1, in the nucleation step, a nucleus of a constituent element of the crystalline thin film, or a part of the lower electrode, or , Form the nuclei of oxides of this component element. In the crystalline thin film forming step, the crystalline thin film of the complex oxide is formed with the nuclei as the center. This makes it possible to provide a crystalline thin film of a complex oxide having a high density.

【0016】請求項2の複合酸化物の結晶性薄膜の製造
方法においては、前記下部電極はイリジウムで構成され
ている。したがって、前記結晶性薄膜形成ステップに
て、前記下部電極の表面に酸化イリジウムが形成されて
も、この核が中心となって前記複合酸化物の結晶性薄膜
が形成される。これにより、緻密性の高い複合酸化物の
結晶性薄膜を提供することができる。
In the method for producing a crystalline thin film of a complex oxide according to claim 2, the lower electrode is made of iridium. Therefore, even if iridium oxide is formed on the surface of the lower electrode in the crystalline thin film forming step, the crystalline thin film of the complex oxide is formed around the nuclei. This makes it possible to provide a crystalline thin film of a complex oxide having a high density.

【0017】請求項3の複合酸化物の結晶性薄膜の製造
方法においては、前記下部電極は、イリジウムと白金の
合金である。したがって、前記結晶性薄膜形成ステップ
にて、前記下部電極の表面に酸化イリジウムが形成され
ても、この核が中心となって前記複合酸化物の結晶性薄
膜が形成される。これにより、緻密性の高い複合酸化物
の結晶性薄膜を提供することができる。
In the method for producing a crystalline thin film of complex oxide according to claim 3, the lower electrode is an alloy of iridium and platinum. Therefore, even if iridium oxide is formed on the surface of the lower electrode in the crystalline thin film forming step, the crystalline thin film of the complex oxide is formed around the nuclei. This makes it possible to provide a crystalline thin film of a complex oxide having a high density.

【0018】請求項4の複合酸化物の結晶性薄膜の製造
方法においては、前記下部電極は、イリジウム層および
このイリジウム層の上に形成された白金層を有する。し
たがって、前記結晶性薄膜形成ステップにて、前記下部
電極の表面に酸化イリジウムが形成されても、この核が
中心となって前記複合酸化物の結晶性薄膜が形成され
る。これにより、緻密性の高い複合酸化物の結晶性薄膜
を提供することができる。
In the method for producing a crystalline thin film of a complex oxide according to claim 4, the lower electrode has an iridium layer and a platinum layer formed on the iridium layer. Therefore, even if iridium oxide is formed on the surface of the lower electrode in the crystalline thin film forming step, the crystalline thin film of the complex oxide is formed around the nuclei. This makes it possible to provide a crystalline thin film of a complex oxide having a high density.

【0019】請求項5の複合酸化物の結晶性薄膜の製造
方法においては、前記核形成ステップで形成される核の
成分元素は、前記結晶性薄膜を構成する元素のうち、そ
の酸化物が前記複合酸化物より結晶化温度の低い元素で
ある。したがって、前記結晶性薄膜形成ステップの早い
段階にて、前記核を中心として、複合酸化物の結晶性薄
膜が形成される。これにより、より緻密性の高い複合酸
化物の結晶性薄膜を提供することができる。
In the method for producing a crystalline thin film of a complex oxide according to claim 5, the constituent element of the nuclei formed in the nucleation step is the oxide of the elements constituting the crystalline thin film, It is an element whose crystallization temperature is lower than that of the composite oxide. Therefore, in the early stage of the crystalline thin film forming step, the crystalline thin film of the complex oxide is formed around the nucleus. This makes it possible to provide a more dense crystalline oxide thin film of the composite oxide.

【0020】請求項6の複合酸化物の結晶性薄膜の製造
方法においては、前記核形成ステップで形成される核
は、厚みが1nm〜10nmである。したがって、前記
結晶性薄膜の電気特性に悪影響を及ぼすことがなく、か
つ緻密性の高い複合酸化物の結晶性薄膜を提供すること
ができる。
In the method for producing a crystalline thin film of complex oxide according to claim 6, the nuclei formed in the nucleation step have a thickness of 1 nm to 10 nm. Therefore, it is possible to provide a highly dense crystalline oxide thin film of composite oxide without adversely affecting the electrical characteristics of the crystalline oxide thin film.

【0021】請求項7の複合酸化物の結晶性薄膜の製造
方法においては、前記核形成ステップにて、前記下部電
極の一部に、前記結晶性薄膜の成分元素の核、または、
この成分元素の酸化物の核を形成している。前記結晶性
薄膜形成ステップにて、この核が中心となって前記複合
酸化物の結晶性薄膜が形成される。これにより、イリジ
ウムを含む下部電極の上に緻密性の高い複合酸化物の結
晶性薄膜を提供することができる。
In the method for producing a crystalline thin film of a complex oxide according to claim 7, in the nucleation step, a nucleus of a constituent element of the crystalline thin film is formed in a part of the lower electrode, or
It forms the nucleus of the oxide of this component element. In the crystalline thin film forming step, the crystalline thin film of the complex oxide is formed with the nuclei as the center. This makes it possible to provide a highly dense composite oxide crystalline thin film on the lower electrode containing iridium.

【0022】[0022]

【実施例】図1に、この発明の一実施例による強誘電体
層を含む半導体装置の製造工程を示す。ここでは、強誘
電体層を含む半導体装置として、強誘電体キャパシタを
製造した場合を例として説明する。
FIG. 1 shows a process of manufacturing a semiconductor device including a ferroelectric layer according to an embodiment of the present invention. Here, a case where a ferroelectric capacitor is manufactured as a semiconductor device including a ferroelectric layer will be described as an example.

【0023】まず、図1Aに示すように、シリコン基板
2の表面を熱酸化し、酸化シリコン層4を形成する。こ
こでは、酸化シリコン層4の厚さを600nmとした。
つぎに、図1Bに示すように、イリジウムをターゲット
として用いて、スパッタリングによりイリジウムを、酸
化シリコン層4の上に形成し、これを下部電極12とす
る。ここでは、下部電極12を200nmの厚さに形成
した。
First, as shown in FIG. 1A, the surface of the silicon substrate 2 is thermally oxidized to form a silicon oxide layer 4. Here, the thickness of the silicon oxide layer 4 is 600 nm.
Next, as shown in FIG. 1B, using iridium as a target, iridium is formed on the silicon oxide layer 4 by sputtering, and this is used as the lower electrode 12. Here, the lower electrode 12 is formed to a thickness of 200 nm.

【0024】つぎに、図1Cに示すように、下部電極1
2の上に、チタン(Ti)の核14を複数形成した。本
実施例においては、RFマグネトロンスパッタ法によ
り、基板加熱なし、アルゴン圧力[11mTorr]、
高周波パワー[300W/4インチφ]、時間[20
秒]の条件で生成した。これにより、厚みt=2nmの
核14が形成された(図1C参照)。
Next, as shown in FIG. 1C, the lower electrode 1
A plurality of titanium (Ti) nuclei 14 were formed on No. 2. In this embodiment, the substrate is not heated by the RF magnetron sputtering method, the argon pressure is [11 mTorr],
High frequency power [300W / 4 inch φ], time [20
Seconds]. As a result, a nucleus 14 having a thickness t = 2 nm was formed (see FIG. 1C).

【0025】つぎに、Sol−Gel(ゾルゲル)法に
よって、この下部電極12および核14を覆うように、
強誘電体膜であるPZT膜8を形成する(図4C)。出
発原料として、Pb(CH3COO)2・3H2O,Zr(tーOC4H9)4、Ti(i-O
C3H7)4の混合溶液を用いた。この混合溶液を塗布し、ス
ピンコートした後、150℃で乾燥させ、ドライエア雰
囲気において400℃で30秒の仮焼成を行った。これ
を5回繰り返した後、酸素雰囲気中で、700℃以上の
熱処理を施した。これにより、PZT膜8は焼結して結
晶化し成膜する。このようにして、PZT膜8の膜厚を
250nmに形成した。なお、ここでは、PbZrxTi1-xO3
において、xを0.52とした。
Next, the lower electrode 12 and the nucleus 14 are covered by a Sol-Gel (sol-gel) method,
A PZT film 8 which is a ferroelectric film is formed (FIG. 4C). As a starting material, Pb (CH 3 COO) 2 3H 2 O, Zr (t-OC 4 H 9 ) 4 , Ti (iO
A mixed solution of C 3 H 7 ) 4 was used. This mixed solution was applied, spin-coated, dried at 150 ° C., and pre-baked at 400 ° C. for 30 seconds in a dry air atmosphere. After repeating this 5 times, it heat-processed at 700 degreeC or more in oxygen atmosphere. As a result, the PZT film 8 is sintered and crystallized to form a film. Thus, the PZT film 8 was formed to a thickness of 250 nm. In addition, here, PbZr x Ti 1-x O 3
In, x was set to 0.52.

【0026】なお、下部電極とPZT膜8との界面に
は、PZT膜8の焼成ステップにて、酸化イリジウムが
形成される。
Iridium oxide is formed on the interface between the lower electrode and the PZT film 8 in the firing step of the PZT film 8.

【0027】このPZT膜8の上に、スパッタリングに
よりイリジウムを形成し、上部電極15とする(図
2)。ここでは、上部電極15を200nmの厚さに形
成した。このようにして、強誘電体キャパシタが得られ
る。
Iridium is formed on the PZT film 8 by sputtering to form the upper electrode 15 (FIG. 2). Here, the upper electrode 15 is formed to a thickness of 200 nm. In this way, a ferroelectric capacitor is obtained.

【0028】このように、PZT膜8を形成する前に、
下部電極12の上にチタンの核14を形成している。チ
タンは、PZT膜8を構成する元素(Pb、Zr、Ti)のう
ち、結晶化温度が一番低い。したがって、PZT膜形成
ステップの早い段階にて、このチタンの核14を中心と
して、PZT膜が形成される。これによりPZT膜の緻
密性が向上する。
As described above, before the PZT film 8 is formed,
A titanium nucleus 14 is formed on the lower electrode 12. Titanium has the lowest crystallization temperature among the elements (Pb, Zr, Ti) forming the PZT film 8. Therefore, in the early stage of the PZT film forming step, the PZT film is formed around the titanium nucleus 14. This improves the denseness of the PZT film.

【0029】なお、チタンではなく、PZT膜8を構成
する他の元素を核として用いてもよい。さらに、PZT
膜8を構成する元素そのものではなく、その酸化物(Pb
0,ZrO2、PbTiO3)を核として用いてもよい。
Incidentally, instead of titanium, other elements forming the PZT film 8 may be used as nuclei. Furthermore, PZT
The oxide itself (Pb
0, ZrO 2 , PbTiO 3 ) may be used as a nucleus.

【0030】緻密性の向上について、核14を形成しな
い場合の、PZT膜8の表面モフォロジ(組織)の模式
図を、図3に示す。このように、核14を形成しない場
合、PZT膜8の表面モフォロジの緻密性が低い。この
理由は明らかではないが、前記混合溶液中に存在する元
素のうち、結晶温度の低いチタンが不規則的に核となっ
て、結晶化が進行する為ではないかと発明者は考えた。
これに対して、核14を形成した場合、各々の核14を
中心として、PZT膜の結晶化が進むので、より、緻密
性の高いPZT膜8が得られる。
FIG. 3 shows a schematic diagram of the surface morphology (structure) of the PZT film 8 in the case where the nucleus 14 is not formed for improving the compactness. As described above, when the nuclei 14 are not formed, the surface morphology of the PZT film 8 has low density. The reason for this is not clear, but the inventor considered that titanium having a low crystal temperature among the elements present in the mixed solution irregularly serves as nuclei to promote crystallization.
On the other hand, when the nuclei 14 are formed, the crystallization of the PZT film proceeds around each of the nuclei 14, so that the PZT film 8 having a higher density can be obtained.

【0031】なお、本実施例においては、核14の厚み
t=2nmとした。これはつぎの様な理由による。各々
の核14を中心として、PZT膜が形成される為に、核
14の密度が高いほど緻密なPZT膜が形成されると考
えられる。一方、核の密度が高すぎると、PZT膜生成
後の界面にチタンオキサイドが残存し、PZT膜の電気
特性が悪くなるおそれがある。このような理由により、
発明者は、核14の厚みtは、密度が高すぎることのな
い1〜10nmが望ましく、さらに望ましくは、1〜3
nmで、最も望ましいのが、2nmであると考えた。
In this example, the thickness t of the nucleus 14 was t = 2 nm. This is due to the following reasons. Since the PZT film is formed around each nucleus 14, it is considered that a denser PZT film is formed as the nucleus 14 has a higher density. On the other hand, if the density of the nuclei is too high, titanium oxide may remain at the interface after the PZT film is formed, and the electrical characteristics of the PZT film may deteriorate. For this reason,
The inventor preferably has a thickness t of the core 14 of 1 to 10 nm so that the density is not too high, and more preferably 1 to 10 nm.
In terms of nm, the most desirable is 2 nm.

【0032】なお、本実施例においては、RFマグネト
ロンスパッタ法により、核14を形成したが、どのよう
な方法でもよく、例えば、CVD法、ゾルゲル法、蒸着
法等を用いてもよい。なお、ゾルゲル法の場合は、濃度
を低く調整することにより、所望の厚みの核を形成する
ことができる。
Although the nuclei 14 are formed by the RF magnetron sputtering method in this embodiment, any method may be used, for example, the CVD method, the sol-gel method, the vapor deposition method or the like may be used. In the case of the sol-gel method, the nuclei having a desired thickness can be formed by adjusting the concentration to be low.

【0033】なお、下部電極12はイリジウムに限定さ
れず、イリジウムを含む物質であればどのようなもので
もよく、イリジウム単体であってもよい。また、白金と
イリジウムとの合金で形成してもよい。さらに、下部電
極12を複数層で構成し、そのいずれかにイリジウム層
または酸化イリジウム層を設けるようにしてもよい。例
えば、下部層をイリジウム層、上部層を白金層としてよ
い。さらに、その中間に、他の金属層を含むようにして
もよい。
The lower electrode 12 is not limited to iridium, and any substance containing iridium may be used, or iridium alone may be used. Alternatively, it may be formed of an alloy of platinum and iridium. Further, the lower electrode 12 may be composed of a plurality of layers, and an iridium layer or an iridium oxide layer may be provided on any of them. For example, the lower layer may be an iridium layer and the upper layer may be a platinum layer. Further, another metal layer may be included in the middle thereof.

【0034】本実施例においては、PZT膜8の焼成ス
テップにて、酸化イリジウム層が形成されている。しか
しながら、酸化イリジウム層を有するように下部電極を
形成してもよい。すなわち、下部電極に酸化イリジウム
を含むことによりバリア効果が働くので、酸化イリジウ
ム層については、後工程で生成されたか、当初から生成
されたかにかかわりなく、PZT膜8からの酸素の抜け
出しを防止することができる。
In this embodiment, an iridium oxide layer is formed in the firing step of the PZT film 8. However, the lower electrode may be formed to have an iridium oxide layer. That is, since the lower electrode contains iridium oxide, a barrier effect is exerted. Therefore, the iridium oxide layer prevents oxygen from escaping from the PZT film 8 regardless of whether the iridium oxide layer is formed in a later process or originally. be able to.

【0035】なお、PZT膜8を常温にて生成すること
も考えられる。この場合、イリジウムが酸化されない場
合もある。この様な場合、下部電極には酸化イリジウム
層は形成されない。
It is also possible to form the PZT film 8 at room temperature. In this case, iridium may not be oxidized. In such a case, the iridium oxide layer is not formed on the lower electrode.

【0036】なお、一般に、イリジウムと酸化シリコン
との密着性はあまりよくない。このため、部分的に合金
層がはがれ、強誘電特性を劣化させるおそれがある。こ
のように、イリジウムを用いる場合は、下部電極12と
酸化シリコン層4との間に、両者の接合性を改善する接
合層を設ける様にすればよい。接合層としては、どのよ
うなものでもあってもよく、チタン層、白金層(例え
ば、5nm)を用いればよい。
Generally, the adhesion between iridium and silicon oxide is not so good. Therefore, the alloy layer may be partly peeled off, and the ferroelectric characteristics may be deteriorated. As described above, when iridium is used, a bonding layer that improves the bonding property between the lower electrode 12 and the silicon oxide layer 4 may be provided between the lower electrode 12 and the silicon oxide layer 4. The bonding layer may be of any type, and a titanium layer or a platinum layer (for example, 5 nm) may be used.

【0037】なお、本実施例においては、複合酸化物の
結晶性薄膜として、強誘電体であるPZTを用いたが、
他の強誘電体、例えば、PbTiO3、チタン酸バリウ
ム、チタン酸ビスマス、PLZT等の強誘電性を示す物
質を用いてもよい。
Although PZT, which is a ferroelectric substance, is used as the crystalline thin film of the composite oxide in this embodiment,
Other ferroelectric substances such as PbTiO 3 , barium titanate, bismuth titanate and PLZT may be used.

【0038】また、上記実施例においては、複合酸化物
の結晶性薄膜に強誘電体膜を採用した場合について、説
明した。しかし、これに限定されず、複合酸化物の結晶
性薄膜であればどのようなものにも適用でき、例えば、
ペロブスカイト構造を有する高誘電体薄膜(SrTiO
3、(Sr,Ba)TiO3等)を採用してもよい。高誘
電薄膜に用いた場合も、緻密性が向上することにより、
比誘電率が高くなる。
Further, in the above embodiment, the case where the ferroelectric film is used as the crystalline thin film of the composite oxide has been described. However, the present invention is not limited to this, and can be applied to any crystalline thin film of a composite oxide, for example,
High dielectric thin film (SrTiO 3) having a perovskite structure
3 , (Sr, Ba) TiO 3, etc.) may be adopted. Even when used for high-dielectric thin film, it improves the compactness,
High relative permittivity.

【0039】上記実施例においては、イリジウム層の上
に強誘電体膜を形成する場合について説明したが、イリ
ジウムに限定されず、例えば、ルテニウム(Ru),レ
ニウム(Re),パラジウム(Pd),オスミウム(O
s)等の他の貴金属を用いてもよい。また、これらの酸
化物を採用してもよい。
In the above embodiment, the case where the ferroelectric film is formed on the iridium layer has been described, but the invention is not limited to iridium, and for example, ruthenium (Ru), rhenium (Re), palladium (Pd), Osmium (O
Other noble metals such as s) may be used. Moreover, you may employ | adopt these oxides.

【0040】さらに、本発明は、下部電極を白金で形成
した場合にも、同様に、緻密な膜を形成することができ
る。
Further, according to the present invention, a dense film can be similarly formed even when the lower electrode is formed of platinum.

【0041】なお、上記実施例では、強誘電体層を含む
半導体装置として強誘電体キャパシタを例として説明し
たが、導電体層の上に強誘電体層が形成されている半導
体装置であれば、強誘電体メモリ等、どのようなもので
あってもよい。
In the above embodiments, the ferroelectric capacitor has been described as an example of the semiconductor device including the ferroelectric layer, but any semiconductor device in which the ferroelectric layer is formed on the conductor layer may be used. , A ferroelectric memory, or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による強誘電体キャパシタ
の製造工程を示す図である。
FIG. 1 is a diagram showing a manufacturing process of a ferroelectric capacitor according to an embodiment of the present invention.

【図2】強誘電体キャパシタの要部断面図である。FIG. 2 is a sectional view of an essential part of a ferroelectric capacitor.

【図3】核14を形成しない場合の、表面モフォロジを
示す図である。
FIG. 3 is a diagram showing a surface morphology in the case where a nucleus 14 is not formed.

【図4】白金とイリジウムの物性比較を示す図である。FIG. 4 is a diagram showing a comparison of physical properties of platinum and iridium.

【符号の説明】[Explanation of symbols]

2・・・シリコン基板 4・・・酸化シリコン層 8・・・PZT膜 12・・・下部電極 15・・・上部電極 2 ... Silicon substrate 4 ... Silicon oxide layer 8 ... PZT film 12 ... Lower electrode 15 ... Upper electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/316 H01L 27/10 451 27/04 27/04 C 21/822 29/78 371 27/10 451 41/22 A 21/8247 29/788 29/792 41/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 21/316 H01L 27/10 451 27/04 27/04 C 21/822 29/78 371 27 / 10 451 41/22 A 21/8247 29/788 29/792 41/24

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】イリジウムを含む下部電極の上に、複合酸
化物の結晶性薄膜を生成する方法であって、 前記下部電極の一部に、前記結晶性薄膜の成分元素の
核、または、この成分元素の酸化物の核を形成する核形
成ステップ、 前記核を形成した後、前記複合酸化物の結晶性薄膜を形
成する結晶性薄膜形成ステップ、 を備えたことを特徴とする複合酸化物の結晶性薄膜の製
造方法。
1. A method for forming a crystalline thin film of a complex oxide on a lower electrode containing iridium, wherein a part of the lower electrode has a nucleus of a component element of the crystalline thin film, or A nucleation step of forming a nucleus of an oxide of a component element; a crystalline thin film forming step of forming a crystalline thin film of the complex oxide after forming the nucleus; Manufacturing method of crystalline thin film.
【請求項2】請求項1の複合酸化物の結晶性薄膜の製造
方法において、 前記下部電極はイリジウムで構成されていること、 を特徴とする複合酸化物の結晶性薄膜の製造方法。
2. The method for producing a crystalline thin film of a complex oxide according to claim 1, wherein the lower electrode is made of iridium.
【請求項3】請求項1の複合酸化物の結晶性薄膜の製造
方法において、 前記下部電極は、イリジウムと白金の合金で構成されて
いること、 を特徴とする複合酸化物の結晶性薄膜の製造方法。
3. The method for producing a crystalline thin film of a complex oxide according to claim 1, wherein the lower electrode is composed of an alloy of iridium and platinum. Production method.
【請求項4】請求項1の複合酸化物の結晶性薄膜の製造
方法において、 前記下部電極は、イリジウム層およびこのイリジウム層
の上に形成された白金層を有すること、 を特徴とする複合酸化物の結晶性薄膜の製造方法。
4. The method for producing a crystalline thin film of a complex oxide according to claim 1, wherein the lower electrode has an iridium layer and a platinum layer formed on the iridium layer. Method for producing crystalline thin film of material.
【請求項5】請求項1〜請求項4のいずれかの複合酸化
物の結晶性薄膜の製造方法において、 前記核形成ステップで形成される核の成分元素は、前記
結晶性薄膜を構成する元素のうち、その酸化物が前記複
合酸化物より結晶化温度の低い元素であること、 を特徴とする複合酸化物の結晶性薄膜の製造方法。
5. The method for producing a crystalline thin film of a complex oxide according to claim 1, wherein the element element of the nucleus formed in the nucleation step is an element constituting the crystalline thin film. Among them, the oxide is an element having a crystallization temperature lower than that of the complex oxide, and a method for producing a crystalline thin film of the complex oxide.
【請求項6】請求項1〜請求項5のいずれかの複合酸化
物の結晶性薄膜の製造方法において、 前記核形成ステップで形成される核は、厚みが1nm〜
10nmであること、 を特徴とする複合酸化物の結晶性薄膜の製造方法。
6. The method for producing a crystalline thin film of a complex oxide according to claim 1, wherein the nuclei formed in the nucleation step have a thickness of 1 nm to
10 nm, The manufacturing method of the crystalline thin film of the complex oxide characterized by the above-mentioned.
【請求項7】下部電極の上に、複合酸化物の結晶性薄膜
を生成する方法であって、 前記下部電極の一部に、前記結晶性薄膜の成分元素の
核、または、この成分元素の酸化物の核を形成する核形
成ステップ、 前記核を形成した後、前記複合酸化物の結晶性薄膜を形
成する結晶性薄膜形成ステップ、 を備えたことを特徴とする複合酸化物の結晶性薄膜の製
造方法。
7. A method of forming a crystalline thin film of a composite oxide on a lower electrode, wherein the part of the lower electrode comprises a core of a constituent element of the crystalline thin film or a core of the constituent element. A step of forming a nucleus of an oxide, a step of forming a crystalline thin film of the complex oxide after forming the nucleus, and a step of forming a crystalline thin film of the complex oxide. Manufacturing method.
JP14275795A 1995-06-09 1995-06-09 Manufacture of crystalline thin film of composite oxide Withdrawn JPH08335676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14275795A JPH08335676A (en) 1995-06-09 1995-06-09 Manufacture of crystalline thin film of composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14275795A JPH08335676A (en) 1995-06-09 1995-06-09 Manufacture of crystalline thin film of composite oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004335812A Division JP4245552B2 (en) 2004-11-19 2004-11-19 Method for producing crystalline thin film of composite oxide

Publications (1)

Publication Number Publication Date
JPH08335676A true JPH08335676A (en) 1996-12-17

Family

ID=15322873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14275795A Withdrawn JPH08335676A (en) 1995-06-09 1995-06-09 Manufacture of crystalline thin film of composite oxide

Country Status (1)

Country Link
JP (1) JPH08335676A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993953A2 (en) 1998-10-14 2000-04-19 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
WO2002082526A1 (en) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
US6494567B2 (en) 2000-03-24 2002-12-17 Seiko Epson Corporation Piezoelectric element and manufacturing method and manufacturing device thereof
US6586790B2 (en) 1998-07-24 2003-07-01 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6705708B2 (en) 2001-02-09 2004-03-16 Seiko Espon Corporation Piezoelectric thin-film element, ink-jet head using the same, and method for manufacture thereof
US6883901B2 (en) 2002-01-22 2005-04-26 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US7083269B2 (en) 2002-01-29 2006-08-01 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
WO2007029282A1 (en) * 2005-09-01 2007-03-15 Fujitsu Limited Semiconductor device and method for manufacturing same
US7255941B2 (en) 2002-10-24 2007-08-14 Seiko Epson Corporation Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
JP2008004782A (en) * 2006-06-23 2008-01-10 Fujifilm Corp Ferroelectric element, its manufacturing method, ferroelectric memory, and ink-jet recording head
US7475461B2 (en) 2001-09-28 2009-01-13 Seiko Epson Corporation Method and manufacturing a piezoelectric thin film element
JP2020132944A (en) * 2019-02-19 2020-08-31 株式会社アルバック Film deposition method and film deposition apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586790B2 (en) 1998-07-24 2003-07-01 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6982444B2 (en) 1998-07-24 2006-01-03 Kabushiki Kaisha Toshiba Ferroelectric memory device having a hydrogen barrier film
US6730524B2 (en) 1998-10-14 2004-05-04 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
US6955927B2 (en) 1998-10-14 2005-10-18 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head and ink jet printer
EP0993953A3 (en) * 1998-10-14 2001-01-24 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
US6599757B1 (en) 1998-10-14 2003-07-29 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
US6767086B2 (en) 1998-10-14 2004-07-27 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
US6767085B2 (en) 1998-10-14 2004-07-27 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
US6880920B2 (en) 1998-10-14 2005-04-19 Seiko Epson Corporation Electromechanical transducer with an adhesive layer and an anti-diffusion layer
EP0993953A2 (en) 1998-10-14 2000-04-19 Seiko Epson Corporation Method for manufacturing ferroelectric thin film device, ink jet recording head, and ink jet printer
US6499837B2 (en) 2000-03-24 2002-12-31 Seiko Epson Corporation Piezoelectric element and manufacturing method and manufacturing device thereof
US6494567B2 (en) 2000-03-24 2002-12-17 Seiko Epson Corporation Piezoelectric element and manufacturing method and manufacturing device thereof
EP1675193A3 (en) * 2000-03-24 2007-07-25 Seiko Epson Corporation Piezoelectric element and manufacturing method and manufacturing device thereof
EP1675193A2 (en) * 2000-03-24 2006-06-28 Seiko Epson Corporation Piezoelectric element and manufacturing method and manufacturing device thereof
EP1137078A3 (en) * 2000-03-24 2005-07-13 Seiko Epson Corporation Piezoelectric element and manufacturing method and manufacturing device thereof
US7254877B2 (en) 2001-02-09 2007-08-14 Seiko Epson Corporation Method for the manufacture of a piezoelectric element
US7065847B2 (en) 2001-02-09 2006-06-27 Seiko Epson Corporation Method for the manufacture of a piezoelectric element
US6705708B2 (en) 2001-02-09 2004-03-16 Seiko Espon Corporation Piezoelectric thin-film element, ink-jet head using the same, and method for manufacture thereof
WO2002082526A1 (en) * 2001-04-03 2002-10-17 Matsushita Electric Industrial Co., Ltd. Semiconductor device and its manufacturing method
US6872989B2 (en) 2001-04-03 2005-03-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US7022530B2 (en) 2001-04-03 2006-04-04 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US7170110B2 (en) 2001-04-03 2007-01-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
US7475461B2 (en) 2001-09-28 2009-01-13 Seiko Epson Corporation Method and manufacturing a piezoelectric thin film element
US7328490B2 (en) 2002-01-22 2008-02-12 Seiko Epson Corporation Method for manufacturing a liquid jetting head
US6883901B2 (en) 2002-01-22 2005-04-26 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US7083269B2 (en) 2002-01-29 2006-08-01 Seiko Epson Corporation Piezoelectric element, liquid jetting head, and method for manufacturing thereof
US7255941B2 (en) 2002-10-24 2007-08-14 Seiko Epson Corporation Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
US7371473B2 (en) 2002-10-24 2008-05-13 Seiko Epson Corporation Ferroelectric film, ferroelectric capacitor, ferroelectric memory, piezoelectric element, semiconductor element, method of manufacturing ferroelectric film, and method of manufacturing ferroelectric capacitor
WO2007029282A1 (en) * 2005-09-01 2007-03-15 Fujitsu Limited Semiconductor device and method for manufacturing same
US8263419B2 (en) 2005-09-01 2012-09-11 Fujitsu Semiconductor Limited Semiconductor device and method for manufacturing the same
JP4801078B2 (en) * 2005-09-01 2011-10-26 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP2008004782A (en) * 2006-06-23 2008-01-10 Fujifilm Corp Ferroelectric element, its manufacturing method, ferroelectric memory, and ink-jet recording head
JP4519810B2 (en) * 2006-06-23 2010-08-04 富士フイルム株式会社 Ferroelectric element and manufacturing method thereof, ferroelectric memory, and ink jet recording head
JP2020132944A (en) * 2019-02-19 2020-08-31 株式会社アルバック Film deposition method and film deposition apparatus

Similar Documents

Publication Publication Date Title
US6454914B1 (en) Ferroelectric capacitor and a method for manufacturing thereof
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
KR100386539B1 (en) Composite iridium barrier structure with oxidized refractory metal companion barrier and method for same
JPH09260600A (en) Manufacture of semiconductor memory device
JPH0855967A (en) Manufacture of ferroelectric thin film capacitor
US6677217B2 (en) Methods for manufacturing integrated circuit metal-insulator-metal capacitors including hemispherical grain lumps
JPH08335676A (en) Manufacture of crystalline thin film of composite oxide
JPH05235268A (en) Manufacture for ferroelectric thin film
US6338970B1 (en) Ferroelectric capacitor of semiconductor device and method for fabricating the same
JPH09162372A (en) Electrode material and capacitor element using it
JPH09246490A (en) Semiconductor device and manufacture thereof
JP3889224B2 (en) Method for manufacturing a microelectronic structure
JPH0878636A (en) Manufacture of semiconductor device provided with capacitor
US6927166B2 (en) Method for manufacturing semiconductor devices and integrated circuit capacitors whereby degradation of surface morphology of a metal layer from thermal oxidation is suppressed
JPH04287968A (en) Integrated circuit device and manufacture thereof
JP4245552B2 (en) Method for producing crystalline thin film of composite oxide
JPH0951079A (en) Semiconductor element and manufacture thereof
JPH0620866A (en) Dielectric element
JP3769711B2 (en) Capacitor manufacturing method
KR100207447B1 (en) Capacitor and its fabrication method
JP2000091531A (en) Thin-film capacitor and manufacture therefor
KR19980029365A (en) Method of manufacturing ferroelectric capacitor
KR100288688B1 (en) Manufacturing Method of Semiconductor Memory Device
JP3267277B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
KR100265333B1 (en) Method for high dielectric capacitor of semiconductor device

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041124