JP2532410B2 - Dielectric thin film element - Google Patents
Dielectric thin film elementInfo
- Publication number
- JP2532410B2 JP2532410B2 JP61272480A JP27248086A JP2532410B2 JP 2532410 B2 JP2532410 B2 JP 2532410B2 JP 61272480 A JP61272480 A JP 61272480A JP 27248086 A JP27248086 A JP 27248086A JP 2532410 B2 JP2532410 B2 JP 2532410B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- dielectric thin
- dielectric
- film element
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 title claims description 48
- 239000000758 substrate Substances 0.000 claims description 10
- 239000010408 film Substances 0.000 claims description 9
- 239000013078 crystal Substances 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims 1
- 230000010287 polarization Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Radiation Pyrometers (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線検出素子、圧電素子、電気光学
素子等に用いられる誘電体薄膜素子に関する。Description: TECHNICAL FIELD The present invention relates to a dielectric thin film element used for a pyroelectric infrared detection element, a piezoelectric element, an electro-optical element, or the like.
従来の技術 誘電体のエレクトロニクス分野における応用は、赤外
線検出素子、圧電素子、光変調素子、メモリー素子など
さまざまなものがある。近年の半導体技術の進歩による
電子部品の小型化にともない、誘電体素子も薄膜化が進
みつつある。2. Description of the Related Art Dielectrics have various applications in the electronics field, such as infrared detection elements, piezoelectric elements, light modulation elements, and memory elements. Along with the miniaturization of electronic parts due to the progress of semiconductor technology in recent years, the dielectric element is also becoming thinner.
現在、赤外線検出素子や圧電素子等に用いられている
誘電体磁器は多結晶体であり、結晶軸の配列に方向性は
無く、従って自発分極Psも出たら目に配列している。一
方、エピタキシャル誘電体薄膜、配向性誘電体薄膜は結
晶の分極軸は揃っており、電気的な自発分極Psは180°
ドメインを作り交互に配列している。このような配向性
薄膜では結晶軸の方向により物性、例えば誘電率・音速
等が異なるため、特性の大幅向上・新機能デバイスの実
現が期待されている。At present, dielectric porcelain used for infrared detectors, piezoelectric elements, etc. is a polycrystalline body, and the crystal axes are not directional, so if spontaneous polarization Ps appears, it is arranged in the eyes. On the other hand, the epitaxial dielectric thin film and the oriented dielectric thin film have the crystal polarization axes aligned, and the electrical spontaneous polarization Ps is 180 °.
Domains are created and arranged alternately. In such an oriented thin film, the physical properties such as the dielectric constant and the sound velocity differ depending on the direction of the crystal axis, so that it is expected that the characteristics will be significantly improved and a new functional device will be realized.
誘電体薄膜の結晶軸は基板に大きく左右される。例え
ば、強誘電体であるPbTiO3はMgO単結晶基板では(00
1)、サファイア上では(111)が配向することが報告さ
れている。また、スピネル上で作製温度からの冷却時間
を変化してc軸配向あるいはa軸配向の強誘電体薄膜が
作製できることを第46回応用物理学会学術講演会講演予
稿集2a-T−3に提案されている。The crystal axis of the dielectric thin film is greatly influenced by the substrate. For example, the ferroelectric substance PbTiO 3 is (00
1), it has been reported that (111) is oriented on sapphire. In addition, it was proposed in Proceedings 2a-T-3 of the 46th Annual Meeting of the Japan Society of Applied Physics that the ferroelectric thin film with c-axis orientation or a-axis orientation can be produced by changing the cooling time from the production temperature on spinel. Has been done.
発明が解決しようとする問題点 作製温度からの冷却時間を変化して配向性を制御する
方法では、配向性の高い誘電体薄膜は得られない。その
ため特性の大幅な向上は実現できない。Problems to be Solved by the Invention A dielectric thin film having a high orientation cannot be obtained by a method of controlling the orientation by changing the cooling time from the manufacturing temperature. Therefore, significant improvement in characteristics cannot be realized.
問題点を解決するための手段 誘電体薄膜と基板との間に熱膨張率の異なる薄膜を設
けて誘電体薄膜の配向性を制御する。Means for Solving the Problems A thin film having a different coefficient of thermal expansion is provided between the dielectric thin film and the substrate to control the orientation of the dielectric thin film.
作用 上記のような誘電体薄膜素子においては、基板との間
に設けた薄膜の膜厚が十分薄いとき膜面に垂直にC軸方
向が揃い、厚くなると膜面方向にC軸方向が揃う。この
配向性は顕著に高く、再現性が良いので、高性能で歩留
まりの良い誘電体薄膜素子が実現できる。Action In the above-described dielectric thin film element, when the thickness of the thin film provided between the thin film and the substrate is sufficiently thin, the C axis direction is aligned perpendicular to the film surface, and when it is thick, the C axis direction is aligned in the film surface direction. Since this orientation is remarkably high and the reproducibility is good, it is possible to realize a dielectric thin film element having high performance and high yield.
実施例 第1図は本発明の誘電体薄膜素子の構造を示す図であ
る。ただし電極薄膜は省いている。EXAMPLE FIG. 1 is a diagram showing the structure of a dielectric thin film element of the present invention. However, the electrode thin film is omitted.
(100)でへき開し鏡面研摩したMgO単結晶基板1上
に、ターゲットにTiを用いてスパッタリングにより膜厚
10〜100nm薄膜2を形成した。スパッタガスはAr-O2混合
ガスである。ついで、誘電体薄膜3を高周波マグネトロ
ンスパッタリングで膜厚4μm成長させた。ArとO2の混
合ガスを用い、スパッタリングターゲットは {(1−Y)PbxLayTizZrwO3+YPbO}…(1) の粉末である。表1にスパッタリング条件を示す。Film thickness of MgO single crystal substrate 1 cleaved by (100) and polished to a mirror surface by sputtering using Ti as a target.
A 10-100 nm thin film 2 was formed. The sputtering gas is an Ar-O 2 mixed gas. Then, the dielectric thin film 3 was grown to a thickness of 4 μm by high frequency magnetron sputtering. Using a mixed gas of Ar and O 2 , the sputtering target is powder of {(1-Y) PbxLayTizZrwO 3 + YPbO} (1). Table 1 shows the sputtering conditions.
第2図(a),(b)に薄膜2の膜厚を変化したと
き、代表的な誘電体薄膜3のX線回折パターンを示す。 2A and 2B show X-ray diffraction patterns of a typical dielectric thin film 3 when the film thickness of the thin film 2 is changed.
ペロブスカイト構造の(001)と(100)反射、及びそ
の高次の反射のみ観察される。薄膜2の膜厚が薄いと
き、(001)反射の強度が(100)のそれと比べて著しく
大きいのでc軸配向膜であることがわかる。c軸配向率
αを次の式で定義する。Only the (001) and (100) reflections of the perovskite structure and higher reflections are observed. It can be seen that when the thin film 2 is thin, the intensity of (001) reflection is significantly higher than that of (100), and therefore it is a c-axis oriented film. The c-axis orientation rate α is defined by the following formula.
α=I(001)/{I(001)+I(100)} ここでI(001)、およびI(100)はそれぞれ(001)と(10
0)反射の回折強度を表す。α = I (001) / {I (001) + I (100) } where I (001) and I (100) are (001) and (10
0) Indicates the diffraction intensity of reflection.
第3図に薄膜2の膜厚を変化したとき、c軸配向率の
変化を示す。FIG. 3 shows changes in the c-axis orientation rate when the film thickness of the thin film 2 is changed.
薄膜2の膜厚が30nm以下のとき膜面に垂直にc軸が90
%以上配向し、60nm以上のときa軸が85%配向する。When the thickness of the thin film 2 is 30 nm or less, the c-axis is 90 perpendicular to the film surface.
% Or more, and when it is 60 nm or more, the a-axis is 85%.
本実施例で作製したc軸配向誘電体薄膜素子を赤外線
センサとして利用する場合、焦電材料としての性能指数
である[焦電係数/誘電率]の値は大きくなり、PbTiO3
セラミクスの値と比較して、PbTiO3薄膜で3倍の値を示
す。When the c-axis oriented dielectric thin film element manufactured in this example is used as an infrared sensor, the value of [pyroelectric coefficient / dielectric constant], which is a performance index as a pyroelectric material, becomes large, and PbTiO 3
Compared with the ceramics value, the PbTiO 3 thin film shows a tripled value.
以上述べたとおり配向性を制御できる本誘電体薄膜素
子は赤外線センサばかりでなく圧電素子、光スイッチな
ど電気光学素子等においても有用である。As described above, the present dielectric thin film element whose orientation can be controlled is useful not only in infrared sensors but also in piezoelectric elements, electro-optical elements such as optical switches, and the like.
発明の効果 本発明によれば、同一基板でも配向性を制御でき、し
かも高度に再現性良く配向できるので、高性能で歩留ま
りの良い誘電体薄膜素子を実現できる。EFFECTS OF THE INVENTION According to the present invention, since the orientation can be controlled even on the same substrate and the orientation can be performed with high reproducibility, it is possible to realize a dielectric thin film element having high performance and high yield.
第1図は本発明の一実施例における誘電体薄膜素子の断
面図、第2図は本発明の一実施例に於ける誘電体薄膜の
X線回折パターンを示す図、第3図は薄膜の膜厚とc軸
配向率との関係を示す図である。 1……基板、2……薄膜、3……誘電体薄膜FIG. 1 is a cross-sectional view of a dielectric thin film element in one embodiment of the present invention, FIG. 2 is an X-ray diffraction pattern of a dielectric thin film in one embodiment of the present invention, and FIG. It is a figure which shows the relationship between a film thickness and a c-axis orientation rate. 1 ... Substrate, 2 ... Thin film, 3 ... Dielectric thin film
Claims (4)
膜と、付設された電極薄膜とからなる誘電体薄膜素子に
おいて、前記基板と前記誘電体薄膜との間に熱膨張率の
異なる薄膜を設けて前記誘電体薄膜の結晶配向性を制御
したことを特徴とする誘電体薄膜素子。1. A dielectric thin film element comprising a substrate, a dielectric thin film formed on the substrate, and an electrode thin film attached thereto, wherein the substrate and the dielectric thin film have different coefficients of thermal expansion. A dielectric thin film element, characterized in that a thin film is provided to control the crystal orientation of the dielectric thin film.
膜厚を変化することにより、前記誘電体薄膜の結晶配向
性を制御したことを特徴とする特許請求の範囲第1項記
載の誘電体薄膜素子。2. The crystal orientation of the dielectric thin film is controlled by changing the film thickness of the thin film formed between the substrate and the dielectric thin film. Dielectric thin film element.
とを特徴とする特許請求の範囲第1項記載の誘電体薄膜
素子。3. A dielectric thin film element according to claim 1, wherein a thin film having an affinity with the dielectric thin film is used.
を特徴とする特許請求の範囲第3項記載の誘電体薄膜素
子。4. The dielectric thin film element according to claim 3, wherein the thin film having affinity is a compound of Ti.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61272480A JP2532410B2 (en) | 1986-11-14 | 1986-11-14 | Dielectric thin film element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61272480A JP2532410B2 (en) | 1986-11-14 | 1986-11-14 | Dielectric thin film element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63126116A JPS63126116A (en) | 1988-05-30 |
JP2532410B2 true JP2532410B2 (en) | 1996-09-11 |
Family
ID=17514512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61272480A Expired - Lifetime JP2532410B2 (en) | 1986-11-14 | 1986-11-14 | Dielectric thin film element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2532410B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001290283A1 (en) * | 2000-09-27 | 2002-04-08 | Matsushita Electric Industrial Co., Ltd. | Dielectric thin film element, actuator comprising it, ink jet head, and ink jet recorder. |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60131704A (en) * | 1983-12-20 | 1985-07-13 | 松下電器産業株式会社 | Pyroelectric heat detecting element |
-
1986
- 1986-11-14 JP JP61272480A patent/JP2532410B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63126116A (en) | 1988-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5998910A (en) | Relaxor ferroelectric single crystals for ultrasound transducers | |
JP2532381B2 (en) | Ferroelectric thin film element and manufacturing method thereof | |
JPS61177900A (en) | Piezo-electric element and its manufacture | |
Okuyama et al. | PbTiO3 ferroelectric thin films and their pyroelectric application | |
JP2532410B2 (en) | Dielectric thin film element | |
JP2003347613A (en) | Piezoelectric thin-film element | |
JPH045874A (en) | Ferroelectric thin-film and manufacture thereof | |
JP2718414B2 (en) | Method for producing lead titanate thin film | |
JPH0762235B2 (en) | Method of manufacturing ferroelectric thin film | |
JPS60161635A (en) | Substrate for electronic device | |
JP2568505B2 (en) | Ferroelectric thin film element | |
JPH0781183B2 (en) | Method for producing oriented metal thin film | |
JP2990527B2 (en) | Manufacturing method of thin film substrate | |
JP2006510566A (en) | Method for manufacturing ferroelectric single crystal film structure using vapor deposition method | |
Wasa et al. | Structure and electromechanical properties of quenched PMN-PT single crystal thin films | |
JPS6355198A (en) | Substrate for dielectric thin film device | |
JPH0280397A (en) | Ferroelectric thin film | |
JP3646363B2 (en) | Pyroelectric thin film, method for producing the same, and pyroelectric thin film element using the pyroelectric thin film | |
JPH0294209A (en) | Manufacture of ferroelectric thin film | |
JPH06102122A (en) | Pressure sensor and production thereof | |
Yamakawa et al. | Electrical properties and phase transformations in antiferroelectric lead zirconate thin films | |
JPS58186105A (en) | Ferrodielectric thin film and ferrodielectric element | |
RYDER | Synthesis and microstructure of highly oriented PbTiO 3 thin films prepared by a sol-gel method(Final Report) | |
JPH06260018A (en) | Ferroelectric thin film element and its manufacture | |
JPH0749998B2 (en) | Pyroelectric infrared array element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |