JPS62252005A - Ferrodielectric thin film device - Google Patents

Ferrodielectric thin film device

Info

Publication number
JPS62252005A
JPS62252005A JP61097102A JP9710286A JPS62252005A JP S62252005 A JPS62252005 A JP S62252005A JP 61097102 A JP61097102 A JP 61097102A JP 9710286 A JP9710286 A JP 9710286A JP S62252005 A JPS62252005 A JP S62252005A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
ferroelectric
polarization
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61097102A
Other languages
Japanese (ja)
Inventor
良一 高山
佳宏 冨田
賢二 飯島
一朗 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61097102A priority Critical patent/JPS62252005A/en
Publication of JPS62252005A publication Critical patent/JPS62252005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線検出素子、圧電素子、電気光学素
子等に用いられる強誘電体薄膜素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ferroelectric thin film element used in pyroelectric infrared detection elements, piezoelectric elements, electro-optical elements, and the like.

従来の技術 強誘電体のエレクトロニクス分野における応用は、赤外
線検出素子、圧電素子、光変調素子、メモリー素子など
さまざまなものがある。近年の半導体技術の進歩による
電子部品の小型化にともない、強誘電体素子も薄膜化が
進みつつある。
BACKGROUND ART There are various applications of ferroelectric materials in the electronics field, such as infrared detection elements, piezoelectric elements, light modulation elements, and memory elements. As electronic components become smaller due to advances in semiconductor technology in recent years, ferroelectric elements are also becoming thinner.

ところで、強誘電体の自発分極Psの変化を出力として
取り出す、例えば焦電型赤外線検出素子や圧電素子等で
は、強誘電体材料のPsが一方向に揃っている時、最も
大きい出力が得られる。
By the way, in pyroelectric infrared detection elements, piezoelectric elements, etc. that extract changes in the spontaneous polarization Ps of a ferroelectric material as an output, the largest output can be obtained when the Ps of the ferroelectric material is aligned in one direction. .

発明が解決しようとする問題点 現在、赤外線検出素子や圧電素子等に用いられている強
誘電体磁器は多結晶体であり、結晶軸の配列に方向性は
無く、従って自発分極Psもでたら目に配列している。
Problems to be Solved by the Invention Currently, the ferroelectric ceramics used in infrared detection elements, piezoelectric elements, etc. are polycrystalline, and there is no directionality in the arrangement of crystal axes, so if spontaneous polarization Ps occurs. Arranged in the eye.

エピタキシャル強誘電体薄膜、配向性強誘電体薄膜は結
晶の分極軸は揃っているが、電気的な自発分極Psは1
80° ドメインを作り交互に配列している。そこで、
これら材料を上述のようなエレクトロニクス素子として
用いる場合、材料に高電界(〜100kV/cm)を印
加してPsの向きを揃える分極処理が必要である。
In epitaxial ferroelectric thin films and oriented ferroelectric thin films, the crystal polarization axes are aligned, but the electrical spontaneous polarization Ps is 1.
80° domains are created and arranged alternately. Therefore,
When these materials are used as electronic devices as described above, a polarization process is required to apply a high electric field (~100 kV/cm) to the materials to align the directions of Ps.

また、PbTiO3やPLZTなどの薄膜の作製に関し
ては多くの報告があるが、それらの強誘電相の領域の薄
膜について、その分極軸であるC軸に配向した薄膜、自
発分極までも一方向に配向した薄膜は実現されていない
In addition, there are many reports on the production of thin films such as PbTiO3 and PLZT, but for thin films in the ferroelectric phase region, thin films oriented along the C axis, which is the polarization axis, and even spontaneous polarization are oriented in one direction. A thin film with this effect has not yet been realized.

強誘電体材料に高電界を印加してPsを揃える方法では
次のような問題点が生じる。
The following problems arise in the method of aligning Ps by applying a high electric field to a ferroelectric material.

(1)分極処理により絶縁破壊が生ずる場合があり、歩
留まりが下がる。
(1) Dielectric breakdown may occur due to polarization treatment, resulting in lower yield.

(2)高分解能アレイ素子の様に多(の微小素子が高密
度に配列しているものでは、それらを均一に分極するこ
とが困難である。
(2) In a high-resolution array element in which a large number of microelements are arranged at high density, it is difficult to polarize them uniformly.

(3)半導体デバイス上に強誘電体薄膜を形成した集積
化デバイスでは、分極処理そのものが不可能な場合があ
る。
(3) In an integrated device in which a ferroelectric thin film is formed on a semiconductor device, polarization itself may not be possible in some cases.

問題点を解決するための手段 強誘電体薄膜として、化学式が(PbxLay )(T
iz2rw)O+で組成比が (a) 0.70≦x≦L O,9≦x+y≦L O,
95≦z≦11(b) x−1,y==0、0.45≦
z<lSz+w−1、(c) 0.83≦x<1、x+
y−110,5≦z<1゜0.96≦z+−≦1 のうちから選択された一つの範囲にあり、膜厚が4μ園
以下であり、その分極軸の758以上が一方に配向した
ものを用いる。
Means to solve the problem As a ferroelectric thin film, the chemical formula is (PbxLay)(T
iz2rw) O+ and the composition ratio is (a) 0.70≦x≦L O, 9≦x+y≦L O,
95≦z≦11(b) x-1, y==0, 0.45≦
z<lSz+w-1, (c) 0.83≦x<1, x+
It is in one range selected from y-110,5≦z<1゜0.96≦z+-≦1, the film thickness is 4 μm or less, and 758 or more of its polarization axes are oriented in one direction. use something

作用 上記のような強誘電体薄膜においては、Psが既に揃っ
た自然分極が得られ、分極処理をおこなう必要が無く、
歩留まり良(、高性能の強誘電体素子が実現できる。
Effect In the ferroelectric thin film as described above, natural polarization with Ps already aligned can be obtained, and there is no need for polarization treatment.
High yield (and high performance ferroelectric elements can be realized).

実施例 第1図は本発明に従って作製した強誘電体薄膜素子の一
実施例の断面図である。
Embodiment FIG. 1 is a sectional view of an embodiment of a ferroelectric thin film element manufactured according to the present invention.

(100)でへき関し鏡面研摩したMgO単結晶を基板
1とし、下部電極2として膜厚0.2μmのPt薄膜を
スパッタリングにより形成した。スパッタガスはAr−
02混合ガスである。ついで、強誘電体薄膜3を0.5
〜8μm成長させた。方法は高周波マグネトロンスパッ
タ法で、Arと02の混合ガスを用い、スパッタリング
ターゲットは 1 (1−Y)PbxLayTizZr−Os +YP
bO1” (1)の粉末である。表1にスパッタリング
条件を示す。
A substrate 1 was an MgO single crystal that had been mirror-polished with (100), and a Pt thin film having a thickness of 0.2 μm was formed as a lower electrode 2 by sputtering. The sputtering gas is Ar-
02 mixed gas. Then, the ferroelectric thin film 3 was coated with a thickness of 0.5
It was grown to ~8 μm. The method was high-frequency magnetron sputtering, using a mixed gas of Ar and 02, and the sputtering target was 1 (1-Y)PbxLayTizZr-Os +YP.
bO1'' (1) powder. Table 1 shows the sputtering conditions.

ついでこの薄膜上に上部電極4としてNi−Cr電極を
蒸着し、強誘電体薄膜素子を作製した。さらに、強誘電
体薄1llI3の下部における基板1には開口5を設け
た。
Next, a Ni--Cr electrode was deposited as an upper electrode 4 on this thin film to produce a ferroelectric thin film element. Furthermore, an opening 5 was provided in the substrate 1 below the ferroelectric thin film 1llI3.

表1 第2図に代表的な薄膜のX線回折パターンを示す。ペロ
ブスカイト構造の(001)と(100)反射、及びそ
の高次の反射のみ観察される。また(001)反射の強
度が(100)のそれと比べて著しく大きいのでC軸配
向膜であることがわかる。C軸配向率αを次の式で定義
する。
Table 1 Figure 2 shows the X-ray diffraction pattern of a typical thin film. Only the (001) and (100) reflections of the perovskite structure and their higher-order reflections are observed. Furthermore, since the intensity of the (001) reflection is significantly larger than that of (100), it can be seen that it is a C-axis oriented film. The C-axis orientation rate α is defined by the following equation.

α利(oo++/1l(oo+)+I(too)1ここ
でI(0011、および1(too)はそれぞれ(00
1)と(100)反射の回折強度を表す。得られた薄膜
の誘電率と焦電係数の測定を行った。
α(oo++/1l(oo+)+I(too)1 where I(0011 and 1(too) are respectively (00
1) and represents the diffraction intensity of (100) reflection. The dielectric constant and pyroelectric coefficient of the obtained thin film were measured.

第3図にC軸配向率に対するPbTiOsの焦電係数γ
の変化、第4図に誘電率εの変化を示す。
Figure 3 shows the pyroelectric coefficient γ of PbTiOs with respect to the C-axis orientation rate.
Figure 4 shows the change in dielectric constant ε.

よく知られている様に、焦電係数は自発分極Psの配向
に比例して大きくなる。焦電係数は配向率の増加と共に
大きくなり、誘電率は小さくなる。第3図及び第4図に
は分極処理(200℃で100kV/cwflO分印加
)を行なった場合の結果についても示しである。配向率
が小さい場合、分極処理前後で焦電係数及び誘電率の値
は大きく変化する。配向率が75零になると焦電係数は
1.6xlO’C/ cdKとなり、この値は200℃
でl OOk V / c+*印加して分極処理を行っ
たPbTiO3セラミクス(y−1,8xlO−’C/
cjK)とほぼ同等の値である。配向率80零の場合焦
電係数は2.5xlO−tic/cjKであり、PbT
iOsセラミクスの値にくらべかなり大きい。また、分
極処理後の値と比べ殆ど変わらないばかりでなく、配向
率が小さい場合の分極後の値より大きい。誘電率は、配
向率75zの場合、セラミクスの1/2の値で約100
である。Laを添加したPbTiC)3(PLT)の場
合でも、同じ結果が得られた。
As is well known, the pyroelectric coefficient increases in proportion to the orientation of the spontaneous polarization Ps. The pyroelectric coefficient increases as the orientation rate increases, and the dielectric constant decreases. FIGS. 3 and 4 also show the results when polarization treatment (applying 100 kV/cwflO at 200° C.) was performed. When the orientation rate is small, the values of the pyroelectric coefficient and permittivity change significantly before and after the polarization treatment. When the orientation rate becomes 75 zero, the pyroelectric coefficient becomes 1.6xlO'C/cdK, and this value is 200°C.
PbTiO3 ceramics (y-1,8xlO-'C/
cjK). When the orientation rate is 80 zero, the pyroelectric coefficient is 2.5xlO-tic/cjK, and PbT
This value is considerably larger than that of iOs ceramics. Moreover, not only is it almost the same as the value after polarization treatment, but it is also larger than the value after polarization when the orientation rate is small. When the orientation rate is 75z, the dielectric constant is about 100, which is half the value of ceramics.
It is. The same results were obtained with PbTiC)3(PLT) doped with La.

以上述べたとおりp b T iO3、及びPLT薄膜
では、薄膜作製時に十分にC軸に配向しておれば分極処
理を行わな(でも自発分極が揃っており、特に配向率7
5%以上の薄膜でその効果が大きいことが明らかになっ
た。
As mentioned above, p b TiO3 and PLT thin films do not require polarization treatment if they are sufficiently oriented along the C axis during thin film production (but the spontaneous polarization is uniform, especially when the orientation rate is 7).
It has become clear that the effect is large when the thickness of the film is 5% or more.

ところで、薄膜のC軸の配向率は膜厚により変化するこ
とを見い出した。第5図はC軸の配向率と膜厚との関係
を表す。図より明らかな様に、膜厚の増大とともにC軸
の配向率は大きく減少する。膜厚が8μmを越えるとC
軸の配向度は平均値で60%程度に下がってしまう。し
たがって、Psが既に揃った自然分極が得られるのは、
膜厚が約4μ端以下が望ましい。
By the way, it has been found that the C-axis orientation rate of a thin film changes depending on the film thickness. FIG. 5 shows the relationship between the C-axis orientation rate and the film thickness. As is clear from the figure, the C-axis orientation rate decreases significantly as the film thickness increases. C if the film thickness exceeds 8 μm
The degree of orientation of the axis drops to about 60% on average. Therefore, natural polarization with Ps already aligned can be obtained by
It is desirable that the film thickness be approximately 4 μm or less.

下部電極としてAuを用いた場合でも全く同じ結果が得
られた。
Exactly the same results were obtained when Au was used as the lower electrode.

本実施例で作製した強誘電体薄膜素子を赤外線センサと
して利用する場合、焦電材料としての性能指数である[
焦電係数/誘電率1の値は大きくなる。200℃で10
分間100 k V / c+s印加して分極処理を行
ったPbTiO3セラミクスの値と比較して、PbTi
O3薄膜で2.5倍、PLTfil!Iで3倍の値を示
す。
When the ferroelectric thin film element produced in this example is used as an infrared sensor, the figure of merit as a pyroelectric material is [
The value of pyroelectric coefficient/permittivity 1 increases. 10 at 200℃
Compared with the value of PbTiO3 ceramics subjected to polarization treatment by applying 100 kV/c+s for minutes, PbTi
2.5 times more with O3 thin film, PLTfil! 3 times the value.

つまり、本発明による強誘電体薄膜を用いると、全く分
極処理を行わなくても優れた特性の赤外線センサが作製
されることがわかる。
In other words, it can be seen that by using the ferroelectric thin film according to the present invention, an infrared sensor with excellent characteristics can be produced without any polarization treatment.

上記の例でも分かるように本発明の強誘電体薄膜を用い
た素子では分極処理を行わな(でも大きな出力が取り出
せる。これは赤外線センサばかりでな(圧電素子、光ス
ィッチなど電気光学素子等においても同様である。
As can be seen from the above example, the device using the ferroelectric thin film of the present invention can produce a large output even without polarization processing. The same is true.

発明の効果 本発明による強誘電体薄膜素子は、分極処理が不要であ
り、また特性も優れていて、作製も容易であるから、実
用的にきわめて有効である。
Effects of the Invention The ferroelectric thin film element according to the present invention does not require polarization treatment, has excellent characteristics, and is easy to manufacture, so it is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発明の一実施例における強誘電体薄膜素子の断
面図、第2図は本発明の一実施例に於ける強誘電体薄膜
のX線回折パターンを示す図、第3図はC軸配向率と焦
電係数の関係を示す図、第4図はC軸配向率と誘電率の
関係を示す図、第5図はC軸配向率と膜厚との関係を示
す図である。 1・・・基板、2・・・下部電極、3・・・強誘電体薄
膜、4・・・上部電極、5・・・開口部。 代理人の氏名 弁理士 中尾敏男 他1名第1図 第2図 第3図 θ6    =0、f3   1. Ocm配向卑澤 第4図 0平虫西己σ弓率 :び、 第5図 0.5     /     2     4    
8膵厚(、a机)
FIG. 1 is a cross-sectional view of a ferroelectric thin film element in an embodiment of the invention, FIG. 2 is a diagram showing an X-ray diffraction pattern of a ferroelectric thin film in an embodiment of the invention, and FIG. 3 is a C FIG. 4 is a diagram showing the relationship between the axial orientation rate and the pyroelectric coefficient, FIG. 4 is a diagram showing the relationship between the C-axis orientation rate and the dielectric constant, and FIG. 5 is a diagram showing the relationship between the C-axis orientation rate and the film thickness. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Lower electrode, 3... Ferroelectric thin film, 4... Upper electrode, 5... Opening. Name of agent Patent attorney Toshio Nakao and 1 other person Figure 1 Figure 2 Figure 3 θ6 =0, f3 1. Ocm orientation Hizawa Fig. 4 0 Hiramushi Nishiki σ bow rate: Bi, Fig. 5 0.5 / 2 4
8 pancreatic thickness (, a desk)

Claims (4)

【特許請求の範囲】[Claims] (1)基板と、その基板上に形成され、化学式が(Pb
_xLa_y)(Ti_zZr_w)O_2で組成比が (a)0.70≦x≦1、0.9≦x+y≦1、0.9
5≦z≦1、w=0、 (b)x−1、y−0、0.45≦z<1、z+w=1
、 (c)0.83≦x<1、x+y=1、0.5≦z<1
、0.96≦z+w≦1 のうちから選択された一つの範囲にあり、膜厚が4μm
程度以下である強誘電体薄膜と、この強誘電体薄膜に付
設された電極とを備え、その分極軸の75%以上が一方
向に配向していることを特徴とする強誘電体薄膜素子。
(1) A substrate, formed on the substrate, and having the chemical formula (Pb
_xLa_y)(Ti_zZr_w)O_2 and the composition ratio is (a) 0.70≦x≦1, 0.9≦x+y≦1, 0.9
5≦z≦1, w=0, (b) x-1, y-0, 0.45≦z<1, z+w=1
, (c) 0.83≦x<1, x+y=1, 0.5≦z<1
, 0.96≦z+w≦1, and the film thickness is 4 μm.
What is claimed is: 1. A ferroelectric thin film element comprising a ferroelectric thin film having a ferroelectric thickness of about 100% or less, and an electrode attached to the ferroelectric thin film, wherein 75% or more of the polarization axes of the ferroelectric thin film are oriented in one direction.
(2)基板上に形成された1個以上の下部電極と、この
下部電極上に形成された強誘電体薄膜と、この強誘電体
薄膜上に前記下部電極と対向して設けられた1個以上の
上部電極とを備えた特許請求の範囲第1項記載の強誘電
体薄膜素子。
(2) One or more lower electrodes formed on the substrate, a ferroelectric thin film formed on the lower electrode, and one electrode provided on the ferroelectric thin film facing the lower electrode. A ferroelectric thin film element according to claim 1, comprising the above upper electrode.
(3)基板がMgOであることを特徴とする特許請求の
範囲第1項記載の強誘電体薄膜素子。
(3) A ferroelectric thin film element according to claim 1, wherein the substrate is MgO.
(4)下部電極がPt、またはAuであることを特徴と
する特許請求の範囲第1項記載の強誘電体薄膜素子。
(4) The ferroelectric thin film element according to claim 1, wherein the lower electrode is made of Pt or Au.
JP61097102A 1986-04-25 1986-04-25 Ferrodielectric thin film device Pending JPS62252005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097102A JPS62252005A (en) 1986-04-25 1986-04-25 Ferrodielectric thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097102A JPS62252005A (en) 1986-04-25 1986-04-25 Ferrodielectric thin film device

Publications (1)

Publication Number Publication Date
JPS62252005A true JPS62252005A (en) 1987-11-02

Family

ID=14183250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097102A Pending JPS62252005A (en) 1986-04-25 1986-04-25 Ferrodielectric thin film device

Country Status (1)

Country Link
JP (1) JPS62252005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121647A (en) * 1996-06-26 2000-09-19 Tdk Corporation Film structure, electronic device, recording medium, and process of preparing ferroelectric thin films

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131704A (en) * 1983-12-20 1985-07-13 松下電器産業株式会社 Pyroelectric heat detecting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131704A (en) * 1983-12-20 1985-07-13 松下電器産業株式会社 Pyroelectric heat detecting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121647A (en) * 1996-06-26 2000-09-19 Tdk Corporation Film structure, electronic device, recording medium, and process of preparing ferroelectric thin films
US6387712B1 (en) 1996-06-26 2002-05-14 Tdk Corporation Process for preparing ferroelectric thin films

Similar Documents

Publication Publication Date Title
Dey et al. Thin-film ferroelectrics of PZT of sol-gel processing
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
US2598707A (en) Electrical device embodying ferroelectric substance
Toyama et al. Characterization of piezoelectric properties of PZT thin films deposited on Si by ECR sputtering
Shyu et al. Properties of highly (100)-oriented thin films of sol-gel derived Pb [(Mg13Nb23) xTi1− x] O3 on (100)-textured LaNiO3 electrode
Haertling Recent developments in bulk and thin film PLZT materials and devices
JPH08253324A (en) Ferroelectric thin film constitution body
JPH07106658A (en) Thin film material
Dausch et al. The domain switching and structural characteristics of PLZT bulk ceramics and thin films chemically prepared from the same acetate precursor solutions
JP2001354497A (en) Method for producing ferroelectric film
JPS62252005A (en) Ferrodielectric thin film device
Nomura et al. Electrostriction in the solid solution system Pb (Mg1/3Nb2/3) O3 Pb (Mg1/2W1/2) O3
Deb et al. Pyroelectric characteristics of a thin PZT (40/60) film on a platinum film for infrared sensors
JPH08186182A (en) Ferroelectric thin-film element
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JPS62252006A (en) Ferrodielectric thin film device
Teowee et al. Dielectric and ferroelectric properties of sol-gel derived BiFeO3 films
Watanabe et al. Device effects of various Zr/Ti ratios of PZT thin-films prepared by sol-gel method
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JPH10215008A (en) Piezoelectric ceramic thin-film device
JPS6369104A (en) Manufacture of ferrodielectric thin film element
JPH08172224A (en) Ferroelectric thin film element
JPH0766669A (en) Surface acoustic wave convolver
JPS6369272A (en) Pyroelectric thin film
Teowee et al. Compositional tailoring of the dielectric and ferroelectric properties of sol-gel derived PLZT thin films