JPS63266656A - Magneto-optical recording medium and its recording method - Google Patents

Magneto-optical recording medium and its recording method

Info

Publication number
JPS63266656A
JPS63266656A JP33084087A JP33084087A JPS63266656A JP S63266656 A JPS63266656 A JP S63266656A JP 33084087 A JP33084087 A JP 33084087A JP 33084087 A JP33084087 A JP 33084087A JP S63266656 A JPS63266656 A JP S63266656A
Authority
JP
Japan
Prior art keywords
recording
magnetic layer
layer
auxiliary magnetic
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33084087A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kudo
工藤 嘉彦
Masahiro Orukawa
正博 尾留川
Masako Tamaki
玉木 昌子
Yoji Sasagawa
笹川 陽司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33084087A priority Critical patent/JPS63266656A/en
Publication of JPS63266656A publication Critical patent/JPS63266656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with an external magnetic field impressing device, and further, to enable an overwrite by the frequency of mega hertz region by casting a recording laser after power-modulating or pulse-width-modulating it according to the direction of a magnetization, by which a recording layer is intended to be recorded. CONSTITUTION:It is constituted so as to be provided with a composite recording layer, consisting of a recording magnetic layer 5 and, at least, one auxiliary magnetic layer 7 which is the supply source of a recording magnetic field, on a substrate 1, and the recording laser 9 is due to be cast after being power-modulated or pulse-width- modulated according to the direction of the magnetization, by which the recording layer 5 is intended to be recorded. Namely, the combination of a transparent auxiliary magnetic layer 3 and other auxiliary magnetic layer 7, the directions of the magnetization of which are set opposite to each other, or the combination of a nonmetallic system auxiliary magnetic layer 4 and other auxiliary magnetic layer 7, or the like can be made into one pair, and can be used as the recording magnetic field supply source for the recording magnetic layer 5. Thus, the recording magnetic field can be inverted at high speed by the modulation of the recording laser 9 without using the external magnetic field impressing device, and the overwrite comes possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光照射による熱を記録を行ない、磁気光
学効果を利用して再生を行なう光磁気記録媒体及びその
記録方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magneto-optical recording medium in which heat generated by laser beam irradiation is recorded and reproduced using the magneto-optic effect, and a recording method thereof.

従来の技術 光磁気記録媒体はレーザ光照射により記録層の温度を局
部的に補償温度以上の高温あるいはキュリ一温度前後に
上昇させ、照射部の記録層を外部磁場の向きに磁化させ
ることによって記録、消去を行ない(熱磁気記録)、記
録、消去時のレーザーパワーより低いパワーのレーザ光
照射により記録層の記録状態(磁化の向き)に応じて反
射光あるいは透過光の偏光面が回転するのを検出するこ
とによって再生を行う。
Conventional technology Magneto-optical recording media perform recording by irradiating the recording layer with laser light to locally raise the temperature of the recording layer to a temperature higher than the compensation temperature or around the Curie temperature, and magnetizing the recording layer in the irradiated area in the direction of the external magnetic field. , erasing is performed (thermomagnetic recording), and by irradiating a laser beam with a power lower than the laser power during recording and erasing, the polarization plane of reflected or transmitted light is rotated depending on the recording state (direction of magnetization) of the recording layer. Playback is performed by detecting.

従来、オーバーライド動作を行なう方法として提案され
ているものには、連続駆動状態の記録レーザ光を照射し
て記録層の温度を局部的に上昇させ、信号に応じて向き
の変調された外部磁場で熱磁気記録する方法及び第6図
に示すように記録磁性層61と補助磁性層62からなる
複合記録層と逆向きの磁場を与える二つの外部磁場印加
装置63.64と信号に応じてパワー変調された記録レ
ーザ65を用いて熱磁気記録する方法(例えば、第34
回応用物理学関係連合講演会予稿集28P−2L−3,
1987)等があった。
Previously proposed methods for performing override operations include irradiating a continuously driven recording laser beam to locally increase the temperature of the recording layer, and applying an external magnetic field whose direction is modulated according to the signal. Thermomagnetic recording method and a composite recording layer consisting of a recording magnetic layer 61 and an auxiliary magnetic layer 62 as shown in FIG. 6, two external magnetic field applying devices 63 and 64 that apply magnetic fields in opposite directions, and power modulation according to signals A thermomagnetic recording method using a recording laser 65 (for example, the 34th
Proceedings of the Joint Conference on Regenerative Physics 28P-2L-3,
1987) etc.

発明が解決しようとする問題点 しかしながら、従来法のうち第1の方法では外部磁場印
加装置と光磁気記録媒体との間隔を充分にとると、メガ
ヘルツ領域の周波数では必要な外部磁場を記録層に印加
できない為、オーバーライドが不可能になり、一方策2
の方法では外部磁場印加装置が二つ必要なため装置の大
型化を招くという問題点を有していた。
Problems to be Solved by the Invention However, in the first conventional method, if a sufficient distance is provided between the external magnetic field application device and the magneto-optical recording medium, it is difficult to apply the necessary external magnetic field to the recording layer at frequencies in the megahertz region. Since it cannot be applied, override is impossible, and one solution 2
This method has the problem of increasing the size of the device because it requires two external magnetic field applying devices.

本発明は上記問題点に鑑み、外部磁場印加装置が不要で
しかもメガヘルツ領域の周波数でのオーバーライドが可
能な光磁気記録媒体およびその記録方法を提供するもの
である。
In view of the above problems, the present invention provides a magneto-optical recording medium that does not require an external magnetic field applying device and can be overridden at a frequency in the megahertz range, and a recording method thereof.

問題点を解決するための手段 この目的を達成するために、本発明の光磁気記録媒体は
、基板上に記録磁性層と記録磁場供給源となる少な(と
も1つの補助磁性層からなる複合記録層を有する構成と
なっており、本発明の光磁気記録媒体の記録方法は記録
層に記録しようとする磁化の向きに応じて記録レーザを
パワー変調あるいはパルス幅変調して照射するものであ
る。
Means for Solving the Problems In order to achieve this object, the magneto-optical recording medium of the present invention has a composite recording medium consisting of a recording magnetic layer on a substrate and one auxiliary magnetic layer that serves as a recording magnetic field source. The recording method of the magneto-optical recording medium of the present invention is to irradiate the recording laser with power modulation or pulse width modulation depending on the direction of magnetization to be recorded in the recording layer.

作   用 この構成によって、互いに磁化が逆向きに設定されてい
る透明補助磁性層と他の補助磁性層あるいは非金属系補
助磁性層と他の補助磁性層の組合せ等を一組として記録
磁性層に対する記録磁場供給源として利用することがで
きるため、外部磁場印加装置を用いずに記録レーザの変
調によって記録磁場の高速反転ができ、オーバーライド
が可能となる。すなわち、前記貼構成の場合、記録磁性
層が記録温度に至った時の透明補助磁性層の磁化によっ
て生ずる磁場と補助磁性層の磁化によって生ずる磁場と
の大小関係を、記録レーザの変調により各層の温度関係
をコントロールすることによって反転させ、優勢な磁場
の向きに記録磁性層の磁化を向はオーバーライドを実現
するものである。
Operation With this configuration, a combination of a transparent auxiliary magnetic layer and another auxiliary magnetic layer, or a combination of a nonmetallic auxiliary magnetic layer and another auxiliary magnetic layer, whose magnetizations are set in opposite directions, is used as a set for the recording magnetic layer. Since it can be used as a recording magnetic field supply source, the recording magnetic field can be quickly reversed by modulating the recording laser without using an external magnetic field applying device, and override can be performed. In other words, in the case of the pasted structure, the magnitude relationship between the magnetic field generated by the magnetization of the transparent auxiliary magnetic layer and the magnetic field generated by the magnetization of the auxiliary magnetic layer when the recording magnetic layer reaches the recording temperature can be determined for each layer by modulating the recording laser. By controlling the temperature relationship, the magnetization of the recording magnetic layer is overridden in the direction of the dominant magnetic field by reversing the direction.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。第1図において、1はガラス等で形成された基
板、2はSiO膜からなる透明保護層、3はYIG等の
ガーネット膜からなる透明補助磁性層、4は5iOII
Iからなる非磁性層、5はTbFe、GdTbFe、T
bFeCo等の希土類−遷移金属系フェリ磁性膜からな
る記録磁性層、6はSiO膜からなる非磁性層、7はT
bFeCo膜等からなる補助磁性層、8はSiO膜から
なる保護層、9はレーザ光であり、各磁性層3,5.7
は垂直磁化膜で、かつ透明補助磁性層3と補助磁性層7
の磁化は互いに逆向きで、それぞれのキュリ一温度は記
録磁性層5のキュリ一温度より高く設定されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. In FIG. 1, 1 is a substrate made of glass or the like, 2 is a transparent protective layer made of a SiO film, 3 is a transparent auxiliary magnetic layer made of a garnet film such as YIG, and 4 is 5iOII.
A nonmagnetic layer consisting of I, 5 is TbFe, GdTbFe, T
bA recording magnetic layer made of a rare earth-transition metal ferrimagnetic film such as FeCo, 6 a nonmagnetic layer made of a SiO film, 7 a T
b An auxiliary magnetic layer made of a FeCo film or the like, 8 a protective layer made of a SiO film, 9 a laser beam, and each magnetic layer 3, 5.7
is a perpendicular magnetization film, and transparent auxiliary magnetic layer 3 and auxiliary magnetic layer 7
The magnetization directions are opposite to each other, and the Curie temperature of each is set higher than the Curie temperature of the recording magnetic layer 5.

ここで基板1上の各層は蒸着法およびスパッタ法により
形成し、特に透明補助磁性層3は300℃前後に加熱さ
れた基板1上にスパッタ法により形成した。また、各層
の膜厚は、透明保護膜2を20〜1100n、透明補助
磁性層3を50〜1100n、非磁性層4および6を1
〜20nm、記録磁性層5を50〜1100n、補助磁
性層7を50〜1100n、保護層8を1100nとし
て設定した。
Here, each layer on the substrate 1 was formed by a vapor deposition method and a sputtering method, and in particular, the transparent auxiliary magnetic layer 3 was formed by a sputtering method on the substrate 1 heated to about 300°C. The film thickness of each layer is 20 to 1,100 nm for the transparent protective film 2, 50 to 1,100 nm for the transparent auxiliary magnetic layer 3, and 1,100 nm for the nonmagnetic layers 4 and 6.
~20 nm, the recording magnetic layer 5 was set to 50 to 1100 nm, the auxiliary magnetic layer 7 was set to 50 to 1100 nm, and the protective layer 8 was set to 1100 nm.

以上の構成の光磁気ディスクに高パワー(Aで示す)と
低パワー(Bで示す)のレーザパルスを度合いつ時間照
射し、記録磁性層5の温度が冷却過程でキュリ一温度近
傍になった時の各層の温度分布の模式図を第2図に、透
明補助磁性層3の磁化と補助磁性層7の磁化が記録磁性
層5の位置につくる磁場の温度変化の模式図を第3図に
示す。
The magneto-optical disk having the above configuration was irradiated with laser pulses of high power (indicated by A) and low power (indicated by B) for a certain amount of time, and the temperature of the recording magnetic layer 5 was brought to around one Curie temperature during the cooling process. Figure 2 shows a schematic diagram of the temperature distribution of each layer at the time, and Figure 3 shows a schematic diagram of temperature changes in the magnetic field created at the recording magnetic layer 5 by the magnetization of the transparent auxiliary magnetic layer 3 and the magnetization of the auxiliary magnetic layer 7. show.

高パワーのレーザパルスを照射した場合(A)には、透
明補助磁性層3の温度は、平均T4、補助磁性層7の温
度はT2となり、第3図から透明補助磁性層3と補助磁
性層7の磁化が記録磁性層5の位置につくる磁場は、そ
れぞれH4とH2となる。
In the case of irradiation with a high power laser pulse (A), the average temperature of the transparent auxiliary magnetic layer 3 is T4, and the temperature of the auxiliary magnetic layer 7 is T2. The magnetic fields created by the magnetization of No. 7 at the position of the recording magnetic layer 5 are H4 and H2, respectively.

H4くH2であるから、和としての磁場は補助磁性層7
の磁化の向きとなり、その後の冷却過程で記録磁性層5
の磁化は補助磁性層7の磁化の向きに記録される。一方
、低パワーのレーザパルスを照射した場合(B)には、
透明補助磁性層3の温度は平均T3、補助磁性層7の温
度はT、となり、第3図から、透明補助磁性層3と補助
磁性層7の磁化が記録磁性層5の位置につくる磁場の和
は透明補助磁性層3の向きとなり、その後の冷却過程で
記録磁性層5の磁化は透明補助磁性層3の向きに記録さ
れる。すなわち、記録レーザパルスのパワー変調によっ
て任意の向きに記録磁性層の磁化の向きを設定できるこ
とになり、オーバーライドが可能となる。
Since H4 minus H2, the magnetic field as a sum is the auxiliary magnetic layer 7.
The direction of magnetization becomes the same as that of the recording magnetic layer 5 during the subsequent cooling process.
The magnetization is recorded in the direction of magnetization of the auxiliary magnetic layer 7. On the other hand, when irradiating with a low power laser pulse (B),
The average temperature of the transparent auxiliary magnetic layer 3 is T3, and the average temperature of the auxiliary magnetic layer 7 is T. From FIG. The sum becomes the direction of the transparent auxiliary magnetic layer 3, and in the subsequent cooling process, the magnetization of the recording magnetic layer 5 is recorded in the direction of the transparent auxiliary magnetic layer 3. In other words, the direction of magnetization of the recording magnetic layer can be set in any direction by power modulation of the recording laser pulse, making override possible.

なお、本実施例では、光投入側から順に透明補助磁性層
3.記録磁性層5.補助磁性層7の3つの磁性層からな
る複合記録層を有する光磁気記録媒体を用いたが、−光
投入側から順に記録磁性層5、非金属系補助磁性層(酸
化物系磁性層等)。
In this embodiment, the transparent auxiliary magnetic layer 3. Recording magnetic layer 5. A magneto-optical recording medium having a composite recording layer consisting of three magnetic layers, the auxiliary magnetic layer 7, was used.In order from the light input side, the recording magnetic layer 5, the non-metallic auxiliary magnetic layer (oxide magnetic layer, etc.) .

補助磁性層7の3つの磁性層からなる複合記録層を有す
る光磁気記録媒体を用いた場合でも、記録レーザのパワ
ー変調およびパルス幅変調により第4図に示すような2
種類の各層の温度分布が得られるので本発明によるオー
バーライドが可能である。さらに、第5図aのような磁
化の温度特性を持つフェリ磁性の補助磁性層7を採用し
た場合には、光投入側から順に記録磁性層5.補助磁性
層7あるいは順に透明補助磁性層3.記録磁性層5から
なる複合記録層を有する光磁気記録媒体を用いた場合で
も、記録レーザのパワー変調およびパルス幅変調により
第5図す、cに示すような各層の温度分布が得られ、レ
ーザパルスの照射状態で補助磁性層7の磁化の向きが反
転する結果、その磁化によって生ずる磁場の向きも反転
するので本発明によるオーバーライドが可能である。
Even when a magneto-optical recording medium having a composite recording layer consisting of three magnetic layers of the auxiliary magnetic layer 7 is used, the power modulation and pulse width modulation of the recording laser result in two-dimensional recording as shown in FIG.
Since the temperature distribution of each layer of the type is obtained, overriding according to the present invention is possible. Furthermore, when a ferrimagnetic auxiliary magnetic layer 7 having a temperature characteristic of magnetization as shown in FIG. 5a is employed, the recording magnetic layer 5. Auxiliary magnetic layer 7 or in turn transparent auxiliary magnetic layer 3. Even when using a magneto-optical recording medium having a composite recording layer consisting of the recording magnetic layer 5, the temperature distribution of each layer as shown in Figure 5c is obtained by power modulation and pulse width modulation of the recording laser, and the laser As a result of the direction of magnetization of the auxiliary magnetic layer 7 being reversed under the pulse irradiation state, the direction of the magnetic field generated by the magnetization is also reversed, so overriding according to the present invention is possible.

また、本実施例では、透明補助磁性層3としてガーネッ
ト膜、記録磁性層5として希土類−遷移金属系フェリ磁
性膜、補助磁性層7としてTbFeCo   。
In this embodiment, the transparent auxiliary magnetic layer 3 is a garnet film, the recording magnetic layer 5 is a rare earth-transition metal ferrimagnetic film, and the auxiliary magnetic layer 7 is TbFeCo.

膜を用いたが、透明補助磁性層としてスピネルフェライ
ト膜、六方晶フェライト膜等、記録磁性層5としてガー
ネット膜、スピネルフェライト膜、ホイスラー合金膜等
、補助磁性層7として適当な磁化の温度特性を有する他
の垂直磁化膜を用いて良(、また、透明保護層2.非磁
性層4゜6、保護層8としてZnS膜、Zn5e膜、窒
化膜、他の適当な酸化膜等を用いても良い。
The transparent auxiliary magnetic layer may be a spinel ferrite film, hexagonal ferrite film, etc.; the recording magnetic layer 5 may be a garnet film, a spinel ferrite film, a Heusler alloy film, etc.; the auxiliary magnetic layer 7 may have appropriate magnetization temperature characteristics. It is also possible to use other perpendicularly magnetized films such as a transparent protective layer 2, a nonmagnetic layer 46, and a ZnS film, a Zn5e film, a nitride film, or other suitable oxide film as the protective layer 8. good.

さらに、透明保護層2および保護層8は場合によっては
省略可能である。
Furthermore, the transparent protective layer 2 and the protective layer 8 can be omitted depending on the case.

発明の効果 本発明は、記録レーザをパワー変調あるいはパルス幅変
調することによって記録磁性層と記録磁場供給源となる
磁性層とからなる複合記録層中の各層の温度分布に2種
類の状態を作りだし、各状態で記録磁場供給源の磁性層
が作る記録磁場の向きが反対になるようにして、記録動
作を行い、外部磁場印加装置なしにオーバーライドを実
現するものである。
Effects of the Invention The present invention creates two types of temperature distribution states in each layer in a composite recording layer consisting of a recording magnetic layer and a magnetic layer serving as a recording magnetic field supply source by power modulating or pulse width modulating a recording laser. In each state, the direction of the recording magnetic field generated by the magnetic layer of the recording magnetic field supply source is reversed to perform the recording operation, thereby realizing override without an external magnetic field applying device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光磁気記録媒体の構
成を示す断面図、第2図は本実施例における光磁気記録
媒体における各層の温度分布の模式図、第3図は本実施
例の光磁気記録媒体における透明補助磁性層の磁化と補
助磁性層の磁化が記録磁性層の位置につくる磁場の温度
変化の模式図、第4図は他の光磁気記録媒体における各
層の温度分布の模式図、第5図は本発明の他の実施例の
光磁気記録媒体における補助磁性層の磁化の温度特性と
各層の温度分布の模式図、第6図は従来のオーバーライ
ド方法の構成図である。 1・・・・・・基板、2・・・・・・透明保護層、3・
・・・・・透明補助磁性層、4・・・・・・非磁性層、
5・・・・・・記録磁性層、6・・・・・・非磁性層、
7・・・・・・補助磁性層、8・・・・・・保護層、9
・・・・・・レーザ光。 代理人の氏名 弁理士 中尾敏男 ほか1名第2図 第3図 X 14図 第5図
FIG. 1 is a cross-sectional view showing the structure of a magneto-optical recording medium in one embodiment of the present invention, FIG. 2 is a schematic diagram of the temperature distribution of each layer in the magneto-optical recording medium in this embodiment, and FIG. 3 is a schematic diagram of the temperature distribution of each layer in the magneto-optical recording medium in this embodiment. Figure 4 is a schematic diagram of the temperature change of the magnetic field created at the position of the recording magnetic layer by the magnetization of the transparent auxiliary magnetic layer and the magnetization of the auxiliary magnetic layer in a magneto-optical recording medium. FIG. 5 is a schematic diagram of the temperature characteristics of the magnetization of the auxiliary magnetic layer and the temperature distribution of each layer in a magneto-optical recording medium according to another embodiment of the present invention, and FIG. 6 is a diagram of the configuration of a conventional override method. . 1...Substrate, 2...Transparent protective layer, 3.
...Transparent auxiliary magnetic layer, 4...Nonmagnetic layer,
5... Recording magnetic layer, 6... Nonmagnetic layer,
7...Auxiliary magnetic layer, 8...Protective layer, 9
...Laser light. Name of agent: Patent attorney Toshio Nakao and one other person Figure 2 Figure 3 X Figure 14 Figure 5

Claims (7)

【特許請求の範囲】[Claims] (1)記録層に記録しようとする磁化の向きに応じて記
録レーザをパワー変調あるいはパルス幅変調して照射す
ることを特徴とする光磁気記録媒体の記録方法。
(1) A method for recording a magneto-optical recording medium, characterized in that a recording laser is irradiated with power modulation or pulse width modulation according to the direction of magnetization to be recorded on a recording layer.
(2)基板上に記録磁性層と記録磁場供給源となる少な
くとも1つの補助磁性層からなる複合記録層を有する光
磁気記録媒体。
(2) A magneto-optical recording medium having, on a substrate, a composite recording layer consisting of a recording magnetic layer and at least one auxiliary magnetic layer serving as a recording magnetic field supply source.
(3)補助磁性層として、少なくとも1つの非金属系磁
性層を用いることを特徴とする特許請求の範囲第2項記
載の光磁気記録媒体。
(3) The magneto-optical recording medium according to claim 2, characterized in that at least one non-metallic magnetic layer is used as the auxiliary magnetic layer.
(4)複合記録層として、光投入側より順に透明補助磁
性層、非磁性層、記録磁性層、非磁性層、補助磁性層か
らなる構成を用いることを特徴とする特許請求の範囲第
2項記載の光磁気記録媒体。
(4) Claim 2, characterized in that the composite recording layer uses a structure consisting of a transparent auxiliary magnetic layer, a nonmagnetic layer, a recording magnetic layer, a nonmagnetic layer, and an auxiliary magnetic layer in order from the light input side. The magneto-optical recording medium described above.
(5)複合記録層として、光投入側より順に記録磁性層
、非磁性層、非金属系補助磁性層、非磁性層、補助磁性
層からなる構成を用いることを特徴とする特許請求の範
囲第2項記載の光磁気記録媒体。
(5) As a composite recording layer, a structure consisting of a recording magnetic layer, a nonmagnetic layer, a nonmetallic auxiliary magnetic layer, a nonmagnetic layer, and an auxiliary magnetic layer is used in this order from the light input side. 2. The magneto-optical recording medium according to item 2.
(6)複合記録層として、光投入側より順にフェリ磁性
を有する透明補助磁性層、非磁性層、記録磁性層からな
る構成を用いることを特徴とする特許請求の範囲第2項
記載の光磁気記録媒体。
(6) The magneto-optical device according to claim 2, characterized in that the composite recording layer is composed of a transparent auxiliary magnetic layer having ferrimagnetism, a nonmagnetic layer, and a recording magnetic layer in order from the light input side. recoding media.
(7)複合記録層として、光投入側より順に記録磁性層
、非磁性層、フェリ磁性を有する補助磁性層からなる構
成を用いることを特徴とする特許請求の真意第2項記載
の光磁気記録媒体。
(7) Magneto-optical recording according to claim 2, characterized in that the composite recording layer is composed of a recording magnetic layer, a non-magnetic layer, and an auxiliary magnetic layer having ferrimagnetism in order from the light input side. Medium.
JP33084087A 1986-12-26 1987-12-25 Magneto-optical recording medium and its recording method Pending JPS63266656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33084087A JPS63266656A (en) 1986-12-26 1987-12-25 Magneto-optical recording medium and its recording method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31218586 1986-12-26
JP61-312185 1986-12-26
JP33084087A JPS63266656A (en) 1986-12-26 1987-12-25 Magneto-optical recording medium and its recording method

Publications (1)

Publication Number Publication Date
JPS63266656A true JPS63266656A (en) 1988-11-02

Family

ID=26567054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33084087A Pending JPS63266656A (en) 1986-12-26 1987-12-25 Magneto-optical recording medium and its recording method

Country Status (1)

Country Link
JP (1) JPS63266656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183048A (en) * 1989-12-08 1991-08-09 Internatl Business Mach Corp <Ibm> Optomagnetic recording method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183048A (en) * 1989-12-08 1991-08-09 Internatl Business Mach Corp <Ibm> Optomagnetic recording method and apparatus

Similar Documents

Publication Publication Date Title
KR950013704B1 (en) Thermomagnetic recording &amp; reprocducting method
US4882231A (en) Magneto-optical recording medium
JPH07105082B2 (en) Magneto-optical recording medium
JPH0535499B2 (en)
JPS63155449A (en) Magneto-optical recording method
JPS63266656A (en) Magneto-optical recording medium and its recording method
JPH0395745A (en) Magneto-optical recording method and recording device
JPH0348582B2 (en)
JP2830018B2 (en) Magneto-optical recording medium
JP2829970B2 (en) Thermomagnetic recording medium
JPH03266243A (en) Magneto-optical recording method
JPH0278043A (en) Magneto-optical recording medium and magneto-optical recording medium used therein
JP3162168B2 (en) Magneto-optical recording medium
JP2570777B2 (en) Recording method of magneto-optical recording
JP2805787B2 (en) Magneto-optical recording method
JPS63237242A (en) Magneto-optical recording system
JP3089659B2 (en) Magneto-optical recording medium and recording method thereof
JPH06176412A (en) Magneto-optical recording medium
JP3613267B2 (en) Magneto-optical recording medium
JPH02156447A (en) Magneto-optical disk
JPH0242664A (en) Thermo-magneto-optical recording medium, recording device thereof and thermomagneto-optical recording system using them
JPH01118251A (en) Magneto-optical recording system
JPH01128245A (en) Magneto-optical recording system
JPH01217744A (en) Magneto-optical recording medium
JPH0198147A (en) Magneto-optical recording system