JPH01118251A - Magneto-optical recording system - Google Patents

Magneto-optical recording system

Info

Publication number
JPH01118251A
JPH01118251A JP27639687A JP27639687A JPH01118251A JP H01118251 A JPH01118251 A JP H01118251A JP 27639687 A JP27639687 A JP 27639687A JP 27639687 A JP27639687 A JP 27639687A JP H01118251 A JPH01118251 A JP H01118251A
Authority
JP
Japan
Prior art keywords
layer
temperature
magnetic field
magneto
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27639687A
Other languages
Japanese (ja)
Other versions
JP2617493B2 (en
Inventor
Seiji Yumoto
誠司 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62276396A priority Critical patent/JP2617493B2/en
Publication of JPH01118251A publication Critical patent/JPH01118251A/en
Application granted granted Critical
Publication of JP2617493B2 publication Critical patent/JP2617493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To realize overwrite by a single beam and a single magnetic field by modulating laser intensity to be projected on a magnetic medium in an outside magnetic field having a coercive force less than that of a readout layer and also larger than that of a write layer at a room temperature. CONSTITUTION:Assuming the room temperature as Tr, the coercive forces of the readout layer and the write layer as HcR, and HcW, Curie temperatures as TcR and TcW, and the compensation temperature of the write layer as Tcomp.w, the outside magnetic field less than the HcR and larger than the HcW is impressed on a recording medium which satisfies relation HcW<HcR and Tr<Tcomp.W<TcR<TcW. In such state, assuming a temperature in which the coercive force of the write layer becomes equal to the size of the outside magnetic field at a side higher than the Tcomp.W as TB, the temperature T of the medium is cooled after being raised to an area of TcR<T<TB by projecting a laser with intensity of a write level 5, and next, the laser with intensity of a write level 6 is projected then, the overwrite is performed by cooling it after being raised to an area of TB<T.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光磁気記録媒体の記録方式に係わる。[Detailed description of the invention] (Industrial application field) The present invention relates to a recording method for a magneto-optical recording medium.

(従来の技術) 近年、レーザーを用いた高密度記録法として、レーザー
光を照射して記録媒体を局部加熱することによりビット
を書き込み、磁気光学効果を利用して読みだすという光
磁気記録が研究開発されている。その記録媒体としては
、希土類−遷移金属合金からなる非晶質磁性薄膜が注目
されている。光磁気記録方式では、従来単一記録層、単
一ビームにより光変調方式で行われていたため、重ね書
き(オーバーライド)記録が不可能であった。そこで、
重ね書き記録を可能にする方法として、磁界変調方式、
マルチビームによる疑似重ね書き記録方式、2層膜によ
る方式等が考えられている。
(Prior technology) In recent years, research has been conducted on magneto-optical recording as a high-density recording method using lasers, in which bits are written by locally heating the recording medium by irradiating laser light and read out using the magneto-optic effect. being developed. As such a recording medium, an amorphous magnetic thin film made of a rare earth-transition metal alloy is attracting attention. Conventionally, magneto-optical recording has been performed using an optical modulation method using a single recording layer and a single beam, making override recording impossible. Therefore,
As a method to enable overwriting recording, magnetic field modulation method,
A pseudo-overwriting recording method using multi-beams, a method using a two-layer film, etc. are being considered.

(発明が解決しようとする問題点) 磁界変調方式は、高周波で強い磁場を発生させる必要が
あるが、通常の電磁石ではこれが困難であるために、ハ
ードディスク等に使われているスライダーを用い媒体と
電磁石とを近けることによりこれを可能にしている。し
かし、この方法は光磁気記録の特徴である非接触性を犠
牲にする等の欠点がある。また、マルチビームによる疑
似オーバーライド方式は、装置が複雑になる欠点を有し
ている。また、従来の2層膜を利用したオーパーラ・イ
ト方式(第34回応用物理学関係連合講演会予稿集。
(Problem to be solved by the invention) The magnetic field modulation method requires the generation of a strong magnetic field at high frequency, but this is difficult to do with ordinary electromagnets, so a slider used in hard disks etc. is used to connect the medium. This is made possible by bringing the electromagnet closer together. However, this method has drawbacks such as sacrificing the non-contact nature that is a feature of magneto-optical recording. Furthermore, the pseudo override method using multiple beams has the disadvantage that the device becomes complicated. In addition, we have also introduced an over-light method using a conventional two-layer film (Proceedings of the 34th Applied Physics Association Conference).

28p−ZL−3,P721.1987)テは、記録に
先立ち予め外部磁場により補助層の磁化を一方向にそろ
え、メモリー層のキュリー温度TCR1記録時に先行外
部磁場の方向と逆向きに印加されている外部磁場の大き
さと補助層の保磁力とが等しくなる温度をTBとしたと
きに、媒体の温度TをTc、< T < TBなる温度
まで昇;孟させた後冷却する時には、予め一方向にそろ
えられた補助層の磁化方向が記録層に転写され、媒体を
73以上に昇温した後に冷却する場合には、記録時に印
加されている磁場方向に記録層の磁化が向くと言った方
法がとられている。このために、記録に先立ち補助層を
予め消去するための先行外部磁場と記録時に印加する二
つの外部磁場が必要となる。
28p-ZL-3, P721.1987) Before recording, the magnetization of the auxiliary layer is aligned in one direction by an external magnetic field, and when recording the Curie temperature TCR1 of the memory layer, it is applied in the opposite direction to the direction of the preceding external magnetic field. Let TB be the temperature at which the magnitude of the external magnetic field equals the coercive force of the auxiliary layer, then raise the temperature T of the medium to Tc, < T <TB; A method in which the magnetization direction of the auxiliary layer, which is aligned with is taken. For this reason, two external magnetic fields are required: a preliminary external magnetic field for erasing the auxiliary layer prior to recording, and an external magnetic field applied during recording.

本発明の目的は、単一ビーム、単一磁場によりオーバー
ライドが可能となる光磁気記録の記録方式を提供するこ
とにある。
An object of the present invention is to provide a magneto-optical recording system that allows override using a single beam and a single magnetic field.

(発明が解決しようとする手段) 本発明は光磁気記録媒体の記録層として垂直磁化膜から
なる読み出し層と垂直磁化膜であるフェリ磁性体からな
る書き込み層とが積層された2層膜を有し、室温をTr
、読み出し層、書き込み層の室温での保磁力をそれぞれ
Heえ、 HcW、読み出し層のキュリー温度をTcr
t、書き込み層のキュリ1孟度をTCW、書き込み層の
補償温度をTcomp、wとしたときに  、Hc く
HcRで  あ  リ  且  つ  、資<Tcom
pw<TcR<Tcwなる関係を満足する光磁気記録媒
体において、HcW< Hext、< HeRとなるよ
うに記録媒体に垂直方向に外部磁場Hext、を印加し
、書き込み層の補償温度Tcomp0wよりも高温側で
外部磁場の大きさと書き込み層の保磁力とが等しくなる
温度をTBとしたときに、レーザー照射により記録膜を
昇温し媒体温度TをTcR<T<TBなる関係を満足す
るように昇温してから冷却する場合とTB<Tなる温度
まで昇温してから冷却する場合とを含むことを特徴とす
る光磁気記録方式である。
(Means to be Solved by the Invention) The present invention has a two-layer film as a recording layer of a magneto-optical recording medium in which a reading layer made of a perpendicularly magnetized film and a writing layer made of a ferrimagnetic material which is a perpendicularly magnetized film are laminated. and set the room temperature to Tr
, the coercive force of the reading layer and the writing layer at room temperature are respectively He, HcW, and the Curie temperature of the reading layer is Tcr.
t, the Curie temperature of the writing layer is TCW, and the compensation temperature of the writing layer is Tcomp, w, then Hc is less than HcR and , capital<Tcom
In a magneto-optical recording medium that satisfies the relationship pw<TcR<Tcw, an external magnetic field Hext is applied perpendicularly to the recording medium so that HcW<Hext, <HeR, and the magnetic field is set at a temperature higher than the compensation temperature Tcomp0w of the writing layer. When TB is the temperature at which the magnitude of the external magnetic field is equal to the coercive force of the writing layer, the temperature of the recording film is raised by laser irradiation, and the medium temperature T is raised to satisfy the relationship TcR<T<TB. This is a magneto-optical recording method characterized by including a case where the temperature is increased to a temperature where TB<T and then cooled down.

(作用) 本発明では、光磁気記録媒体の記録層として室温以上に
補償組成を有する書き込み層と該書き込み層の磁化方向
を転写する読み出し層とを設けた記録媒体を利用する。
(Function) In the present invention, a recording medium is used as a recording layer of a magneto-optical recording medium, which is provided with a writing layer having a compensation composition above room temperature and a reading layer that transfers the magnetization direction of the writing layer.

第1図には、この記録媒体に要求される書き込み層、読
み出し層の保磁力の温度特性を示す。第1図において、
1,1′は読み出し層の保磁力の温度特性であり、2は
書き込み層の保磁力の温度特性である。第1図(a)は
読み出し層の補償温度が室温とキュリー温度の間に存在
しない場合であり、第1図(b)は存在する場合である
。このように、本発明では書き込み層の補償温度が室温
より高い温度にある記録媒体を用いるが、読み出し層の
場合には、必ずしも補償温度が室温以上にある必要はな
い。室温をTr、室温における読み出し層、書き込み層
の保磁力をそれぞれHcR,HcW、読み出し層のキュ
リー温度TcFLq書き込み層のキュリー温度TcW、
書き込み層の補償温度Tcomp3wとしたときに、T
cw<TcrtlTr<Tcomp、W<Tcm<Tc
wの関係を満足しなければならない。
FIG. 1 shows the temperature characteristics of the coercivity of the writing layer and reading layer required for this recording medium. In Figure 1,
1 and 1' are the temperature characteristics of the coercive force of the read layer, and 2 is the temperature characteristics of the coercive force of the write layer. FIG. 1(a) shows the case where the compensation temperature of the readout layer does not exist between room temperature and the Curie temperature, and FIG. 1(b) shows the case where it exists. In this way, the present invention uses a recording medium in which the compensation temperature of the writing layer is higher than room temperature, but in the case of the read layer, the compensation temperature does not necessarily have to be higher than room temperature. The room temperature is Tr, the coercive forces of the reading layer and writing layer at room temperature are HcR and HcW, respectively, the Curie temperature of the reading layer TcFLq, the Curie temperature of the writing layer TcW,
When the compensation temperature of the writing layer is Tcomp3w, T
cw<TcrtlTr<Tcomp, W<Tcm<Tc
The relationship w must be satisfied.

次に、本発明である光磁気記録の記録方式に付いて説明
する。記録時には、第1図に示すように、室温における
読み出し層の保磁力Henよりも小さいが書き込み層の
保磁力HcWよりも大きい外部磁場3を印加する。この
ために、室温では書き込み層の磁化は外部磁場方向を常
に向くことになる。第1図において、書き込み層の補償
温度より高温側で、書き込み層の保磁力と外部磁場の大
きさが等しくなる温度をTBとする。外部磁場を印加し
た状態で、第2図中の書き込みレベル5の強度のレーザ
ーを媒体に照射することにより媒体の温度Tを第1図中
のTcR<T<TBなる領域Aまで昇温し、そののちに
冷却させるとすると、読み出し層のキュリー温度TcR
では、書き込み層の磁化は外部磁場と逆方向に向いてい
ることになり、さらに媒体が冷却されていくと書き込み
層の磁化方向が読み出し層に転写されることになる。転
写に際し、読み出し層の磁化が書き込み層の磁化と同一
方向に転写される場合には、室温での読み出し層の磁化
は、第1図(a)の場合には外部磁場方向と逆方向に向
くことになり、第1図(b)では、キュリー温度TcR
付近で書き込み層と逆方向に転写された読み出し層の磁
化は、媒体の温度が下がり読み出し層の補償温度以下に
媒体温度が下がると磁化方向が反転するために、室温で
の読み出し層の磁化は外部磁場と同一方向に向くことに
なる。次に、前記外部磁場中で、第2図中の書き込みレ
ベル6の強度のレーザー照射によ゛す、磁性媒体の温度
Tを第1図中のTB<Tなる領域Bまで昇温しそののち
に冷却する場合を考える。この場合には、媒体の温度が
書き込み層の補償温度以上では、書き込み層の磁化は外
部磁場方向を向くことになる。したがって、この場合に
は、媒体の温度がTcR付近まで下がった時、読み出し
層に転写される書き込み層の磁化方向は、先はどの場合
と逆向きになる。このように、外部磁場中で磁性媒体へ
照射するレーザーパワーを変化させることにより、単一
ビーム、単一静磁場による光磁気記録の重ね書きが可能
となる。また、再生方法は、第2図中で媒体温度TがT
 <Tcrtとなる読み出しレベル4のレーザー照射に
より従来と同一方法により行うことができる。再生時に
は外部磁場を必要としないが、再生時のレーザー照射に
より読み出し層の温度が上がり、読み出し層の保磁力が
外部磁場よりも小さくならなければ外部磁場を印加した
ままで再生することができる。
Next, the recording method of magneto-optical recording according to the present invention will be explained. During recording, as shown in FIG. 1, an external magnetic field 3 is applied which is smaller than the coercive force Hen of the reading layer but larger than the coercive force HcW of the writing layer at room temperature. Therefore, at room temperature, the magnetization of the writing layer always points in the direction of the external magnetic field. In FIG. 1, TB is the temperature at which the coercive force of the writing layer is equal to the magnitude of the external magnetic field on the higher temperature side than the compensation temperature of the writing layer. With an external magnetic field applied, the medium is irradiated with a laser beam having an intensity of writing level 5 in FIG. 2 to raise the temperature T of the medium to region A in FIG. 1 where TcR<T<TB; If it is cooled after that, the Curie temperature of the readout layer TcR
In this case, the magnetization of the writing layer is oriented in the opposite direction to the external magnetic field, and as the medium is further cooled, the magnetization direction of the writing layer is transferred to the reading layer. During transfer, if the magnetization of the read layer is transferred in the same direction as the magnetization of the write layer, the magnetization of the read layer at room temperature will be oriented in the opposite direction to the external magnetic field direction in the case of Figure 1 (a). Therefore, in FIG. 1(b), the Curie temperature TcR
The magnetization of the read layer, which is transferred in the opposite direction to the write layer nearby, is reversed when the medium temperature decreases and the medium temperature drops below the compensation temperature of the read layer, so the magnetization of the read layer at room temperature is It will point in the same direction as the external magnetic field. Next, in the external magnetic field, the temperature T of the magnetic medium is raised to region B where TB<T in FIG. 1 by laser irradiation with an intensity of write level 6 in FIG. Consider the case of cooling to In this case, if the temperature of the medium is equal to or higher than the compensation temperature of the writing layer, the magnetization of the writing layer will be oriented in the direction of the external magnetic field. Therefore, in this case, when the temperature of the medium drops to around TcR, the magnetization direction of the writing layer transferred to the reading layer will be opposite to that in any other case. In this way, by changing the laser power irradiated to the magnetic medium in an external magnetic field, it becomes possible to overwrite magneto-optical recording using a single beam and a single static magnetic field. In addition, in the reproduction method, the medium temperature T is T in FIG.
This can be done by the same method as the conventional method by laser irradiation at read level 4 where <Tcrt. An external magnetic field is not required during reproduction, but unless the temperature of the readout layer increases due to laser irradiation during reproduction and the coercive force of the readout layer becomes smaller than the external magnetic field, reproduction can be performed with the external magnetic field applied.

以上は、書き込み層の磁化方向が読み出し層に ・転写
される際に、同一方向に転写される場合を説明したが、
逆向きに転写される媒体構成にしても良い。
The above describes the case where the magnetization direction of the writing layer is transferred to the reading layer in the same direction.
A medium configuration in which the image is transferred in the opposite direction may also be used.

この方法では、従来の単一ビーム、単一磁場の光磁気記
録装置をそのまま利用することができ、従来の2層膜を
利用した重ね書き方法で必要とじた先行外部磁場を必要
としないことを特徴としている。
With this method, a conventional single beam, single magnetic field magneto-optical recording device can be used as is, and there is no need for a preceding external magnetic field, which is required in the conventional overwriting method using two layers. It is a feature.

(実施例) 第3図は、本発明を実施するための媒体構成図を示す。(Example) FIG. 3 shows a media configuration diagram for implementing the present invention.

第3図において7はポリカーボネイト基板(pc)、8
は誘電体層、9は読み出し層、10は書き込み層、11
は保護膜層である。
In Fig. 3, 7 is a polycarbonate substrate (PC), 8
is a dielectric layer, 9 is a read layer, 10 is a write layer, 11
is a protective film layer.

基板として用いたPC基板7は、外径130mmφ、内
径15mmφのグループ付き基板である。この基板上に
誘電体層8、読み出し層9、書き込み層10、保護膜層
11をスパッター法により真空中で連続成膜を行った。
The PC board 7 used as the board is a grouped board with an outer diameter of 130 mmφ and an inner diameter of 15 mmφ. A dielectric layer 8, a reading layer 9, a writing layer 10, and a protective film layer 11 were successively formed on this substrate in a vacuum by sputtering.

誘電体層8、保護膜層11として膜厚800人のSi3
N4を用いた。読み出し層9、書き込み層10としてそ
れぞれ膜厚500人のDy0.21FeO,79膜、(
GdO,5TbO,5)0.27(FeO,95co0
.5)0.73膜を用いた。第4図に、読み出し層の保
磁力の温度特性12と書き込み層の保磁力の温度特性1
3とを示す。読み出し層9、書き込み層10のキュリー
温度はそれぞれ210°C2120°Cであり、書き込
み層の補償温度は、110°Cとなっている。
The dielectric layer 8 and the protective film layer 11 are made of Si3 with a thickness of 800 mm.
N4 was used. The reading layer 9 and the writing layer 10 are each made of Dy0.21FeO, 79 films with a film thickness of 500, (
GdO,5TbO,5)0.27(FeO,95co0
.. 5) A 0.73 membrane was used. Figure 4 shows the temperature characteristics 12 of the coercive force of the reading layer and the temperature characteristics 1 of the coercive force of the writing layer.
3. The Curie temperatures of the reading layer 9 and the writing layer 10 are 210°C and 2120°C, respectively, and the compensation temperature of the writing layer is 110°C.

この記録媒体に垂直に2KOeの外部磁場を印加し、線
速10m1sでオーバーライド特性の測定をおこなった
。はじめに、第2図中の書き込みパワーレベル5が5.
2mW、書き込み時のレーザー照射レベル6が7.3m
W、読み出し時のレーザー照射レベル4が1mWの条件
で、IMHzの信号を記録・再生を行ったところC/N
比48dBが得られた。さらにこの上に、同一条件によ
り2MHzの信号を重ね書きしたところC/N比47d
Bが得られた。
An external magnetic field of 2 KOe was applied perpendicularly to this recording medium, and the override characteristics were measured at a linear velocity of 10 m1s. First, write power level 5 in FIG. 2 is 5.
2mW, laser irradiation level 6 during writing is 7.3m
W, C/N when recording and reproducing an IMHz signal under the condition that the laser irradiation level 4 during readout was 1mW.
A ratio of 48 dB was obtained. Furthermore, when a 2MHz signal was overwritten on top of this under the same conditions, the C/N ratio was 47d.
B was obtained.

このように、本発明による光磁気記録の記録方式により
、単一ビーム、単一磁場の従来の光磁気記録装置を用い
て良好なオーバーライド特性を得ることができた。
As described above, the magneto-optical recording method according to the present invention makes it possible to obtain good override characteristics using a conventional magneto-optical recording device using a single beam and a single magnetic field.

(発明の効果) 本発明によれば、従来の単一ビーム、単一静磁場の光磁
気記録装置によりレーザー照射強度の変調のみにより光
磁気記録媒体への重ね書きが可能となる。
(Effects of the Invention) According to the present invention, it is possible to overwrite a magneto-optical recording medium by only modulating the laser irradiation intensity using a conventional single beam, single static magnetic field magneto-optical recording device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施するために用いる媒体の保磁力
の温度特性を示す図、第2図は本発明を実施するための
レーザパワーの変調法の説明図、第3図は、実施例に用
いた媒体の媒体構成図、第4図は、実施例に用いた読み
出し層、書き込み層の保磁力の温度特性を示す図。
FIG. 1 is a diagram showing the temperature characteristics of the coercive force of the medium used to implement the present invention, FIG. 2 is an explanatory diagram of a laser power modulation method for implementing the present invention, and FIG. FIG. 4 is a diagram showing the structure of the medium used in the example, and is a diagram showing the temperature characteristics of the coercive force of the reading layer and writing layer used in the example.

Claims (1)

【特許請求の範囲】[Claims] 光磁気記録媒体の記録層として垂直磁化膜からなる読み
出し層と垂直磁化膜であるフェリ磁性体からなる書き込
み層とが積層された2層膜を有し、室温をTr、読み出
し層、書き込み層の室温での保磁力をそれぞれHc_R
、Hc_W、読み出し層のキュリー温度をTc_R、書
き込み層のキュリー温度をTc_W、書き込み層の補償
温度をTcomp._Wとしたときに、Hc_W<Hc
_Rであり、且つ、Tr<Tcomp._W<Tc_R
<Tc_Wなる関係を満足する光磁気記録媒体において
、Hc_W<Hext.<Hc_Rとなるように記録媒
体に垂直方向に外部磁場Hext.を印加し、書き込み
層の補償温度Tcomp._Wよりも高温側で外部磁場
の大きさと書き込み層の保磁力とが等しくなる温度をT
_Bとしたときに、レーザー照射により記録膜を昇温し
媒体温度TをTc_R<T<T_Bなる関係を満足する
ように昇温してから冷却する場合とT_B<Tなる温度
まで昇温してから冷却する場合とを含むことを特徴とす
る光磁気記録方式。
The recording layer of the magneto-optical recording medium has a two-layer film in which a reading layer made of a perpendicularly magnetized film and a writing layer made of a ferrimagnetic material, which is a perpendicularly magnetized film, are laminated. The coercive force at room temperature is Hc_R, respectively.
, Hc_W, the Curie temperature of the read layer is Tc_R, the Curie temperature of the write layer is Tc_W, and the compensation temperature of the write layer is Tcomp. When _W, Hc_W<Hc
_R, and Tr<Tcomp. _W<Tc_R
In a magneto-optical recording medium that satisfies the relationship: <Tc_W, Hc_W<Hext. External magnetic field Hext. is applied, and the writing layer compensation temperature Tcomp. T is the temperature at which the magnitude of the external magnetic field and the coercive force of the writing layer become equal on the higher temperature side than _W.
When _B, the recording film is heated by laser irradiation, and the medium temperature T is raised to satisfy the relationship Tc_R<T<T_B, and then cooled. A magneto-optical recording method characterized by including a case where cooling is performed.
JP62276396A 1987-10-30 1987-10-30 Magneto-optical recording method Expired - Lifetime JP2617493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276396A JP2617493B2 (en) 1987-10-30 1987-10-30 Magneto-optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276396A JP2617493B2 (en) 1987-10-30 1987-10-30 Magneto-optical recording method

Publications (2)

Publication Number Publication Date
JPH01118251A true JPH01118251A (en) 1989-05-10
JP2617493B2 JP2617493B2 (en) 1997-06-04

Family

ID=17568822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276396A Expired - Lifetime JP2617493B2 (en) 1987-10-30 1987-10-30 Magneto-optical recording method

Country Status (1)

Country Link
JP (1) JP2617493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454858A1 (en) * 1989-11-10 1991-11-06 Mitsubishi Chemical Corporation Magnetooptical recording medium
US5233575A (en) * 1989-11-10 1993-08-03 Mitsubishi Kasei Corporation Magneto-optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155449A (en) * 1986-12-19 1988-06-28 Canon Inc Magneto-optical recording method
JPH0198147A (en) * 1987-10-09 1989-04-17 Nec Corp Magneto-optical recording system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155449A (en) * 1986-12-19 1988-06-28 Canon Inc Magneto-optical recording method
JPH0198147A (en) * 1987-10-09 1989-04-17 Nec Corp Magneto-optical recording system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454858A1 (en) * 1989-11-10 1991-11-06 Mitsubishi Chemical Corporation Magnetooptical recording medium
US5233575A (en) * 1989-11-10 1993-08-03 Mitsubishi Kasei Corporation Magneto-optical recording medium
EP0454858B1 (en) * 1989-11-10 1996-08-14 Mitsubishi Chemical Corporation Magnetooptical recording medium

Also Published As

Publication number Publication date
JP2617493B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP2910250B2 (en) Magneto-optical recording medium
US5175714A (en) Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions
JP2579631B2 (en) Magneto-optical recording method
CA2060547A1 (en) System and method of reproducing signals recorded on a magneto-optic recording medium
JPH0348582B2 (en)
JPH01118251A (en) Magneto-optical recording system
JP2570777B2 (en) Recording method of magneto-optical recording
JPH09198731A (en) Magneto-optical recording medium
US5105400A (en) Method of magneto-optically recording and erasing information onto a magneto-optical information storage medium
JP2927791B2 (en) Magneto-optical recording method
JPH01128245A (en) Magneto-optical recording system
JPH0782672B2 (en) Magnetic thin film recording medium
JPH04255941A (en) Magneto-optical recording medium
JPH01100753A (en) Magneto-optical recording medium
JPH01118243A (en) Magneto-optical recording medium
JP2796602B2 (en) Magneto-optical recording method
JP2883939B2 (en) Magneto-optical recording method
JP2866514B2 (en) Magneto-optical memory device and recording method thereof
JPS63237242A (en) Magneto-optical recording system
JPH01144248A (en) Magneto-optical recording medium
JPH03119540A (en) Magneto-optical recording medium
JPH04134742A (en) Magneto-optical recording medium and production thereof
JPS62219203A (en) Optical modulation overwriting system for photomagnetic recording device
JPH01217744A (en) Magneto-optical recording medium
JPS63302415A (en) Magnetic recording medium