JPS6369104A - Manufacture of ferrodielectric thin film element - Google Patents

Manufacture of ferrodielectric thin film element

Info

Publication number
JPS6369104A
JPS6369104A JP21325486A JP21325486A JPS6369104A JP S6369104 A JPS6369104 A JP S6369104A JP 21325486 A JP21325486 A JP 21325486A JP 21325486 A JP21325486 A JP 21325486A JP S6369104 A JPS6369104 A JP S6369104A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
ferroelectric
sputtering
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21325486A
Other languages
Japanese (ja)
Inventor
良一 高山
佳宏 冨田
賢二 飯島
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21325486A priority Critical patent/JPS6369104A/en
Publication of JPS6369104A publication Critical patent/JPS6369104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)
  • Radiation Pyrometers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線検出素子、圧電素子、電気光学素
子に用いられる強誘電体薄膜素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a ferroelectric thin film element used in a pyroelectric infrared detection element, a piezoelectric element, and an electro-optical element.

従来の技術 強誘電体のエレクトロニクス分野における応用は、赤外
線検出素子、圧電素子、光変調素子、メモリー素子など
さまざまなものがある。近年の半導体技術の進歩による
電子部品の小型化にともない、強誘電体素子も薄膜化が
進みつつある。
BACKGROUND ART There are various applications of ferroelectric materials in the electronics field, such as infrared detection elements, piezoelectric elements, light modulation elements, and memory elements. As electronic components become smaller due to advances in semiconductor technology in recent years, ferroelectric elements are also becoming thinner.

ところで、強誘電体の自発分極Psの変化を出力として
取り出す、例えば焦電型赤外線検出素子や圧電素子等で
は、強誘電体材料のPsが一方向に揃っている時、最も
大きい出力が得られる。
By the way, in pyroelectric infrared detection elements, piezoelectric elements, etc. that extract changes in the spontaneous polarization Ps of a ferroelectric material as an output, the largest output can be obtained when the Ps of the ferroelectric material is aligned in one direction. .

発明が解決しようとする問題点 現在、赤外線検出素子や圧電素子等に用いられている強
誘電体磁器は多結晶体であり、結晶軸の配列に方向性は
無(、従って自発分極Psもでたら目に配列している。
Problems to be Solved by the Invention Currently, the ferroelectric ceramics used in infrared detection elements, piezoelectric elements, etc. are polycrystalline, and there is no directionality in the arrangement of crystal axes (therefore, there is no spontaneous polarization Ps). They are arranged in a row.

エピタキシャル強誘電体薄膜、配向性強誘電体薄膜は結
晶の分極軸は揃っているが、電気的な自発分極Psは1
80°ドメインを作り交互に配列している。そこで、こ
れら材料を上述のようなエレクトロニクス素子として用
いる場合、材料に高電界(〜1ookV/c+m)を印
加してPsの向きを揃える分極処理が必要である。
In epitaxial ferroelectric thin films and oriented ferroelectric thin films, the crystal polarization axes are aligned, but the electrical spontaneous polarization Ps is 1.
80° domains are created and arranged alternately. Therefore, when these materials are used as electronic devices as described above, it is necessary to apply a high electric field (~1ookV/c+m) to the materials to perform polarization treatment to align the directions of Ps.

また、PbTiO3やPLZTなどの薄膜の作製に関し
ては多(の報告があるが、それらの強誘電相の領域の薄
膜について、その分極軸であるC軸に配向した薄膜、自
発分極までも一方向に配向した薄膜の製造方法について
は全く解明されていない。
In addition, there are many reports regarding the production of thin films such as PbTiO3 and PLZT, but for thin films in the ferroelectric phase region of these thin films, thin films oriented along the C axis, which is the polarization axis, and even spontaneous polarization are unidirectional. The method for producing oriented thin films has not been fully elucidated.

強誘電体材料に高電界を印加してPsを揃える方法では
次のような問題点が生じる。
The following problems arise in the method of aligning Ps by applying a high electric field to a ferroelectric material.

(1)分極処理により絶縁破壊が生ずる場合があり、歩
留まりが下がる。
(1) Dielectric breakdown may occur due to polarization treatment, resulting in lower yield.

(2)高分解能アレイ素子の様に多くの微小素子が高密
度に配列しているものでは、それらを均一に分極するこ
とが困難である。
(2) In devices such as high-resolution array devices in which many microelements are arranged at high density, it is difficult to polarize them uniformly.

〈3)半導体デバイス上に強誘電体薄膜を形成した集積
化デバイスでは、分極処理そのものが不可能な場合があ
る。
(3) In an integrated device in which a ferroelectric thin film is formed on a semiconductor device, polarization processing itself may not be possible.

問題点を解決するための手段 化学式がPb1−1(La)(Tit−o、7sx 0
3で組成範囲が0<x<0.15であり、分極軸の75
1以上が一方向に配向している強誘電体薄膜を基板上に
スパッタリングにより作製するに際して、スパッタリン
グターゲットを組成式 %式% において、Yが0.05〜0.4の範囲とする。
Means to solve the problem The chemical formula is Pb1-1 (La) (Tit-o, 7sx 0
3, the composition range is 0<x<0.15, and the polarization axis is 75
When producing a ferroelectric thin film in which one or more elements are oriented in one direction on a substrate by sputtering, the sputtering target has a compositional formula (%) in which Y is in the range of 0.05 to 0.4.

作用 上記のような製造方法による強誘電体薄膜においては、
Psが既に揃った自然分極が得られ、分極処理をおこな
う必要が無く、歩留まり良く、高性能の強誘電体素子が
実現できる。
Function: In the ferroelectric thin film manufactured by the above-mentioned manufacturing method,
Natural polarization in which Ps is already aligned can be obtained, there is no need for polarization treatment, and a high-performance ferroelectric element can be realized with high yield.

実施例 (100)でへき関し鏡面研摩したMgO単結晶を基板
とし、下部電極として膜厚0.2μmのPL薄膜をスパ
ッタリングにより形成した。スパッタガスは Ar  
02混合ガスである。ついで、強誘電体薄膜 Pb+−
x Lax Tit−o7sx 03(PLT)を1〜
4μm成長させた。方法は高周波マグネトロンスパッタ
法で、Arと02の混合ガスを用い、スパッタリングタ
ーゲットは ((1−Y) Pb+−x Lax Tit−o、7s
x 03 ”Y Pb0)の粉末である。表1にスパッ
タリング条件を示す。
The MgO single crystal that had been mirror-polished in Example (100) was used as a substrate, and a 0.2 μm thick PL thin film was formed as a lower electrode by sputtering. The sputtering gas is Ar
02 mixed gas. Next, a ferroelectric thin film Pb+-
x Lax Tit-o7sx 03 (PLT) from 1 to
It was grown to 4 μm. The method is high-frequency magnetron sputtering, using a mixed gas of Ar and 02, and the sputtering target is ((1-Y) Pb+-x Lax Tit-o, 7s
x 03 "Y Pb0) powder. Table 1 shows the sputtering conditions.

ついでこの薄膜上に上部電極としてNi−Cr電極を蒸
着し、強誘電体薄膜素子を作製した。さらに、強誘電体
薄膜の下部における基板には開口部を設けた。
Next, a Ni--Cr electrode was deposited as an upper electrode on this thin film to produce a ferroelectric thin film element. Furthermore, an opening was provided in the substrate below the ferroelectric thin film.

(以下余白) 表  1 第1図に代表的な薄膜のX線回折パターンを示す。ペロ
ブスカイト構造の(001)と(100)反射、及びそ
の高次の反射のみ観察される。また(001)反射の強
度が(100)のそれと比べて著しく大きいのでC軸配
向膜であることがわかる。C軸配向率αを次の式で定義
する。
(Margin below) Table 1 Figure 1 shows the X-ray diffraction pattern of a typical thin film. Only the (001) and (100) reflections of the perovskite structure and their higher-order reflections are observed. Furthermore, since the intensity of the (001) reflection is significantly larger than that of (100), it can be seen that it is a C-axis oriented film. The C-axis orientation rate α is defined by the following equation.

α利(001)/+1(001)+1(+00)1ここ
でl (oo+) 、およびIC100)はそれぞれ(
001)と(100)反射の回折強度を表す。
α(001)/+1(001)+1(+00)1 where l (oo+) and IC100) are respectively (
represents the diffraction intensity of (001) and (100) reflections.

C軸配向率αはスパッタリング条件である成膜速度・ス
パッタリングガス・ガス圧・基板温度・ターゲットによ
り変化することが明確となった。
It has become clear that the C-axis orientation ratio α changes depending on the sputtering conditions, such as the deposition rate, sputtering gas, gas pressure, substrate temperature, and target.

X−0,1、基板温度:T−600℃で他の条件が表1
の場合、Yを変えたときのC軸配向率α及び+(00+
)の変化を第2図に示す。
X-0,1, substrate temperature: T-600℃, other conditions are Table 1
In the case of , the C-axis orientation rate α and +(00+
) is shown in Figure 2.

αはVの増加と共に太き(なり、Y−0,2から飽和す
る。一方1(ooHはY−0,2で最大となる。
α becomes thicker as V increases, and becomes saturated from Y-0, 2. On the other hand, 1 (ooH becomes maximum at Y-0, 2).

第3図は、T−650℃のときの、α及び1(oo+)
とYとの関係を示す。αはT−600℃のときと同じ傾
向を示す。1(oo+)ハY=0.3テ最大となる。ま
た、T−,575℃のとき1(00+>はY−0,1で
最大となる。
Figure 3 shows α and 1(oo+) at T-650°C.
shows the relationship between and Y. α shows the same tendency as at T-600°C. 1(oo+)Y=0.3te is the maximum. Further, when T-, 575°C, 1(00+> becomes maximum at Y-0,1.

上記の結果から、Y−2,050−1612+(T+2
73)なル関係を満足するとき、C軸配向率が高く結晶
性のよい強誘電体薄膜が得られることが明確となった。
From the above results, Y-2,050-1612+(T+2
73) It has become clear that when the following relationship is satisfied, a ferroelectric thin film with a high C-axis orientation rate and good crystallinity can be obtained.

基板温度:■が高くなるほど、再蒸発するPbOの量が
増加するため、ターゲットに予めPbOを過剰に加える
ことが良い結果をもたらすと考えられる。
As the substrate temperature: ■ increases, the amount of PbO that re-evaporates increases, so it is thought that adding an excessive amount of PbO to the target in advance will bring about good results.

第4図にC軸配向率に対するPLT薄膜の焦電係数:γ
の変化、第5図に誘電率:εの変化を示す。焦電係数は
自発分極Psの配向に比例して大きくなる。
Figure 4 shows the pyroelectric coefficient of the PLT thin film with respect to the C-axis orientation rate: γ
Figure 5 shows the change in dielectric constant: ε. The pyroelectric coefficient increases in proportion to the orientation of the spontaneous polarization Ps.

焦電係数は配向率の増加とともに太き(なり、誘電率は
小さくなる。第4図及び第5図は分極処理(200℃で
l 00 k V / cd l 0分印加)を行なっ
た場合の結果についても示しである。配向率が小さい場
合、分極処理前後で焦電係数及び誘電率の値は大きく変
化する。配向率が75zになると焦電係数は5、0xl
O−8C/ cdKとなり、この値は200℃で100
kV/備印加して分極処理を行ったPbTiO3セラミ
クス(γ−1,8X10−8C/c+Jに)とくらべか
なり大きい。
The pyroelectric coefficient becomes thicker as the orientation rate increases, and the dielectric constant becomes smaller. Figures 4 and 5 show the results when polarization treatment (l 00 kV/cd l 0 minutes applied at 200°C) is performed. The results are also shown. When the orientation rate is small, the values of pyroelectric coefficient and permittivity change greatly before and after polarization treatment. When the orientation rate becomes 75z, the pyroelectric coefficient becomes 5.0xl.
O-8C/cdK, and this value is 100 at 200℃.
It is considerably larger than PbTiO3 ceramics (γ-1,8X10-8C/c+J) which was polarized by applying kV/voltage.

配向率90ネの場合焦電係数は6.8xlO=C/ci
Kである。また、分極処理後の値と比べ殆ど変わらない
ばかりでな(、配向率が小さい場合の分極後の値より大
きい。誘電率は、配向率90ネの場合、セラミクスはぼ
同等の値で約200である。
When the orientation rate is 90N, the pyroelectric coefficient is 6.8xlO=C/ci
It is K. In addition, the dielectric constant is almost the same as the value after polarization treatment (it is larger than the value after polarization when the orientation rate is small). It is.

以上述べたとおり、PLT薄膜では、薄膜作製時に十分
にC軸に配向しておれば分極処理を行わなくても自発分
極が揃っており、特に配向率75%以上の薄膜でその効
果が大きいことが明らかになった。
As mentioned above, in a PLT thin film, if the thin film is sufficiently oriented along the C-axis during production, the spontaneous polarization will be uniform even without polarization treatment, and this effect is particularly large for thin films with an orientation rate of 75% or more. It became clear.

本実施例で作製した強誘電体薄膜素子を赤外線センサと
して利用する場合、焦電材料としての性能指数である[
焦電係数/誘電率1の値は大きくなる。200℃で10
分間100kV/cm印加して分極処理を行ったPbT
i0aセラミクスの値と比較して、PLT薄膜は3倍強
の値を示す。つまり、本発明による強誘電体薄膜を用い
ると、全く分極処理を行わなくても優れた特性の赤外線
センサが作製されることがわかる。
When the ferroelectric thin film element produced in this example is used as an infrared sensor, the figure of merit as a pyroelectric material is [
The value of pyroelectric coefficient/permittivity 1 increases. 10 at 200℃
PbT subjected to polarization treatment by applying 100 kV/cm for minutes
Compared to the value of i0a ceramics, the PLT thin film shows a value more than three times as large. In other words, it can be seen that by using the ferroelectric thin film according to the present invention, an infrared sensor with excellent characteristics can be produced without any polarization treatment.

上記の例でも分かるように本発明の強誘電体薄膜を用い
た素子では分極処理を行わな(でも大きな出力が取り出
せる。これは赤外線センサばかりでなく圧電素子、光ス
ィッチなど電気光学素子等においても同様である。
As can be seen from the above example, the device using the ferroelectric thin film of the present invention can produce a large output even without polarization treatment.This is applicable not only to infrared sensors but also to electro-optical devices such as piezoelectric elements and optical switches. The same is true.

発明の効果 本発明による強誘電体薄膜素子は、分極処理が不要であ
り、また特性も優れていて、作製も容易であるから、実
用的にきわめて有効である。
Effects of the Invention The ferroelectric thin film element according to the present invention does not require polarization treatment, has excellent characteristics, and is easy to manufacture, so it is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における強誘電体薄膜のX線
回折パターンを示す図、第2図及び第3図は各々、本発
明の一実施例に於ける強誘電体薄膜のC軸配向率及び(
001)強度とPbOのモル比;4゛;;Ii;1との
関係を示すグラフ、第4図はC軸配向率と焦電係数の関
係を示すグラフ、第5図はC軸配向率と誘電率の関係を
示すグラフである。 代理人の氏名 弁理士 中尾敏男 はか1名第 1 口 ?θ 第 2 ズ θ         ?040 PbOモル比 (/、J 第 3 コ a40 PbOモル比 〔%] 第4図 06o、8        7.0 cht配向専′、必
FIG. 1 is a diagram showing an X-ray diffraction pattern of a ferroelectric thin film in an embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing the C-axis of a ferroelectric thin film in an embodiment of the present invention. Orientation rate and (
001) A graph showing the relationship between the strength and the PbO molar ratio; 4゛;;Ii; It is a graph showing the relationship between dielectric constants. Name of agent: Patent attorney Toshio Nakao 1st person? θ 2nd θ ? 040 PbO molar ratio (/, J 3rd core a40 PbO molar ratio [%] Fig. 406o, 8 7.0 Cht orientation only, required

Claims (3)

【特許請求の範囲】[Claims] (1)化学式がPb_1_−_xLa_xTi_1_−
_0_._7_5_xO_3で組成範囲が0<x<0.
15であり、分極軸の75%以上が一方向に配向してい
る強誘電体薄膜を基板上にスパッタリングにより作製す
るに際して、スパッタリングターゲットが組成式 {(1−Y)Pb_1_−_xLa_xTi_1_−_
0_._7_5_xO_3+YPbO}において、Yが
0.05〜0.4の範囲にあることを特徴とする強誘電
体薄膜素子の製造方法。
(1) The chemical formula is Pb_1_-_xLa_xTi_1_-
_0_. _7_5_xO_3 and the composition range is 0<x<0.
15, and when producing a ferroelectric thin film in which 75% or more of the polarization axis is oriented in one direction on a substrate by sputtering, the sputtering target has the composition formula {(1-Y)Pb_1_-_xLa_xTi_1_-_
0__. _7_5_xO_3+YPbO}, Y is in a range of 0.05 to 0.4.
(2)強誘電体薄膜をスパッタリングにより作製するさ
い、基板温度を575〜650℃の範囲とすることを特
徴とする特許請求の範囲第1項記載の強誘電体薄膜素子
の製造方法。
(2) A method for manufacturing a ferroelectric thin film element according to claim 1, characterized in that the substrate temperature is in the range of 575 to 650° C. when the ferroelectric thin film is produced by sputtering.
(3)強誘電体薄膜をスパッタリングにより作製するさ
い、基板温度:TとYが Y−2.050−1612÷(T+273)なる関係を
満足することを特徴とする特許請求の範囲第1項記載の
強誘電体薄膜素子の製造方法。
(3) When the ferroelectric thin film is produced by sputtering, the substrate temperature: T and Y satisfy the following relationship: Y-2.050-1612÷(T+273) A method for manufacturing a ferroelectric thin film element.
JP21325486A 1986-09-10 1986-09-10 Manufacture of ferrodielectric thin film element Pending JPS6369104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21325486A JPS6369104A (en) 1986-09-10 1986-09-10 Manufacture of ferrodielectric thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21325486A JPS6369104A (en) 1986-09-10 1986-09-10 Manufacture of ferrodielectric thin film element

Publications (1)

Publication Number Publication Date
JPS6369104A true JPS6369104A (en) 1988-03-29

Family

ID=16636052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21325486A Pending JPS6369104A (en) 1986-09-10 1986-09-10 Manufacture of ferrodielectric thin film element

Country Status (1)

Country Link
JP (1) JPS6369104A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172103A (en) * 1984-02-17 1985-09-05 松下電器産業株式会社 Ferrodielectric thin film
JPS62205266A (en) * 1986-03-04 1987-09-09 Matsushita Electric Ind Co Ltd Ferroelectric thin film element and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60172103A (en) * 1984-02-17 1985-09-05 松下電器産業株式会社 Ferrodielectric thin film
JPS62205266A (en) * 1986-03-04 1987-09-09 Matsushita Electric Ind Co Ltd Ferroelectric thin film element and its production

Similar Documents

Publication Publication Date Title
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
EP0513478A2 (en) Method for controlling crystal orientation of ferroelectric thin film
KR100827216B1 (en) Microelectronic piezoelectric structure
JPH08161933A (en) Ferroelectric thin film and ferroelectric thin film coated board and manufacture of ferroelectric thin film
JPH09186376A (en) Ferroelectric thin film, substrate coated with ferrorelectric thin film, capacitor structure element and deposition of ferroelectric thin film
JP2001354497A (en) Method for producing ferroelectric film
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JPS6096599A (en) Production of superconductive thin film of oxide
JPS6369104A (en) Manufacture of ferrodielectric thin film element
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JPH08186182A (en) Ferroelectric thin-film element
JP2568505B2 (en) Ferroelectric thin film element
JPH10316495A (en) Ferroelectric and memory element, and their production
JP2004281742A (en) Semiconductor device, semiconductor sensor and semiconductor memory element
JPH07509689A (en) Cubic metal oxide thin film grown epitaxially on silicon
JP3199091B2 (en) Stack of oriented thin films
JP2553559B2 (en) Pyroelectric infrared array sensor
JP2564526B2 (en) Pyroelectric infrared array element and manufacturing method thereof
JP2692646B2 (en) Capacitor using bismuth-based layered ferroelectric and its manufacturing method
JPS62252005A (en) Ferrodielectric thin film device
JP2006510566A (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method
JP2532410B2 (en) Dielectric thin film element
JP2529438B2 (en) Method of manufacturing oxide thin film
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
JPH0749998B2 (en) Pyroelectric infrared array element