JPH07509689A - Cubic metal oxide thin film grown epitaxially on silicon - Google Patents

Cubic metal oxide thin film grown epitaxially on silicon

Info

Publication number
JPH07509689A
JPH07509689A JP6505316A JP50531694A JPH07509689A JP H07509689 A JPH07509689 A JP H07509689A JP 6505316 A JP6505316 A JP 6505316A JP 50531694 A JP50531694 A JP 50531694A JP H07509689 A JPH07509689 A JP H07509689A
Authority
JP
Japan
Prior art keywords
layer
metal oxide
heterostructure
ferroelectric
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6505316A
Other languages
Japanese (ja)
Inventor
ラメシュ、ラマモーシー
Original Assignee
ベル コミュニケーションズ リサーチ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベル コミュニケーションズ リサーチ インコーポレーテッド filed Critical ベル コミュニケーションズ リサーチ インコーポレーテッド
Publication of JPH07509689A publication Critical patent/JPH07509689A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/0213Holding devices, e.g. on the body where the catheter is attached by means specifically adapted to a part of the human body
    • A61M2025/0226Holding devices, e.g. on the body where the catheter is attached by means specifically adapted to a part of the human body specifically adapted for the nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/02Holding devices, e.g. on the body
    • A61M2025/024Holding devices, e.g. on the body having a clip or clamp system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0618Nose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この出願は、シリアル番号07/846.358 (1992年3月5日登録) に部分的に連続するもので、1992年lO月13日、米国特許5,155,6 58として発行された。[Detailed description of the invention] This application has serial number 07/846.358 (registered on March 5, 1992) U.S. Pat. No. 5,155,6 issued on May 13, 1992, Published as 58.

発明の分野 本発明は概して結晶厚膜とその成長に関する。さらに詳しくは、シリコン基板上 の立方ペロブスカイトまたは金属酸化薄膜で、間にバッファ層を含むものに関す る。field of invention FIELD OF THE INVENTION This invention relates generally to crystalline thick films and their growth. For more details, see cubic perovskite or metal oxide thin films with a buffer layer in between. Ru.

かって;:とんど半導体技術のみに独占的に使用されたエピタキシャル薄膜は、 最近になって他のいくつかの技術でも利用されるようになった。Once upon a time, epitaxial thin films were used exclusively in semiconductor technology. Recently, it has also been used in several other technologies.

YBa、Cuρ、、 (YBCO)のような高温超伝導体は、結晶基板上で単結 晶薄膜としてエピタキシャル酎に成長した場合、最良・最大の再現性をもつ半導 体の特性を示す。これらの高温セラミック超伝導体は異方性ペロブスカイト結晶 構造を有している。例えば、YBCOのa軸とb軸の格子パラメータは0.38 2 nmと0.388 nmだが、C軸格子パラメータは1.168nmである 。Inamらは、米国特許出MO71531,255(1991年5月31日登 S3.)において、Y′BCO電極がYBa2Cuρ7.の、絶縁層、または最 も半導性の層、または通常の伝導層を挟む超伝導ジョセフソン装置について開示 した。3つの層はすべてC軸配向でエピタキシャル的に成長、つまりa軸は膜面 に垂直となっている。High-temperature superconductors such as YBa, Cuρ, , (YBCO) are formed into single bonds on a crystal substrate. Semiconductor with the best and maximum reproducibility when grown epitaxially as a crystalline thin film Indicates the characteristics of the body. These high-temperature ceramic superconductors are anisotropic perovskite crystals It has a structure. For example, the lattice parameters of the a-axis and b-axis of YBCO are 0.38 2 nm and 0.388 nm, but the C-axis lattice parameter is 1.168 nm. . Inam et al. S3. ), the Y′BCO electrode is YBa2Cuρ7. , insulation layer, or also discloses superconducting Josephson devices sandwiching semiconducting or normal conducting layers did. All three layers are grown epitaxially with c-axis orientation, i.e. the a-axis is at the film plane. It is perpendicular to.

この方法をメモリ用の強誘電性素材にも応用した。私と発明者らは米国特許5, 155,658および5,168,420において、YBCO電極が強誘電性層 、例えばpbzrrT、ρ、(式中、(ト)αくlであり、こr、:士立方格子 構造と比べてわずかに歪んでいる)を挾む装置について説明した。This method was also applied to ferroelectric materials for memory. I and the inventors are U.S. Patent No. 5, 155,658 and 5,168,420, the YBCO electrode is a ferroelectric layer. , for example, pbzrrT, ρ, (where, (g)αkl, and this r,: shi cubic lattice I explained about the device that holds the (slightly distorted compared to the structure).

3つの層は丁べてエピタキシャル的に成長させ、単結晶薄膜になるようにする。The three layers are grown epitaxially together to form a single crystal thin film.

一つの実施例では、YBCOは、C軸配向、つまりa軸は膜面に対して垂直であ り、下のYBCO層はIAAIO7上に直接成長する。このような強誘電性メモ リは、超伝導の温度での動作ではなく、YBCO電極の通常の伝導性を利用する 。In one embodiment, the YBCO has a c-axis orientation, i.e., the a-axis is perpendicular to the film plane. Then, the underlying YBCO layer is grown directly on the IAAIO7. Ferroelectric notes like this Li takes advantage of the normal conductivity of YBCO electrodes, rather than operating at superconducting temperatures. .

超伝導装置と強誘電性装置は両方とも、シリコン電子回路のシリコン基板上で統 合することができるのであれば、商業的により大きく成功すると思われる。その 結果、Si上のエピタキシャル的に成長させたYBCOの技術が開発された。F orkらは、そのような技術を「s1上の歪みエピタキシャルYBa2Cu、Q 、4における高臨界電流」田igh critical c鼎nじin s+r LIned epimial YBa、Cuρya On si)、Appli ed Physics Liners、第5巻A1990年、pp。Both superconducting and ferroelectric devices are integrated on silicon substrates in silicon electronic circuits. If they can be combined, they are likely to be more commercially successful. the As a result, the technology of epitaxially grown YBCO on Si was developed. F ork et al. describe such a technique as “strained epitaxial YBa2Cu on s1, Q , high critical current in 4 LIned epimial YBa, Cuρya Onsi), Appli ed Physics Liners, Volume 5 A1990, pp.

1161−1163で開示した。この技術は、まずイツトリア安定ジルコニア( ffρJ′)x(Zr2’J)1.、、以下YSZ)の層をシリコン基板上に蒸 着させ、次に■ωをYS乙Eに蒸着するというものである。No. 1161-1163. This technology was first developed using yttria-stable zirconia ( ffρJ′)x(Zr2′J)1. , , hereafter YSZ) is deposited on a silicon substrate. Then, ■ω is deposited on YS and E.

私の米国原特許出願に5isZ/YBCo/FZT/YE■構造を示したが、多 くの重要な用途では完全に1足のいくものではない。電極は構造的・電子的に対 称であり、上部■■電極は、丁でに蒸着されている下部lTには高すぎる温度で 成長する必要がある。さらに、例えばEaKbiO,のような最近発見されたい くつかの高温セラミック超伝導体は、異方性ペロブスカイト結晶構造はもたない が、その代わりに立方、またはほぼ立方の結晶格子構造を有する。また、強誘電 性メモリの電極は、温度の高低に拘わらず超伝導である必要はなく、ある程度の 伝導性を示せばよい。単結晶強誘電性メモリにおける最近の研究では、5rTr O,上に成長する、ランタンストロンチウムコバレー) (La、、、Sr、C oO,、式中0(X(1、以下LSCO)からなる伝導性酸化電極を使用した。Although I showed the 5isZ/YBCo/FZT/YE■ structure in my original US patent application, For many important uses, it is not completely worth it. The electrodes are structurally and electronically paired. The upper ■■ electrode is exposed at a temperature too high for the lower IT, which is deposited on the surface. need to grow. Furthermore, recently discovered materials such as EaKbiO, Some high-temperature ceramic superconductors do not have an anisotropic perovskite crystal structure but instead has a cubic or nearly cubic crystal lattice structure. Also, ferroelectric Electrodes for sexual memory do not need to be superconducting regardless of temperature; It is sufficient to show conductivity. Recent research in single-crystal ferroelectric memory has shown that 5rTr O, growing on lanthanum strontium covalley) (La,..., Sr, C A conductive oxide electrode consisting of oO, in the formula 0 (X (1, hereinafter referred to as LSCO) was used.

Cheungらはこの構造を「強誘電幣tx装置の電極としてパルスレーザ蒸着 によって成長させた伝導性およびエピタキシャルLa5rCoO薄膜J (Co nductive and epitaxial La5aCめthin fi lm grown b凵@pulsed 1aser deposiuon as electrcxies for ferroel ectric PLZT devices) 1992年3祉Jリフォルニア州 モントレ ー第4回集積強誘電体国際シンポジウム抄録、p、9Cで開示している。この非 常に低い温度で成長させることのできる素材は、0382±0.2 nmの結晶 格子パラメータを有し、公称立方と言える。公称立方とは、格子パラメータが5 %以上異ならず、結晶格子軸が3°以内で垂直であることを意味する。さらに、 Si基板上で、η丁のような強誘電性素材の単結晶層、またはチタン酸ストロン チウム(SrTIOJ)のような誘電性素材を直接形成する必要がある。私の経 験では、Yバッファ31基板上で、公称立方ペロブスカイトは、高品質のエピタ キシャル成長をできない。Cheung et al. Conductive and epitaxial La5rCoO thin film J grown by (Co nductive and epitaxial La5aC thin fi lm grown b凵@pulsed 1aser Deposition as electrcxies for ferroel electric PLZT devices) 1992 3rd year California state Monterey - Disclosed in Abstracts of the 4th International Symposium on Integrated Ferroelectrics, p. 9C. This non- The material that can be grown at a constant low temperature is a crystal of 0382±0.2 nm. It has lattice parameters and can be said to be nominally cubic. Nominally cubic means that the lattice parameter is 5 It means that the crystal lattice axes are perpendicular within 3 degrees and do not differ by more than %. moreover, On a Si substrate, a single crystal layer of a ferroelectric material such as A dielectric material such as lithium (SrTIOJ) must be directly formed. my sutra In our experiments, nominally cubic perovskite was formed on a Y-buffer 31 substrate with high quality epitaxial growth. Unable to achieve critical growth.

発明のまとめ 本発明は、シリコン基板上で結晶金属酸化薄膜を生成する方法、およびそれから 生じた装置であると要約することができる。例えばイノトリア安定ジルコニアな どのバツファ心はシリコン上に成長し、C軸配向異方性ペロプス力イトのテンプ レートは、このバッファ層に成長する。このテンプレートによって、後に成長さ せた立方金属酸化物が非常に配向性の高い結晶性をもつ。立方金属酸化物は、電 極や強誘電体など、層化結晶装置のさまざま部分の一つに使用することができる 。Summary of inventions The present invention provides a method for producing crystalline metal oxide thin films on silicon substrates, and It can be summarized as a device that was created. For example, Innotria stable zirconia Which buffer core is grown on silicon and has a C-axis oriented anisotropic Peropus power template? The rate grows into this buffer layer. This template will later grow The cubic metal oxide has highly oriented crystallinity. Cubic metal oxides are Can be used in one of the various parts of layered crystal devices, such as poles or ferroelectrics .

図面の簡単な説明 図1は、本発明の基本的実施例の断面図。Brief description of the drawing FIG. 1 is a sectional view of a basic embodiment of the invention.

図2〜図4は、本発明の追加的実施例の断面図。2-4 are cross-sectional views of additional embodiments of the invention.

発明の詳細な説明 異方性ベロプス力イト(層化ペロブス力イトとも呼ばれる)は、適切な成長状態 ではC軸配向の大きな成長傾向を示すと考える。Inamらは特許出願でペロブ ス力イト素材を定義している。この傾向は、成長時に露出しなa−b結晶面の低 い自由エネルギーによって起こるようだが、■■とYSZの間のa−b面におい て56%の格子不整合の問題を除去すること、およびYSz上でYBCOのC軸 配向成長を起こすにも十分である。私の米国特許出願では、C軸配向のYBCO 層が、シリコン上に蒸着したYSZパツファ層上でどのように成長できるかを説 明している。YBCOは電極として機能するばかりでなく、80%以上のC軸配 向を示丁強誘電体を後に成長させるためのテンプレートにもなる。これに対して 、公称立方ベロブスカイトは、結晶成長でこのような特定の配向性の傾向を強く 示すことはない。その結果、公称立方ベロブスカイトは、ム一lOJ上で高品質 単結晶ペロブス力イト膜をつくる成長環境下において、YSZ上に多結晶膜とし て、または不正確な位相として成長する傾向がある。Detailed description of the invention Anisotropic perovites (also called stratified perovites) are produced under appropriate growth conditions. Therefore, it is considered that the C-axis orientation shows a large growth tendency. Inam et al. Defines a powerful material. This tendency is due to the low level of a-b crystal planes that are not exposed during growth. This seems to be caused by high free energy, but in the a-b plane between ■■ and YSZ. to eliminate the 56% lattice mismatch problem and the C-axis of YBCO on YSz. It is also sufficient to cause oriented growth. In my US patent application, the C-axis oriented YBCO Explain how the layer can be grown on a YSZ puffer layer deposited on silicon. It's clear. YBCO not only functions as an electrode, but also has more than 80% C-axis alignment. It also serves as a template for later growth of the ferroelectric material. On the contrary , the nominally cubic berovskite exhibits a strong tendency for such specific orientation in crystal growth. There is nothing to show. As a result, the nominal cubic berovskite is of high quality on the mulch OJ. A polycrystalline film is formed on YSZ under the growth environment that creates a single-crystal perovskite film. It tends to grow as an incorrect phase, or as an incorrect phase.

層化ベロブス力イト(または異方性ペロブスカイト)が、YSZバツファシリコ ン上で立方ペロブス力イトのエビタキシャル的成長のためのテンプレートを提供 することを私は発見した。図1に示したように、イノトリア安定ジルコニアαS Z)は、単結晶シリコン基板l2上に成長する。■には、8から18モル%、で きれば9モル%程度のイットリアを含んでいる場合、完全に安定している。完全 に安定したYSZは、(100)配向シリコン上の(100)配向で形成する。Stratified belobskite (or anisotropic perovskite) Provides a template for the ebitaxial growth of cubic perovus I discovered that it does. As shown in Figure 1, Innotria stable zirconia αS Z) is grown on a single crystal silicon substrate l2. ■For 8 to 18 mol%, If it contains about 9 mol% of yttria, it is completely stable. Perfect A stable YSZ is formed with (100) orientation on (100) orientation silicon.

異方性ペロブスカイトの層l4は、実質上単結晶の1配向膜形成に適した成長環 境下で■1層上に蒸着される。異方性(または層化)ベロブスカイトとは、公称 立方でないペロブスカイト素材のことを意味する。技術的に重要な異方性ペロブ スカイトの多くは、a軸およびb軸格子パラメータより2倍またはそれ以上長い 1格子パラメータを有するが、格子セルはほぼ長方形である。異方性ベロブスカ イト層l4は、通常ベロブス力イト素材である公称立方金属酸化物(一股的には ベロプスカイト素材)の層l6のエビタキシャル的成長のテンプレート層として 機能する。このようなテンプレート層l4は、明確に定義された結晶配向、つま り実質上単結晶を有する上層のエビタキシャル的成長を促進する。金属酸化物( つまり金属イオンと酸素の両方をもつ)の例としては、強誘電体のランタンジル コニアチタン酸鉛CPb,,,La,Zr,,ρ,、式中0<x<1およびQ< y<1、以下pロ刀、誘電体のストロンチウムチタン酸(SrTiO;)、およ び伝導性酸化物のLSCOなどがある。下記の実施例で明らかになるように、立 方金属酸化層16は、多数のさまざまな装置に取り入れることが可能である。The anisotropic perovskite layer l4 is a growth ring suitable for forming a substantially monocrystalline unidirectional film. 1 layer is deposited under the border. Anisotropic (or layered) berovskite is the nominal It refers to perovskite materials that are not cubic. Technically important anisotropic perob Many of the skites are twice or more long than the a- and b-axis lattice parameters. 1 grid parameter, but the grid cells are approximately rectangular. anisotropic berovska The metal layer l4 is made of a nominally cubic metal oxide (in short, As a template layer for the epitaxial growth of layer 16 of velopskite material) Function. Such a template layer l4 has a well-defined crystal orientation, i.e. This promotes the epitaxial growth of the upper layer with substantially single crystals. Metal oxide ( (in other words, it has both metal ions and oxygen), the ferroelectric lanthanide Conia lead titanate CPb,,,La,Zr,,ρ,, where 0<x<1 and Q< y<1, hereafter p, dielectric strontium titanate (SrTiO;), and and conductive oxide LSCO. As will become clear in the examples below, The metal oxide layer 16 can be incorporated into a number of different devices.

〔実施例l〕[Example 1]

異方性ペロブスカイトがチタン酸ビスマス(BiイTiρ,2)、立方金属酸化 物がx=OJおよびy=0.1のPじゴの構造を成長させた(図1に参照)。B i,Tiρ,,は斜方結晶構造を有し、格子パラメータは054l、0.545 、および3.28 nmである。この実施例と他の実施例の蒸着は、私の他の特 許に説明した手順に従い、パルスレーザアブレーションによって行った。 Anisotropic perovskite is bismuth titanate (BiTiρ,2), cubic metal oxide A structure of Pjigo was grown with x = OJ and y = 0.1 (see Figure 1). B i, Tiρ,, has an orthorhombic crystal structure, and the lattice parameters are 054l, 0.545 , and 3.28 nm. The deposition of this and other examples is based on my other features. It was performed by pulsed laser ablation following the procedure described previously.

シリコン基板上のYSZ層の蒸着は、別のシステムで実施した。この工程は、上 記に引用したForkらによる記事に説明されている。残ったさまざまな素材が 蒸着される対象面は、すべて蒸着チャンパに入れ、蒸着と蒸着の間に蒸着チャン バを開けることなくビームに当てた。対象面は、酸素を除く望ましい化学量を有 する焼結パウダーディスクだった。Deposition of the YSZ layer on the silicon substrate was performed in a separate system. This process This is explained in the article by Fork et al. cited in the article. Various remaining materials All surfaces to be vapor deposited are placed in a vapor deposition chamber, and the vapor deposition chamber is placed between vapor depositions. I hit the beam without opening the bar. The target surface has the desired stoichiometry excluding oxygen. It was a sintered powder disc.

(001)配向のシリコンウエーハ上に厚さ5nmで蒸着したYSZ層は、9モ ル%のイットリアを有し、立方位相を安定させた。テンプレート層は20 nm f)Bi4Tip,,で、C軸配向になるよう640’Cの基板ホルダ温度で蒸 着した。0.3μmのPL汀を蒸着して立方金属酸化層を形成する間、基板ホル ダ温度は−(イ)℃に保った。X線回折はPLZTの(00m)ピークのみを示 したが、これはペロブスカイトとして高度に成長したことを示す。2θ=221 での(001)ピークの幅は0.3゜以下だった。約35%のチャネリングの歩 留まりは、結晶ムη10,基板上に成長したPL2Tの17%と比較してみると よい。A 5 nm thick YSZ layer was deposited on a (001) oriented silicon wafer with a 9-molecular thickness. % yttria to stabilize the cubic phase. Template layer is 20 nm f) Bi4Tip, , evaporated at a substrate holder temperature of 640'C for C-axis orientation. I arrived. While depositing a 0.3 μm PL layer to form a cubic metal oxide layer, the substrate holder was The temperature was maintained at -(a)°C. X-ray diffraction shows only the (00m) peak of PLZT. However, this indicates that it has grown to a high degree as a perovskite. 2θ=221 The width of the (001) peak was 0.3° or less. Approximately 35% channeling step When compared with 17% of PL2T grown on a substrate with a crystalline mass of η10, good.

〔比較例1〕 ?施例lと同様の構造を成長させたが、ここではテンプレート層を成長させな力 1つな。[Comparative example 1] ? A structure similar to that in Example 1 was grown, but here no force was used to grow the template layer. One.

X線回折はペロブス力イトピークがな< (OOm)、(111)のパイ口クロ ールビークのみを示した。従って、テンプレート層なしでは、PしTはペロブス カイトとして形成せず、その代わりに非強誘電性パイ口クロールとして形成した 。X-ray diffraction shows a perovus power peak < (OOm), and a peak of (111). Only Rubik is shown. Therefore, without the template layer, P and T are perovs not formed as a kite, but instead as a non-ferroelectric pie-mouth crawl .

本発明の2つ目の例は、強誘電性ランダムアクセスメモリ(FRAM)である。A second example of the invention is ferroelectric random access memory (FRAM).

FRAM集積回路は、メモリセルのアレイを有しており、その1つを図2の断面 図に示した。完全番二安定したYS2J10は、(001)配向のシリコンウエ ーハl2上に蒸着させるが、その厚さは50から100nmの範囲が望ましい。A FRAM integrated circuit has an array of memory cells, one of which is shown in cross section in FIG. Shown in the figure. Completely bistable YS2J10 is a silicon wafer with (001) orientation. - The thickness is preferably in the range of 50 to 100 nm.

できれば厚さ2から10nmの層化ベロプスカイト素材からなる薄いテンプレー ト層20は、C軸配向成長を助長する環境下におν)て■1層上に蒸着させる。Thin template preferably made of layered velopskite material with a thickness of 2 to 10 nm The second layer 20 is deposited on top of the second layer ν) under an environment that promotes C-axis orientation growth.

漂のこのような素材の例としては、■■、BIβr2Ca.Cu,,ρ,(式中 nは負でない整数) 、La2,,Sr■CuOイ(式中0>x>1) 、およ びBi,Tiρ,2などがある。その他の例はBi,Tiρ,,から置換誘導し た素材で、Subbaraoによる[BJψ,2における強誘電性およびその固 容体J (Ferroelectrici5 in Br,Tr,O,, an d Its Solid Solutions)、Ph凾唐奄モ≠戟@Revi ew,第122巻、1961年、pp. 804−807に開示されている。Examples of such drifting materials include ■■, BIβr2Ca. Cu,,ρ, (in the formula n is a non-negative integer), La2,, SrCuOi (0>x>1 in the formula), and and Bi, Tiρ, 2, etc. Other examples are substitution induction from Bi, Tiρ, . Subbarao [ferroelectricity and its hardness in BJψ,2] Condition J (Ferroelectric5 in Br, Tr, O,, an d Its Solid Solutions), Ph 凾東奄MO≠戟@Revi ew, Volume 122, 1961, pp. 804-807.

テンプレート層20上に、立方またはほぼ立方の伝導ペロブスカイトまたは他の 金属酸化物からなる下部電極層22を蒸着する。FRAMのこのような素材の例 としては、び■、SrRuO,, SrCrO,、およびSrVO,などがある 。薄い強誘電体層24 (PI2Tが望ましー)を、下部電極22上に蒸着する 。強誘電性素材の他の例については、私の特許出願07/616,166−現在 では特許5,168,420 (1992年12月1日発行)一に説明してv1 る。上部電極層26は、強誘電性層24上に蒸着させる。この上部電極層26は 下部7t極層22と同じ素材からなることが望ましい。On the template layer 20, a cubic or nearly cubic conducting perovskite or other A lower electrode layer 22 made of metal oxide is deposited. Examples of such materials in FRAM Examples include Bi, SrRuO,, SrCrO, and SrVO, etc. . A thin ferroelectric layer 24 (preferably PI2T) is deposited on the bottom electrode 22. . For other examples of ferroelectric materials, see my patent application 07/616,166-current Let's explain patent 5,168,420 (issued December 1, 1992) v1 Ru. A top electrode layer 26 is deposited on the ferroelectric layer 24. This upper electrode layer 26 It is desirable that it be made of the same material as the lower 7t pole layer 22.

2回のマスキングとエノチングは階段状の構造をつくりだし、これは下部電極2 2で隔離され、下部電極22の最上面で接触できる。スピンオンガラスは、電極 22および26を隔離する絶縁層30を形成するが、それらにコンタクトホール を明確にする。メタライゼーション層を蒸着・定義して、電気的相互接続32お よび34を、電極22および24と他の回路の間に形成する。この回路は、FR AMのゲート回路としてシリコン基板に形成されたMOSゲートを含むこともあ る。Two times of masking and enoching create a step-like structure, which is the bottom electrode 2. 2 and can be contacted at the top surface of the lower electrode 22. spin-on glass electrode An insulating layer 30 is formed that isolates 22 and 26, but a contact hole is formed between them. Make it clear. Deposit and define metallization layers to create electrical interconnects 32 and and 34 are formed between electrodes 22 and 24 and other circuitry. This circuit is FR AM gate circuits may include MOS gates formed on silicon substrates. Ru.

〔実施例2〕 強誘電性メモリは図2とほぼ同様の構造で製作したが、横方向定義が最低限にな っている。図3に示したように、YBCOのテンプレート層20は、YSZパツ ファ基板10および12上で厚さ20 nmに蒸着し、このとき基板ホルダは8 10℃に維持した。この温度により、YBCOはC軸配向で成長した。基板ホル ダ11度を640℃に減少し、x=0.5のLSCOの層Wを厚さ100nmi 4茨長させ、下部電極22を形成した。最初の実施例と同じ組成のPJの強誘電 性層24は、640℃で厚さ0.3μmまで成長させた。LSCOの上部電極層 は、下部電極層20と同様に成長させた。電極のためのYBCOよりもLSCO の利点がある理由は、上部電極層成長時にPLZTが高温に接しないためである 。[Example 2] The ferroelectric memory was fabricated with a structure similar to that shown in Figure 2, but with minimal lateral definition. ing. As shown in FIG. 3, the YBCO template layer 20 is The film was deposited to a thickness of 20 nm on the substrates 10 and 12, and the substrate holder was 8 nm thick. The temperature was maintained at 10°C. At this temperature, YBCO grew with C-axis orientation. board holder temperature of 11 degrees to 640 degrees Celsius, and the layer W of LSCO with x=0.5 was reduced to a thickness of 100 nm. The lower electrode 22 was formed by making it 4 thorns long. Ferroelectric of PJ with the same composition as the first example The layer 24 was grown at 640° C. to a thickness of 0.3 μm. Upper electrode layer of LSCO was grown in the same manner as the lower electrode layer 20. LSCO than YBCO for electrodes The reason for this advantage is that PLZT is not exposed to high temperatures during the growth of the upper electrode layer. .

Pt/Auのメタライゼーション層は、蒸着され、100μm円36のアレイに 写真製版的に定義された。フォトレジストを除去した後、上部LSCO層は1% の硝酸でエソチングすることにより、個別の上部電極38を隔離する。マスクと エッチングをもう一度実施して下部電極20と接触させるのではなく、非常に大 きな上部電極30をマスクパターンに含めた。A Pt/Au metallization layer was deposited in an array of 100 μm circles 36. Photolithographically defined. After removing the photoresist, the top LSCO layer is 1% Separate upper electrodes 38 are isolated by etching with nitric acid. with mask Rather than performing another etch to make contact with the bottom electrode 20, a very large A large upper electrode 30 was included in the mask pattern.

電気的検査では、電気的リードを選択された小さい上部電極と大きい上部電極の 間につなぎ、直JIJ回路の極性決定による電気容量は、選択された小さい電極 のコンデンサによって管理される。For electrical testing, connect the electrical leads to the selected small top electrode and large top electrode. The capacitance determined by the polarity of the direct JIJ circuit is determined by the selected small electrode. managed by a capacitor.

メモリ要素は電気的に検査された。2■の双極パルスでは、残留極性±13.5 μC/CrrI2を示した。次に、これは2■の双極パルスを5■セで印加して 疲れを検査した。2xlO”サイクルの後、残留極性は約±11μacrn2に 低下し、わずかに非対称だった。この長寿命は、常に問題であった多結晶房仏M の疲れと明らかに対照的である。The memory elements were electrically tested. For 2■ bipolar pulses, residual polarity ±13.5 μC/CrrI2 was shown. Next, this is done by applying 2 ■ bipolar pulses in 5 ■ seconds. I checked for fatigue. After 2xlO” cycles, the residual polarity is approximately ±11 μacrn2. It was lowered and slightly asymmetrical. This long life has always been a problem for polycrystalline Buddha M. This contrasts sharply with the fatigue of

本発明は、電気光学作用を利用した集積光学にも応用することができる。この電 気光学作用は、PLZTのような電気光学素材の屈折率を変更することによって 、電圧信号が光学信号で位相ずれを起こすものである。ptz’rは立方ペロプ ス力イトで、立方金属酸化電極によって挾むことができる。The present invention can also be applied to integrated optics using electro-optic effects. This electric Pneumo-optic action can be achieved by changing the refractive index of electro-optic materials such as PLZT. , the voltage signal causes a phase shift in the optical signal. ptz'r is cubic pelop It can be sandwiched by cubic metal oxide electrodes.

〔実施例3〕 電気光学作用は、YSZ轡10上での厚さ20nmのBi,Tiρ,,テンプレ ート層20、厚さl00nmのLSCO′It極層22、厚さ300 nmのP LZT層24、厚さ80面の上部びの電極38の一組で成長させた装置(図3に も図示)で示した。金属円コンタクト36は、10nmの五からなった。[Example 3] The electro-optical effect was obtained using a 20 nm thick Bi, Tiρ, template on the YSZ board 10. layer 20, LSCO'It pole layer 22 with a thickness of 100 nm, P layer with a thickness of 300 nm An apparatus (see FIG. (also shown). The metal circular contact 36 consisted of 10 nm squares.

赤色光を光学的に薄いT円に照射したとき(同時に、±5V間の100Hzで電 気的にも変調)、反射光は屈折率が同じ周波数でΔn÷2xlO’まで変調され ることを示したが、強誘電体の電気光学作用に予想される「ヒステリシス」パタ ーンに従った。When red light is irradiated onto an optically thin T-circle (at the same time, a voltage of 100Hz between ±5V ), and the reflected light has a refractive index modulated to Δn÷2xlO' at the same frequency. However, the “hysteresis” pattern expected in the electro-optic action of ferroelectrics I followed the instructions.

図4に断面図で示した本発明のもう一つの実施例は、強誘電性メモリフィールド 作用トランジスタ(FEMFET)である。このトランジスタ機能は、標準フィ ールド作用トランジスタと同様だが、活動ゲート信号によって電源が入るとくま たは切れると)、ゲート信号が除去された状態のままになるという点のみが異な る。この状態は、極性が反対のゲート信号では逆になる。多結晶FEMFETは 、LampeらによるrUHV成長強誘電性膜の不揮発性メモリへの統合J ( Integration of UHV−grown ferroelecti c fi1m=山uo no獅魔盾撃≠狽奄撃■ momories)、第7回、強誘電体応用国際シンポジウム、1990年、7 .5版に開示されている。Another embodiment of the invention, shown in cross-section in FIG. It is a working transistor (FEMFET). This transistor function is standard Similar to a field-acting transistor, but when powered by an active gate signal, the The only difference is that the gate signal remains removed when the Ru. This condition is reversed for gate signals of opposite polarity. Polycrystalline FEMFET is , Integration of rUHV-grown ferroelectric films into non-volatile memories J by Lampe et al. Integration of UHV-grown ferroelecti c fi1m = mountain uo no Shima Shield Geki ≠ Koji Geki ■ 7th International Symposium on Ferroelectric Applications, 1990, 7 .. Published in the 5th edition.

このFEMFET ):おいて、pm(001)配向シリコン基板句は、ソース とドレインのため、基板表面に拡散または埋め込まれたウェル42を有する。そ の厚さは最小化し、できれば10nm以下にして、強誘電性に極性を与えるため に必要な電圧を減少させる。薄いテンプレート層46は、YSZi上にエピタキ シャル的に蒸着させる。その厚さは、2から10nmが望ましい。テンプレート 素材としてはBi、Tiρ1.がよい。これは、はとんどの強誘電性素材が、a −b面においてBi、Tiρ、2に格子がぴったりと合っているためである。例 えばptzrまたはBaTi0.などの単結晶強誘電性層48は、テンプレート 層頷上に厚さ約300面まで蒸着させた。金属電極50は、強誘電性層46上に 蒸着した。写真製版によりシリコン表面のゲート層を定義し、ゲートがソースと ドレインウェル42にほとんど重ならないようにした。電気的リードは、ゲート 層48、ソースとドレインウェル42、および基板句の裏面(またはp型エビレ イヤ町の下の層)に取付けた。このFEMFETは、通常オフ状態になっている 強化モードで動作するが、本発明は通常オン状態の減損モードmでも適用できる 。このモードでは、YSZ層弱の下のチャネルは、同じタイプであるが、ソース とドレインウェル42により低密度に、および基板句と反対のタイプにドーピン グされる。In this FEMFET), the pm (001) oriented silicon substrate clause is the source It has a well 42 diffused or buried in the substrate surface for the drain and drain. So The thickness of the dielectric layer should be minimized, preferably less than 10 nm, to provide polarity to the ferroelectric property. Reduce the voltage required for A thin template layer 46 is epitaxially deposited on the YSZi. Deposit it manually. Its thickness is preferably 2 to 10 nm. template The materials are Bi, Tiρ1. Good. This is because most ferroelectric materials are a This is because the lattice closely matches Bi, Tiρ, 2 on the -b plane. example For example ptzr or BaTi0. A single crystal ferroelectric layer 48 such as a template The layer was deposited to a thickness of approximately 300 layers. The metal electrode 50 is placed on the ferroelectric layer 46. Deposited. A gate layer on the silicon surface is defined by photolithography, and the gate is used as the source. It was made so that it hardly overlapped with the drain well 42. electrical leads gate layer 48, source and drain wells 42, and the back side of the substrate layer (or p-type It was installed on the layer below the town. This FEMFET is normally in the off state Although operating in enhanced mode, the invention is also applicable in normally on-state impairment mode m. . In this mode, the channel below the weak YSZ layer is of the same type but with the source and drain well 42 to a lower density and doped to the opposite type to the substrate clause. be logged.

本発明は、表に示したような色々な装置に応用することができる。Swanzは 、これらの応用方法の多くに対する評価記事を[電子セラミックスの話題」σo pics in ElecaicCeramics)rEEETransact ions on Electrical In5ulation)、第25巻、 1990年、垂吹A 935−987に記載し た。また表には、層化ペロブスカイトと立方金属酸化物のための望ましい素材を 示した。The present invention can be applied to various devices as shown in the table. Swanz is , articles evaluating many of these application methods are published in [Electronic Ceramics Topics] σo pics in ElecaicCeramics)rEEETransact ions on Electrical Invention), Volume 25, 1990, described in Tarubuki A 935-987 Ta. Also listed are preferred materials for layered perovskites and cubic metal oxides. Indicated.

ここに掲げたすべては公称立方ペロブスカイトである。表は、活動立方ペロブス カイトとテンプレートの間に挿入する必要のある電極素材を記載していないこと がある。この電極素材は、かなり自由に選択でき、層化または立方ペロブスカイ ト、または他の素材と互換性がある限り他の金属酸化物でもよい。BrイTip 、のすべての場合において、それから置換誘導した層化構造を使用することが可 能である。All listed here are nominally cubic perovskites. The table shows the activity cubic perobus Not mentioning the electrode material that needs to be inserted between the kite and template There is. This electrode material can be chosen quite freely and can be layered or cubic perovskite. or other metal oxides as long as they are compatible with other materials. Br Tip , it is then possible to use a substitution-induced layered structure. It is Noh.

ダイナミックランダムアクセスメモリ(DRAM)は半導体メモリの中で最も広 く製作されている。記憶要素は、1つまたは2つの状態に充電されたコンデンサ である。FRAMの非揮発性コンデンサの代わりに、DRAMは、Ba、Jrj Tie、や5rTrOsのような非ヒステリシス誘電素材を使用し、大充電容量 の能力がコンデンサの不足部分を補足する。コンデンサの誘電体を挟む電極は、 じ■などの金属酸化物から形成される。Dynamic random access memory (DRAM) is the most widespread type of semiconductor memory. It is manufactured very well. Storage elements are capacitors charged to one or two states It is. Instead of FRAM's non-volatile capacitors, DRAM uses Ba, Jr. High charging capacity using non-hysteresis dielectric materials such as Tie, 5rTrOs, etc. capacity makes up for the lack of capacitors. The electrodes that sandwich the dielectric of the capacitor are It is formed from metal oxides such as

表面弾性波(SAW)は、フィルタや遅延線を含む各種装置を形成するために利 用され、六角形、水晶発振、およびPLZTであるムNb0Jのような圧電素材 に使用される。5reenivuらは、圧!薄膜を使用したSAW装置について 「チタン酸鉛薄膜上の表面弾性波伝播」(Surface acoustic  wave propagation on 1ead zirconate t imnate山in■奄Pm)、Applied Physics Ltner s。Surface acoustic waves (SAWs) can be used to form various devices including filters and delay lines. piezoelectric materials such as hexagonal, quartz, and PLZT used for. 5reenivu and others are pressure! About SAW devices using thin films "Surface acoustic wave propagation on lead titanate thin film" wave propagation on 1ead zirconate Imnate Yama in ■ Amami Pm), Applied Physics Ltner s.

第52巻、1988年、pp、 709−711に述べている。このような薄膜 SAW装置におし1て、表面弾性波は、インターディジタルトランスデユーサに よって薄膜に入れられ、薄膜内で導波される。52, 1988, pp. 709-711. Such a thin film In a SAW device, surface acoustic waves are transferred to an interdigital transducer. Therefore, it is placed in a thin film and guided within the thin film.

電気光学作用を利用した集積光学については、上記に簡単に説明した。PLZT のような強誘電性素材は、非常に大きな電気光学作用を有する。強誘電性薄膜を 利用した集積光学の応用の一つには、光学導波管、および関連装置として位相器 やマツノ)・ツエンダ−変調器などを含む。これは、Kawaguchiらによ る[Pじ]薄膜導波管J (PL2汀血n−filmwaveguides)、 Apphed 0ptiCs、第23巻、1984年、pp、 2187419 1、およびMukherjeeら■謔■ 「薄膜ランタンド−ピングされたジルコン酸鉛チタン酸における電気光学作用」 (Electro−opticeffects in thin−film l an山anum−doped 1ead zirconat■■狽≠獅≠狽■j 、 0pticsLiners、第15巻、1990年、pp、 +51−15 3に記載されている。導波管では、導波媒体が回りの領域よりも大きい屈折率で あることが主要素材の必要条件である。薄膜の場合、ペロブスカイト薄膜は基板 よりも高い屈折率でなければならない。YSZバッファシリコンの基板の場合、 YSZの屈折率は約1.75だが、ペロブスカイトの屈折率は2.35から2. 7の範囲である。故に、単一光学モードは、厚さ0,2μmの膜において伝播す ることができる。Integrated optics using electro-optic action has been briefly explained above. PLZT Ferroelectric materials such as ferroelectric materials have very large electro-optic effects. ferroelectric thin film One application of integrated optics that has utilized optical waveguides and associated devices is phase shifters. and Matsuno) and Zehnder modulators. This is according to Kawaguchi et al. [Pji] Thin film waveguide J (PL2 blood n-film waveguides), Aphed 0ptiCs, Volume 23, 1984, pp, 2187419 1, and Mukherjee et al. "Electro-optical behavior in thin-film lanthanum-doped lead zirconate titanate" (Electro-optic effects in thin-film an mountain anum-doped 1ead zirconat■■狽≠shi≠狽■j , 0ptics Liners, Volume 15, 1990, pp, +51-15 3. In a waveguide, the waveguiding medium has a refractive index that is greater than the surrounding area. This is a necessary condition for the primary material. In the case of thin films, perovskite thin films are It must have a refractive index higher than . In the case of a YSZ buffer silicon substrate, The refractive index of YSZ is about 1.75, while the refractive index of perovskite is between 2.35 and 2.75. The range is 7. Therefore, a single optical mode propagates in a 0.2 μm thick film. can be done.

もう一つの電気光学での用途は、可視および13〜1.55μmの範囲の両方に おける空間光変調器である。このような装置は、−らによる「二次元シリコン/ PLZT空間光変調器:設計上の考慮と技術」σwo−dimensional  5ilicon/PLZT spa口mlLight modulators F design considerations arid technology)、0pti cal Engineering、第万巻、1986年、p吹A 250−26 0しこ開示さ れている。しかしながら、現在の装置は、多結晶PL2T上に蒸着したシリコン のレーザ再結晶によって製造されている。画素材の多結晶性は望ましくない。こ れらの変調器は、プログラム可能フーリエ平面フィルタリング、光学論理、スク ラッチパッドメモリ、直列並列変換などに使用される。本発明の空間光変調器は 、シリコン基板を有し、これは光電検出器およびドライバ、および結晶ptzr 薄膜、および変調器用にその上に成長させた関連バッファ層を含む。Another electro-optical application is both in the visible and in the 13-1.55 μm range. This is a spatial light modulator for use in Such a device is proposed by “Two-dimensional silicon/ PLZT Spatial Light Modulator: Design Considerations and Techniques” σwo-dimensional 5ilicon/PLZT spa mouth ml Light modulators F design considerations (arid technology), 0pti cal Engineering, Volume 10,000, 1986, pbuki A 250-26 0 disclosure It is. However, current equipment uses silicon evaporated onto polycrystalline PL2T. Manufactured by laser recrystallization. Polycrystalline nature of the image material is undesirable. child These modulators include programmable Fourier plane filtering, optical logic, and Used for latch pad memory, serial/parallel conversion, etc. The spatial light modulator of the present invention is , has a silicon substrate, which contains a photoelectric detector and driver, and a crystal ptzr It includes a thin film and an associated buffer layer grown thereon for the modulator.

さらに、別の応用として、音響光学光検知器および半導体レーザとの電気光学強 誘電性薄膜もある。Furthermore, other applications include electro-optic intensification with acousto-optic photodetectors and semiconductor lasers. There are also dielectric thin films.

非破壊読出しメモリは、強誘電性層を使用する。1つ目は前述したFEMFET である。2つ目はEvansらによる米国特許5,051,950およVTna koorによる「薄膜強誘電性メモリからの高速非破壊読出しJ (High  5peed、 nondestructive readoutfrom出in −film ferr盾■撃モモ高メ@memory)、 Applied Physics Letters、第ω巻、1992年、pp 、 3319−3321に開示されている。この二次メモリにおいて、電気パル スは強誘電性コンデンサに1つまたは2つの論理状態を書き込む。Non-destructive read memories use ferroelectric layers. The first is the FEMFET mentioned above. It is. The second is U.S. Patent 5,051,950 and VTna by Evans et al. ``High-speed non-destructive readout from thin-film ferroelectric memory J (High 5peed, nondestructive readout from in -film ferr shield ■ Gekimomo Takame@memory), Applied Physics Letters, Volume ω, 1992, pp , 3319-3321. In this secondary memory, electrical pulses writes one or two logic states to the ferroelectric capacitor.

しかしながら、記憶した情報は電気光学作用、つまりレーザビームを使用して読 み出される。極性状態は電気的に記録されたものによって異なるため、レーザビ ームと素材の間の相互作用も対応して異なる。2つの論理状懸が別々に検知され るのであれば、2つの間に少なくとも位相角02″の差が必要である。However, the stored information is read using electro-optic action, i.e. a laser beam. Being exposed. The polarity state is different depending on what is recorded electrically, so the laser beam The interactions between systems and materials are correspondingly different. Two logical conditions are detected separately. If so, there must be a difference of at least 02'' phase angle between the two.

パイロ電気素材では、極性は温度変化に対応して変化し、この作用はパイロ電気 係数γで表す。パイロ電気検知器は、イメージングを含む熱または赤外線の照射 検知器として使用することができる。PbTi0.、 PL2T、およびチタノ 酸鉛ランタンのような強誘電性ペロブスカイトは、優れたパイロ電気特性を示す 。TakayamaらはN軸配向ム修正PbTi0.薄膜からなるパイロ電気赤 外線センサの製作と特性J (Preparation and charac teristicsof pyroelectric 1nfrared 5e nsors made of c−axis oriented La−mod 奄■奄■п@PbTi0.出infi1ms)、Jounral ofAppl ied Physics、第61巻、1987年、pp、411−415に、パ イロ電気薄膜検知器について開示した。薄膜パイロ電気は、イメージヤ−に統合 させ、シリコン周辺回路と組み合せる能力を提供する。パイロ電気強誘電体がエ ピタキシャル成長によって強い結晶配向を生成した場合、ボーりングの必要性な く非常に大きなパイロ電気信号を得ることができる。In pyroelectric materials, the polarity changes in response to temperature changes, and this effect Expressed by coefficient γ. Pyroelectric detectors use thermal or infrared radiation, including imaging Can be used as a detector. PbTi0. , PL2T, and Titano Ferroelectric perovskites, such as acid-lead lanthanum, exhibit excellent pyroelectric properties . Takayama et al. modified the N-axis orientation of PbTi0. Pyroelectric red made of thin film Preparation and characteristics of external wire sensor teristicsof pyroelectric 1nfrared 5e nsors made of c-axis oriented La-mod 奄■奄■п@PbTi0. output infi1ms), Journal of Appl ied Physics, Vol. 61, 1987, pp. 411-415. An electric thin film detector was disclosed. Thin film pyroelectricity integrated into imager and provide the ability to combine with silicon peripheral circuitry. Pyroelectric ferroelectric material If a strong crystal orientation is produced by pitaxial growth, the need for boring may be reduced. It is possible to obtain very large pyroelectric signals.

さらに、YBCOやLSCOのような吸収性の高い電極は黒体構造を提供する。Additionally, highly absorbing electrodes such as YBCO and LSCO provide a blackbody structure.

集積アクチュエータやセンサなどを含むスマート素材は、経験から分かるもので ある。Smart materials, including integrated actuators and sensors, can be learned from experience. be.

Newnhamらは「スマート電子セラミックスJ (SmanE1ec+ro ceramics)、Journal of theAmerican Cer amics 5ociety、第74巻、1991年、pp、 463−479 に批評記事を載せている。簡単に述べるならば、これらの素材や装置は、連続的 に変化する外部からの刺激に対して、その素材や装置の状悪を連続的に変えるた めにフィードバック回路を使用する。故に、これらの素材は、外部の刺激に反応 する特殊なセンサであるといえる。この刺激は、電気的、化学的、機械的、光学 的、磁気的、または熱的である可能性がある。これまで、これらのセンサは、ハ イブリッドマルチチップモジュールを利用したコントロールネットワークに統合 されてきた。PLZTのようなペロプスカイトスマート素材に格子および科学的 に合致した酸化電極の使用は、スマート素材、抵抗、コンデンサ、相互接続を単 一チップに集積する上で大きな利点を提供する。Newham et al. “Smart electronic ceramics J (SmanE1ec+ro ceramics), Journal of the American Ceramics) amics 5ociety, Volume 74, 1991, pp, 463-479 has published a critical article. Simply stated, these materials and devices are In order to continuously change the condition of materials and equipment in response to external stimuli that change rapidly. Use a feedback circuit for this purpose. Therefore, these materials respond to external stimuli. It can be said that this is a special sensor. This stimulation can be electrical, chemical, mechanical, or optical. It can be physical, magnetic, or thermal. Until now, these sensors Integration into control networks using hybrid multichip modules It has been. Lattice and scientific studies on perovskite smart materials like PLZT The use of oxidized electrodes that meet the requirements for smart materials, resistors, capacitors, and interconnects It offers great advantages in integration on one chip.

はとんどの実施例では、テンプレート層上に成長する装置の第2バッファ層のみ として使用したが、その特質により、装置への統合が可能である。その−例は、 原特許に説明された不揮発性メモリで、イツトリアバッファシリコン上に直接蒸 着したYBCO/PZT/YBωを有するものである。実施例のなかでは、YS ZIiiはシリコンに対してエピタキシャル的であるが、YsZは、非結晶基板 上で成長している場合でも、結晶成長のテンプレートを提供することが知られて いる。本発明では、サファイアやCeO2などの他のテンプレート素材を使用し 、異方性ペロブスカイトのC軸成長を促進させることもできる。実施例では、パ ルスレーザアブレーションで構造を形成したが、他の方法、例えば、さまざまな 形態の化学蒸気蒸着や分子ビームエピタキシーなどを使用することも可能である 。In most embodiments, only the second buffer layer of the device is grown on the template layer. However, due to its characteristics, it can be integrated into equipment. An example of this is A non-volatile memory described in the original patent, evaporated directly onto ittria-buffered silicon. It has YBCO/PZT/YBω. Among the examples, YS ZIii is epitaxial to silicon, whereas YsZ is epitaxial to silicon. is known to provide a template for crystal growth even when grown on There is. The present invention uses other template materials such as sapphire and CeO2. , it is also possible to promote C-axis growth of anisotropic perovskites. In the example, Although the structures were formed by laser laser ablation, other methods, e.g. It is also possible to use methods such as chemical vapor deposition and molecular beam epitaxy. .

本発明のテンプレートにより、さまざまな技術的に重要な酸化物を望ましい結晶 状態において成長させることができる。その応用の輻によって、中間層の素材( 例えばYBCOのためのLSCO)を広く選択することができ、より低い温度で の処理やより使用が容易なインターフェースなどの利点を提供する。また本発明 は、非常に異なる格子定数をもつ2つの素材のエピタキシャルへテロ構造の可能 性も提供するものである。The templates of the present invention allow the production of desired crystals of various technologically important oxides. can be grown in any state. Depending on its application, the intermediate layer material ( e.g. LSCO for YBCO) can be widely selected and at lower temperatures processing and an easier-to-use interface. Also the present invention is a possible epitaxial heterostructure of two materials with very different lattice constants. It also provides sex.

図1 図2 図3 図4 フロントページの続き (51) Int、 C1,6識別記号 庁内整理番号HOIG 4/33 HOIL 21/8242 37102 9353−4M 39102 B 9276−4M 39/24 B 9276−4M 9174−5E (81)指定国 EP(AT、BE、CH,DE。Figure 1 Figure 2 Figure 3 Figure 4 Continuation of front page (51) Int, C1, 6 identification code Office reference number HOIG 4/33 HOIL 21/8242 37102 9353-4M 39102 B 9276-4M 39/24 B 9276-4M 9174-5E (81) Designated countries EP (AT, BE, CH, DE.

DK、ES、FR,GB、GR,IE、IT、LU、MC,NL、PT、SE) 、CA、JP I HOIG 4106 102DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE) , C.A., J.P. I HOIG 4106 102

Claims (1)

【特許請求の範囲】 請求項1シリコン/金属酸化ヘテロ構造で、下記のものからなるもの:シリコン 基板; 該シリコン基板上に形成されたバッファ層;該バッファ層上に形成された異方性 ペロブスカイトからなるテンブレート層で、該バッファ層によって該テンブレー ト層が実質上c軸配向に形成されるもの;および該テンブレート肩上に形成され た公称立方金属酸化層。 請求項2請求項1記載のヘテロ構造で、該バッファ層がイットリア安定ジルコニ アからなるもの。 請求項3請求項1記載のヘテロ構造で、該金属酸化層が伝導性および実質上単結 晶であり、下部電極を形成し、さらに下記のものからなるもの:該金属酸化層上 に形成される実質上単結晶強誘電性層;および該強誘電性層上に形成される第2 伝導性金属酸化層。 請求項4請求項3記載のヘテロ構造で、第2金属酸化層は実質上単結晶であり、 該2つの金属酸化層は同一の金属酸化物からなるもの。 請求項5請求項1記載のヘテロ構造で、該立方金属酸化層は強誘電性層からなる もの。 請求項6請求項5記載のヘテロ構造で、該シリコン基板は、該金属酸化層の中間 部の下にある第1伝導性領域、および該金属酸化層の両端部分の下にある第2伝 導性領域からなるもの。 請求項7請求項1記載のヘテロ構造で、該立方金属酸化層が圧電層からなるもの 。 請求項8請求項1記載のヘテロ構造で、該立方金属酸化層が電気光学層からなる もの。 請求項9請求項1記載のヘテロ構造で、該立方金属酸化層がパイロ電気からなる もの。 請求項10請求項1記載のヘテロ構造で、該テンブレート層はチタン酸ビスマス からなるもの。 請求項11強誘電性メモリ要素で、下記のものからなるもの:単結晶シリコン基 板; 該基板上に形成されるバッファ層: 該バフファ層上に形成される伝導性金属酸化物からなる単結晶膜で、該バッファ 層は該金属酸化物が該単結晶膜として形成されるよう助長するもの;および該結 晶膜上にエピタキシャル的に形成される強誘電性層。 請求項12請求項11記載の強誘電性メモリ要素で、該強誘電性層の少なくとも 80%がc軸配向になるもの。 請求項13シリコン/金属酸化ヘテロ構造を形成する方法で、下記のステップか らなるもの: 結晶シリコン基板上にバッファ素材の第1層を蒸着するステップ;該第1層上に 異方性ペロブスカイトのc軸配向成長を助長する成長条件下で異方性ペロブスカ イトからなる第2層を蒸著するステップで、該バッファ素材は該第2層を実質上 結晶層として成長することを助長するもの;および該第2層上に公称立方金属酸 化物からなる第3層を蒸着するステップ。 請求項14請求項13記載の方法で、該バッファ素材がイットリァ安定ジルコニ ァからなるもの。 請求項15請求項13記載の方法で、該成長条件は、該第1層を第1温度で維持 し、さらに該第2層上に強誘電体からなる実質上結晶である第4層を蒸着し、該 第1、第2、および第3層は、該第1温度より低い第2温度で維持するもの。 請求項16請求項4記載のヘテロ構造で、該同じ金属酸化物はランタンストロン チウムコパレートからなるもの。 請求項17請求項4記載のヘテロ構造で、該同じ金属酸化物がSrRuO3から なるもの。[Claims] Claim 1: A silicon/metal oxide heterostructure consisting of: silicon. substrate; a buffer layer formed on the silicon substrate; an anisotropic layer formed on the buffer layer; A tensile layer made of perovskite. the template layer is formed substantially c-axis oriented; and the template layer is formed on the template shoulder. Nominally cubic metal oxide layer. 2. The heterostructure of claim 1, wherein the buffer layer is yttria-stabilized zirconia. consisting of a. 3. The heterostructure of claim 1, wherein the metal oxide layer is conductive and substantially monocrystalline. crystal, forming a lower electrode, and further comprising: on the metal oxide layer. a substantially single crystal ferroelectric layer formed on the ferroelectric layer; and a second substantially single crystal ferroelectric layer formed on the ferroelectric layer. Conductive metal oxide layer. Claim 4 The heterostructure of claim 3, wherein the second metal oxide layer is substantially single crystal; The two metal oxide layers are made of the same metal oxide. 5. The heterostructure according to claim 1, wherein the cubic metal oxide layer comprises a ferroelectric layer. thing. 6. The heterostructure of claim 5, wherein the silicon substrate is located between the metal oxide layers. a first conductive region under the metal oxide layer, and a second conductive region under the end portions of the metal oxide layer. consisting of conductive areas. Claim 7: The heterostructure according to claim 1, wherein the cubic metal oxide layer is a piezoelectric layer. . 8. The heterostructure according to claim 1, wherein the cubic metal oxide layer comprises an electro-optic layer. thing. 9. The heterostructure of claim 1, wherein the cubic metal oxide layer is pyroelectric. thing. 10. The heterostructure of claim 1, wherein the template layer is made of bismuth titanate. consisting of 11. A ferroelectric memory element comprising: a single crystal silicon base. Board; Buffer layer formed on the substrate: A single crystal film made of a conductive metal oxide formed on the buffer layer. a layer that facilitates the formation of the metal oxide as the single crystal film; and A ferroelectric layer formed epitaxially on a crystal film. 12. The ferroelectric memory element of claim 11, wherein at least one of the ferroelectric layers comprises: 80% is c-axis oriented. Claim 13: A method of forming a silicon/metal oxide heterostructure, comprising the steps of: What is: depositing a first layer of buffer material on the crystalline silicon substrate; Anisotropic perovskites under growth conditions that favor c-axis oriented growth of anisotropic perovskites. evaporating a second layer of light, the buffer material substantially including the second layer of to encourage growth as a crystalline layer; and a nominal cubic metal acid on said second layer. Depositing a third layer of oxide. 14. The method of claim 13, wherein the buffer material comprises yttria stabilized zirconia. consisting of a. 15. The method of claim 13, wherein the growth conditions include maintaining the first layer at a first temperature. Further, a substantially crystalline fourth layer made of ferroelectric material is vapor-deposited on the second layer. The first, second, and third layers are maintained at a second temperature lower than the first temperature. 16. The heterostructure of claim 4, wherein the same metal oxide is lanthanum stron. Consisting of tiumcoparate. 17. The heterostructure of claim 4, wherein the same metal oxide is formed from SrRuO3. What will become.
JP6505316A 1992-02-28 1993-07-13 Cubic metal oxide thin film grown epitaxially on silicon Pending JPH07509689A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US84330492A 1992-02-28 1992-02-28
US925,350 1992-08-04
WO93/01682 1993-02-23
PCT/US1993/001682 WO1993016750A1 (en) 1992-02-28 1993-02-25 Naso-gastric tube holder

Publications (1)

Publication Number Publication Date
JPH07509689A true JPH07509689A (en) 1995-10-26

Family

ID=25289587

Family Applications (2)

Application Number Title Priority Date Filing Date
JP5515071A Pending JPH07504107A (en) 1992-02-28 1993-02-25 Nasogastric insertion tube holder
JP6505316A Pending JPH07509689A (en) 1992-02-28 1993-07-13 Cubic metal oxide thin film grown epitaxially on silicon

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP5515071A Pending JPH07504107A (en) 1992-02-28 1993-02-25 Nasogastric insertion tube holder

Country Status (8)

Country Link
EP (1) EP0630273A4 (en)
JP (2) JPH07504107A (en)
KR (1) KR950700094A (en)
CN (1) CN1080876A (en)
AU (1) AU3777993A (en)
CA (1) CA2130898A1 (en)
NO (1) NO943150D0 (en)
WO (1) WO1993016750A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064413A (en) * 2003-08-20 2005-03-10 National Institute Of Advanced Industrial & Technology Parallel flat plate capacitor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1021473C2 (en) * 2002-09-17 2004-03-18 Amc Amsterdam Plaster assembly and a nasal bridge plaster forming part thereof.
JP2010179029A (en) * 2009-02-09 2010-08-19 Sasaki Seisakusho:Kk Protector for nasal cavity
GB2484719B (en) 2010-10-21 2013-02-27 Andrew Levy Tube anchor assembly
FR2978669B1 (en) * 2011-08-05 2014-06-06 Patrick Georges Renard ULTRA FAST FIXED RING FOR MAINTAINING INVASIVE MATERIALS OF THE HUMAN OR ANIMAL BODY, SUCH PROBES, DRAINS, BIG WHEAT
JP6709033B2 (en) * 2015-10-13 2020-06-10 泉工医科工業株式会社 Tube retainer
TWI747549B (en) * 2020-10-12 2021-11-21 蘇建忠 Nasogastric tube fixing device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3046989A (en) * 1960-09-29 1962-07-31 Edward J Hill Means for holding nasal tubes in position
US3141221A (en) * 1962-11-13 1964-07-21 Amtec Inc Closure for flexible bags
FR1555589A (en) * 1967-07-25 1969-01-31
US3977407A (en) * 1974-09-03 1976-08-31 Thermo Electron Corporation Nasotracheal tube holder
US4120304A (en) * 1976-10-12 1978-10-17 Moor Burdette J Naso-gastric tube holder
US4480639A (en) * 1982-01-18 1984-11-06 Peterson Edward D Medical tube retaining device
US4932943A (en) * 1988-05-23 1990-06-12 Hollister Incorporated Nasogastric tube holding device
GB9012694D0 (en) * 1990-06-07 1990-08-01 Smiths Industries Plc Supports for medicosurgical tubes
US5172688A (en) * 1991-08-09 1992-12-22 Innovative Medical Design Corp. Nasal-gastric tube holder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064413A (en) * 2003-08-20 2005-03-10 National Institute Of Advanced Industrial & Technology Parallel flat plate capacitor

Also Published As

Publication number Publication date
NO943150D0 (en) 1994-08-25
AU3777993A (en) 1993-09-13
KR950700094A (en) 1995-01-16
EP0630273A4 (en) 1995-04-19
EP0630273A1 (en) 1994-12-28
CA2130898A1 (en) 1993-08-26
CN1080876A (en) 1994-01-19
WO1993016750A1 (en) 1993-09-02
JPH07504107A (en) 1995-05-11

Similar Documents

Publication Publication Date Title
US5270298A (en) Cubic metal oxide thin film epitaxially grown on silicon
JP2923361B2 (en) C-axis perovskite thin film grown on silicon dioxide
JP4221765B2 (en) Optical integrated oxide device and method for manufacturing optical integrated oxide device
Ramesh et al. Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth
US5155658A (en) Crystallographically aligned ferroelectric films usable in memories and method of crystallographically aligning perovskite films
US7368172B2 (en) Membrane multi-layer structure, and actuator element, capacitive element and filter element using the same
JP2924574B2 (en) Oriented ferroelectric thin film device
US6278138B1 (en) Silicon-based functional matrix substrate and optical integrated oxide device
Suzuki et al. A proposal of epitaxial oxide thin film structures for future oxide electronics
JP2000517280A (en) CaTiO on superconductor Lower 3 interface template structure
JPH08306231A (en) Substrate covered with thin film of ferroelectric substance, its manufacture, and nonvolatile memory constructed the substrate
US20050218466A1 (en) Thin-film lamination, and actuator device, filter device, ferroelectric memory, and optical deflection device employing the thin -film lamination
JPH07509689A (en) Cubic metal oxide thin film grown epitaxially on silicon
JP3095944B2 (en) Method for producing oxide crystal thin film and thin film element
JP3994468B2 (en) Oxide multilayer structure, method for manufacturing the same, and ferroelectric nonvolatile memory
JPH1117126A (en) Deposition of ferroelectric film and ferroelectric capacitor element
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JPH05243525A (en) Semiconductor device and manufacture thereof
JP2889463B2 (en) Oriented ferroelectric thin film device
JPH07133199A (en) Ferroelectric substance thin film having orientation property
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JPH08340087A (en) Ferroelectric nonvolatile memory
Adachi Rhombohedral PZT thin films prepared by sputtering
JPH09102597A (en) Dielectric base transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees