JP3089659B2 - Magneto-optical recording medium and recording method thereof - Google Patents

Magneto-optical recording medium and recording method thereof

Info

Publication number
JP3089659B2
JP3089659B2 JP02288682A JP28868290A JP3089659B2 JP 3089659 B2 JP3089659 B2 JP 3089659B2 JP 02288682 A JP02288682 A JP 02288682A JP 28868290 A JP28868290 A JP 28868290A JP 3089659 B2 JP3089659 B2 JP 3089659B2
Authority
JP
Japan
Prior art keywords
magnetic film
film
magnetic
rare earth
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02288682A
Other languages
Japanese (ja)
Other versions
JPH04162232A (en
Inventor
嘉彦 工藤
元良 村上
正博 尾留川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP02288682A priority Critical patent/JP3089659B2/en
Publication of JPH04162232A publication Critical patent/JPH04162232A/en
Application granted granted Critical
Publication of JP3089659B2 publication Critical patent/JP3089659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光による温度上昇を利用して記録消去
を行い、磁気光学効果を利用して再生を行う光磁気記録
媒体に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium that performs recording and erasing using a temperature rise by a laser beam and performs reproduction using a magneto-optical effect.

従来の技術 光磁気記録媒体ではレーザ光照射により記録膜の温度
を局部的に補償温度以上の高温あるいはキュリー温度前
後に上昇させ、レーザ光の照射された部分の記録膜を外
部磁界の向きに磁化させることによって記録消去を行う
(熱磁気記録)。また再生は記録消去時のレーザ光強度
より低い強度のレーザ光を照射し、記録膜の記録状態
(磁化の向き)に応じて反射光あるいは透過光の偏光面
が回転する状況を検出することによって行う。
2. Description of the Related Art In a magneto-optical recording medium, the temperature of a recording film is locally raised to a temperature higher than a compensation temperature or around a Curie temperature by laser light irradiation, and the recording film in a portion irradiated with the laser light is magnetized in the direction of an external magnetic field. Then, recording and erasing are performed (thermomagnetic recording). Reproduction is performed by irradiating a laser beam of lower intensity than the laser beam intensity at the time of recording / erasing, and detecting the situation where the polarization plane of reflected light or transmitted light rotates according to the recording state (magnetization direction) of the recording film. Do.

従来オーバーライト動作を行う方法として提案されて
いるものには、(a)レーザ光を照射して記録膜の温度
を局部的に上昇させながら記録信号に応じて向きの変調
された外部磁界で熱磁気記録する方法あるいは、(b)
第7図に示すように互いに交換結合している第1磁性膜
71と第2磁性膜72とからなる複合記録膜(ここで第1磁
性膜のキュリー温度は第2磁性膜のキュリー温度より低
い)、互いに逆向きの磁界を与える二つの外部磁界印加
装置73,74及び記録信号に応じて強度変調されたレーザ
光75を用いて熱磁気記録する方法(例えば第34回応用物
理学関係連合講演会予稿集28p−2L−3,1987)、さら
に、(c)希土類−遷移金属系フェリ磁性膜の適当な組
成の膜(室温以上において磁区の安定性に磁壁エネルギ
ーが主体的役割を果たす組成)を記録膜として用い、記
録信号に応じてパルス幅変調されたレーザ光を照射して
その照射領域における磁壁エネルギーの変化を制御する
ことによって記録磁区の形成、消去を行う方法(例えば
第13回日本応用磁気学会学術講演概要集23aC−1,1989)
等がある。
Conventionally, a method for performing an overwrite operation includes (a) irradiating a laser beam to locally raise the temperature of a recording film while applying a heat to an external magnetic field whose direction is modulated according to a recording signal. Magnetic recording method or (b)
First magnetic films exchange-coupled to each other as shown in FIG.
A composite recording film (here, the Curie temperature of the first magnetic film is lower than the Curie temperature of the second magnetic film) composed of a composite magnetic film 71 and a second magnetic film 72, and two external magnetic field applying devices 73, which provide mutually opposite magnetic fields. 74 and a method of performing thermomagnetic recording using a laser beam 75 intensity-modulated according to a recording signal (for example, Proceedings of the 34th Joint Lecture Meeting on Applied Physics 28p-2L-3, 1987), and (c) A laser whose pulse width is modulated in accordance with a recording signal using a rare earth-transition metal ferrimagnetic film having an appropriate composition (composition in which domain wall energy plays a major role in the stability of magnetic domains at room temperature or higher) as a recording film. Method of forming and erasing recording domains by irradiating light and controlling the change in domain wall energy in the irradiated area (eg, 13th Annual Meeting of the Japan Society of Applied Magnetics 23aC-1, 1989)
Etc.

発明が解決しようとする課題 しかしながら、従来方法のうち第1の方法では外部磁
界印加装置と記録膜との間隔を数mm以上とると、メガヘ
ルツ領域の周波数では充分な交流磁界を印加し難くなる
ため両面構成の光磁気記録媒体には適用できない。ま
た、第2の方法では外部磁界印加装置が2つ必要であ
り、かつ、そのうちの1つは3KOe以上の強磁界を発生す
る必要があるため装置の大型化を招く欠点がある。さら
に、第3の方法では記録された磁区の安定性と消去動作
時の消去性の両立が困難であるという問題点を有してい
た。
However, in the first method of the related art, if the distance between the external magnetic field applying device and the recording film is set to several mm or more, it becomes difficult to apply a sufficient AC magnetic field at a frequency in the megahertz region. It cannot be applied to a magneto-optical recording medium having a double-sided configuration. Further, the second method requires two external magnetic field applying devices, and one of them needs to generate a strong magnetic field of 3 KOe or more, and thus has a disadvantage that the size of the device is increased. Further, the third method has a problem that it is difficult to achieve both the stability of the recorded magnetic domain and the erasability during the erasing operation.

本発明は上記問題点に鑑み、両面構成ができ、外部磁
界印加装置も不要で、しかも安定性,消去性に優れたオ
ーバーライト可能な光磁気記録媒体及びその記録方法を
提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an overwritable magneto-optical recording medium which can be double-sided, does not require an external magnetic field applying device, and has excellent stability and erasability, and a recording method thereof.

課題を解決するための手段 上記問題点を解決するために本発明の光磁気記録媒体
は、記録膜を光入射側から第1磁性膜,第2磁性膜,第
3磁性膜の3層の垂直磁化膜で構成し、第1磁性膜,第
2磁性膜はともにフェリ磁性であるのに対して第3磁性
膜はフェロ磁性であり、第1磁性膜のキュリー温度TC1
<第2磁性膜のキュリー温度TC2<第3磁性膜のキュリ
ー温度TC3の関係を満足し、第2磁性膜は室温とキュリ
ー温度TC2との間であってTC1付近に補償温度を有する組
成であるのに対して第3磁性膜はTC1付近で2つの副格
子磁化の大きさが同等になる組成であり、各磁性膜はそ
れぞれの副格子磁化に基づき互いに交換結合していて、
室温付近における第1磁性膜と第2磁性膜との交換結合
力が第2磁性膜と第3磁性膜との交換結合力及び第1磁
性膜の保磁力より弱く設定されており、かつ室温付近に
おける第2磁性膜と第3磁性膜との交換結合力が第2磁
性膜の保磁力より強く設定されているという構成を備え
たものである。また、その記録方式は、外部磁界を必要
とせず、照射レーザ光の変調のみを行って記録膜の到達
温度を高,低2つのレベルに設定することによってオー
バーライトを行うものである。
Means for Solving the Problems In order to solve the above-mentioned problems, in the magneto-optical recording medium of the present invention, the recording film is formed by three perpendicular magnetic layers of a first magnetic film, a second magnetic film, and a third magnetic film from the light incident side. The first magnetic film and the second magnetic film are both ferrimagnetic, while the third magnetic film is ferromagnetic, and the Curie temperature T C1 of the first magnetic film is made of a magnetic film.
<The Curie temperature T C2 of the second magnetic film><The Curie temperature T C3 of the third magnetic film is satisfied, and the compensation temperature of the second magnetic film is between room temperature and the Curie temperature T C2 and near T C1. While the third magnetic film has a composition in which the magnitudes of the two sublattice magnetizations are equal in the vicinity of T C1 , each magnetic film is exchange-coupled to each other based on the respective sublattice magnetizations. ,
The exchange coupling force between the first magnetic film and the second magnetic film near room temperature is set to be weaker than the exchange coupling force between the second magnetic film and the third magnetic film and the coercive force of the first magnetic film, and near room temperature. The exchange coupling force between the second magnetic film and the third magnetic film is set to be stronger than the coercive force of the second magnetic film. Further, the recording method does not require an external magnetic field, and performs only the modulation of the irradiation laser beam to set the temperature reached by the recording film at two levels, high and low, thereby performing overwriting.

作用 本発明は、情報が記録され、その再生が行われるため
の第1磁性膜と第1磁性膜への記録を制御するための第
2磁性膜及び第2磁性膜の磁化状態を制御するための第
3磁性膜とからなる記録膜を用いた上記のような構成に
よって、レーザ光照射領域の記録膜の到達温度が高レベ
ルの時と低レベルの時とで、第1磁性膜のキュリー温度
TC1付近での第2磁性膜における副格子磁化の向きを第
3磁性膜からの交換結合力によって逆転させる動作とと
もに、その後の冷却過程において第2磁性膜の副格子磁
化の向きを交換結合力によって第1磁性膜に転写する動
作を行ってオーバーライトを実現できるものである。以
下、具体的に説明する。
The present invention provides a first magnetic film for recording and reproducing information, a second magnetic film for controlling recording on the first magnetic film, and controlling a magnetization state of the second magnetic film. With the above-described configuration using the recording film composed of the third magnetic film, the Curie temperature of the first magnetic film differs depending on whether the temperature reached by the recording film in the laser beam irradiation area is high or low.
In addition to the operation of reversing the direction of the sublattice magnetization in the second magnetic film near T C1 by the exchange coupling force from the third magnetic film, the direction of the sublattice magnetization of the second magnetic film is changed in the subsequent cooling process by the exchange coupling force. Thus, an operation of transferring to the first magnetic film can be performed to realize overwriting. Hereinafter, a specific description will be given.

まず、希土類−遷移金属系磁性膜の副格子磁化の配列
について説明する。希土類金属が軽希土類金属(4f電子
数が6以下のもの)の場合には、遷移金属と希土類金属
の副格子磁化が平行的に配列してフェロ磁性を示す一
方、重希土類金属(4f電子数が7以上のもの)の場合に
は、遷移金属と希土類金属の副格子磁化が反平行的に配
列してフェリ磁性を示す。また、重希土類−遷移金属系
磁性膜中に軽希土類金属を添加した場合には、軽希土類
金属は重希土類金属と共にその副格子磁化が遷移金属の
副格子磁化と反平行的に配列する。以上から、重希土類
−遷移金属系磁性膜(軽希土類金属を含有する場合を含
む)と軽希土類−遷移金属系磁性膜を積層した場合に
は、各磁性膜中の希土類金属と遷移金属の副格子磁化の
大小関係によって、交換結合力を介して2つの磁性膜中
の希土類金属(遷移金属についても)の副格子磁化が互
いに平行的に配列するかあるいは反平行的に配列するか
が決まることになる。
First, the arrangement of the sublattice magnetization of the rare earth-transition metal based magnetic film will be described. When the rare earth metal is a light rare earth metal (having a 4f electron number of 6 or less), the transition metal and the sublattice magnetization of the rare earth metal are arranged in parallel to exhibit ferromagnetism, while the heavy rare earth metal (4f electron number Is 7 or more), the sublattice magnetizations of the transition metal and the rare earth metal are arranged antiparallel to exhibit ferrimagnetism. When the light rare earth metal is added to the heavy rare earth-transition metal based magnetic film, the light rare earth metal and the heavy rare earth metal have their sublattice magnetization arranged antiparallel to the sublattice magnetization of the transition metal. From the above, when the heavy rare earth-transition metal based magnetic film (including the case where the light rare earth metal is contained) and the light rare earth-transition metal based magnetic film are laminated, the secondary of the rare earth metal and the transition metal in each magnetic film is obtained. The magnitude relationship between the lattice magnetizations determines whether the sub-lattice magnetizations of the rare earth metals (also for transition metals) in the two magnetic films are arranged parallel or antiparallel to each other via exchange coupling force. become.

次に、2つの磁性膜が交換結合している場合の各膜中
の副格子磁化の振舞いについて説明する。第1磁性膜と
第2磁性膜の同一種類の副格子磁化の向きが反対であっ
たとすると、向きを揃えようとする交換結合力が働く。
この交換結合力に基づく第1磁性膜から第2磁性膜へ働
く転写磁界He12は、 σw12/(2M2t2)−Hc2 と表され、第2磁性膜から第1磁性膜へ働く転写磁界He
21は、 σw12/(2M1t1)−Hc1 と表される。ここで、σw12は2つの磁性膜の界面の単
位面積当りの磁壁エネルギー,M1及びM2はそれぞれ第1
磁性膜及び第2磁性膜の飽和磁化t1及びt2はそれぞれ第
1磁性膜及び第2磁性膜の膜厚,Hc1及びHc2はそれぞれ
第1磁性膜及び第2磁性膜の保磁力である。従って、 σw12/(2M2t2)<Hc2 かつ σw12/(2M1t1)>Hc1 であれば、第1磁性膜中の副格子磁化は第2磁性膜中の
同一種類の副格子磁化の向きに揃うように反転すること
になる。
Next, the behavior of the sublattice magnetization in each film when the two magnetic films are exchange-coupled will be described. Assuming that the directions of the same type of sublattice magnetization of the first magnetic film and the second magnetic film are opposite, an exchange coupling force acts to align the directions.
The transfer magnetic field He 12 acting from the first magnetic film to the second magnetic film based on the exchange coupling force is expressed as σ w12 / (2M 2 t 2 ) −Hc 2 and acts from the second magnetic film to the first magnetic film. Transfer magnetic field He
21 is expressed as σ w12 / (2M 1 t 1 ) −Hc 1 . Here, σ w12 is the domain wall energy per unit area of the interface between the two magnetic films, and M 1 and M 2 are the first
The saturation magnetizations t 1 and t 2 of the magnetic film and the second magnetic film are the thicknesses of the first magnetic film and the second magnetic film, respectively, and Hc 1 and Hc 2 are the coercive forces of the first magnetic film and the second magnetic film, respectively. is there. Therefore, if σ w12 / (2M 2 t 2 ) <Hc 2 and σ w12 / (2M 1 t 1 )> Hc 1 , the sublattice magnetization in the first magnetic film is of the same type in the second magnetic film. Inversion is performed so as to be aligned with the direction of the sublattice magnetization.

さらに、全体の動作について説明する。第2図は3層
の磁性膜からなる記録膜を有する本発明の光磁気記録媒
体のオーバーライト動作を模式的に示したものである。
ここで、第1磁性膜中,第2磁性膜中及び第3磁性膜中
の実線及び破線の矢印はそれぞれ遷移金属及び希土類金
属の副格子磁化を表し、その長さは磁化の大小を、その
向きは磁化の向きを表している。また、斜線で示した部
分は磁壁の存在を表している。
Further, the overall operation will be described. FIG. 2 schematically shows an overwriting operation of the magneto-optical recording medium of the present invention having a recording film composed of three magnetic films.
Here, solid and dashed arrows in the first magnetic film, the second magnetic film, and the third magnetic film indicate the sublattice magnetizations of the transition metal and the rare earth metal, respectively, and the length indicates the magnitude of the magnetization. The direction indicates the direction of magnetization. The hatched portion indicates the existence of the domain wall.

室温付近における第1磁性膜と第2磁性膜との交換結
合力が第2磁性膜と第3磁性膜との交換結合力より弱く
設定されているので、室温付近において各膜の保磁力が σw12/(2M1t1)<Hc1 …(1) かつ σw12/(2M2t2)<Hc2 …(2) かつ σw23/(2M2t2)>Hc2±σw12/(2M2t2) …(3) かつ σw23/(2M3t3)<Hc3 …(4) という関係を満足すれば、各副格子磁化の配列を初期状
態(A)あるいは(F)のように設定することができ
る。ここで、σw12及びσw23はそれぞれ第1磁性膜と第
2磁性膜の界面及び第2磁性膜と第3磁性膜の界面の単
位面積当りの磁壁エネルギー,M1及びM2及びM3はそれぞ
れ第1磁性膜及び第2磁性膜及び第3磁性膜の飽和磁
化,t1及びt2及びt3はそれぞれ第1磁性膜及び第2磁性
膜及び第3磁性膜の膜厚,Hc1及びHc2及びHc3はそれぞれ
第1磁性膜及び第2磁性膜及び第3磁性膜の保磁力であ
る。また、希土類−遷移金属系フェリ磁性膜である第2
磁性膜と希土類−遷移金属系フェロ磁性膜である第3磁
性膜の副格子磁化と保磁力の温度依存性の模式図をそれ
ぞれ第3図と第4図に示す。第2磁性膜,第3磁性膜と
もに室温付近では希土類金属の副格子磁化が優勢である
一方、高温では遷移金属の副格子磁化が優勢となる。保
磁力については、フェリ磁性膜である第2磁性膜の場合
には2つの副格子磁化の大きさがほぼ同一となる補償温
度で極大となるのに対し、フェロ磁性膜である第3磁性
膜の場合には温度に対して単調減少となる。
Since the exchange coupling force between the first magnetic film and the second magnetic film near room temperature is set to be weaker than the exchange coupling force between the second magnetic film and the third magnetic film, the coercive force of each film near room temperature is σ. w12 / (2M 1 t 1) <Hc 1 ... (1) and σw 12 / (2M 2 t 2 ) <H c2 ... (2) cutlet σ w23 / (2M 2 t 2 )> Hc 2 ± σ w12 / ( 2M 2 t 2 ) (3) and σ w23 / (2M 3 t 3 ) <Hc 3 (4) If the relationship of (4) is satisfied, the arrangement of each sublattice magnetization is changed to the initial state (A) or (F). It can be set as follows. Here, σ w12 and σ w23 are domain wall energies per unit area of the interface between the first magnetic film and the second magnetic film and the interface between the second magnetic film and the third magnetic film, respectively, and M 1, M 2 and M 3 are the first magnetic layer and the second magnetic layer and the third saturation magnetization of the magnetic film, t 1 and t 2 and t 3 the first magnetic layer and the second magnetic layer and the thickness of the third magnetic layer each respectively, Hc 1 and Hc 2 and Hc 3 are the coercive forces of the first magnetic film, the second magnetic film, and the third magnetic film, respectively. Further, a second rare-earth-transition metal ferrimagnetic film is used.
FIGS. 3 and 4 are schematic diagrams showing the temperature dependence of the sublattice magnetization and the coercive force of the magnetic film and the third magnetic film, which is a rare earth-transition metal ferromagnetic film, respectively. In both the second magnetic film and the third magnetic film, the sub-lattice magnetization of the rare earth metal is dominant near room temperature, while the sub-lattice magnetization of the transition metal is dominant at high temperatures. The coercive force is maximized at the compensation temperature at which the two sublattice magnetizations are substantially equal in the case of the second magnetic film, which is a ferrimagnetic film, whereas the third magnetic film, which is a ferromagnetic film, is obtained. In the case of, it decreases monotonously with temperature.

まず、照射レーザ光の変調によって記録膜の到達温度
を高レベルにした場合(すなわち、レーザパワーを大き
くするかパルス幅を長くする)には、レーザ光照射領域
における第2磁性膜の平均温度は第1磁性膜のキュリー
温度TC1を超えて第2磁性膜のキュリー温度TC2前後とな
る(C)。冷却過程において σw23/(2M2t2)>Hc2 の関係を満足し得るので、TC2前後における第2磁性膜
中及び第3磁性膜中の優勢な副格子磁化が遷移金属の副
格子磁化であることから、この領域の第2磁性膜の遷移
金属の副格子磁化は第3磁性膜の遷移金属の副格子磁化
の向きに揃うように反転する(D)。さらに冷却が進ん
でレーザ光照射領域における第1磁性膜及び第2磁性膜
の平均温度がTC1付近になった時には、第1磁性膜の磁
化も生じてくるが、第2磁性膜の補償温度がTC1付近に
設定されているのでHC2は大きな値をとり、 σw12/(2M1t1)>Hc1 かつ σw12/(2M2t2)<Hc2±σw23/(2M2t2) の関係を満足し得るので、この領域の第1磁性膜の各副
格子磁化が第2磁性膜の同一種類の副格子磁化の向きに
揃うように反転する結果、第1磁性膜中に記録磁区がで
きることになる(E)。そのまま室温まで冷却すると、
(1)式〜(4)式の関係から第1磁性膜の副格子磁化
の向きはそのまま固定する一方、室温付近における第2
磁性膜中及び第3磁性膜中の優勢な副格子磁化が希土類
金属の副格子磁化であることから、第2磁性膜の希土類
金属の副格子磁化は第3磁性膜の希土類金属の副格子磁
化の向きに揃うように反転する(F)。
First, when the temperature reached by the recording film is raised to a high level by modulation of the irradiation laser light (that is, the laser power is increased or the pulse width is increased), the average temperature of the second magnetic film in the laser light irradiation region is The temperature exceeds the Curie temperature T C1 of the first magnetic film and reaches around the Curie temperature T C2 of the second magnetic film (C). Since the cooling σ w23 / (2M 2 t 2 ) in the process> may satisfy the relationship of Hc 2, T C2 sublattice dominant sublattice magnetization transition metal of the second magnetic film and the third in the magnetic film before and after Because of the magnetization, the sublattice magnetization of the transition metal of the second magnetic film in this region is reversed so as to be aligned with the direction of the sublattice magnetization of the transition metal of the third magnetic film (D). When the cooling proceeds further and the average temperature of the first magnetic film and the second magnetic film in the laser beam irradiation area becomes near T C1 , the magnetization of the first magnetic film also occurs, but the compensation temperature of the second magnetic film is increased. Is set near T C1 , HC 2 takes a large value, σ w12 / (2M 1 t 1 )> Hc 1 and σ w12 / (2M 2 t 2 ) <Hc 2 ± σ w23 / (2M 2 t 2 ), the respective sub-lattice magnetizations of the first magnetic film in this region are reversed so as to be aligned with the same type of sub-lattice magnetization of the second magnetic film. (E). After cooling to room temperature,
From the relations of the expressions (1) to (4), the direction of the sublattice magnetization of the first magnetic film is fixed as it is, while the direction of the second lattice around the room temperature is fixed.
Since the predominant sublattice magnetization in the magnetic film and the third magnetic film is the sublattice magnetization of the rare earth metal, the sublattice magnetization of the rare earth metal of the second magnetic film is the sublattice magnetization of the rare earth metal of the third magnetic film. (F).

さらに(F)の状態からレーザ光を照射して改めて高
レベルに加熱しても、(C)の状態から前述の過程と同
じ過程をたどり(F)の状態に戻る。
Further, even if the laser beam is irradiated from the state of (F) and heated again to a high level, the state is returned from the state of (C) to the state of (F) by following the same process as that described above.

次に、(F)状態において照射レーザ光の変調によっ
て記録膜の到達温度を低レベルにした場合(すなわち、
レーザパワーを小さくするかパルス幅を短くする)に
は、レーザ光照射領域における第1磁性膜及び第2磁性
膜の平均温度はTC1前後となる。第2磁性膜の補償温度
がTC1付近に設定されているので、この昇温過程におい
て第2磁性膜の保磁力Hc2は増大する結果、 σw12/(2M2t2)<Hc2±σw23/(2M2t2) かつ σw23/(2M2t2)<Hc2±σw12/(2M2t2) となり、第2磁性膜の副格子磁化の向きは室温付近にお
ける向きのままに保たれている(G)。冷却過程におい
て σw12/(2M1t1)>Hc1 かつ σw12/(2M2t2)<Hc2±σw23/(2M2t2) の関係を満足し得るので、この領域の第1磁性膜の各副
格子磁化が第2磁性膜の同一種類の副格子磁化の向きに
揃うように反転する結果、(F)状態で第1磁性膜中に
存在していた記録磁区が消去されることになる(H)。
その後そのまま室温まで冷却して初期状態(A)に戻
る。
Next, when the temperature reached by the recording film is lowered to a low level by the modulation of the irradiation laser light in the state (F) (that is,
In order to reduce the laser power or shorten the pulse width), the average temperature of the first magnetic film and the second magnetic film in the laser light irradiation region is around T C1 . Since the compensation temperature of the second magnetic film is set in the vicinity of T C1 , the coercive force Hc 2 of the second magnetic film increases in the course of this temperature increase, resulting in σ w12 / (2M 2 t 2 ) <Hc 2 ± σ w23 / (2M 2 t 2 ) and σ w23 / (2M 2 t 2 ) <Hc 2 ± σ w12 / (2M 2 t 2 ), and the direction of the sublattice magnetization of the second magnetic film is around room temperature. (G). In the cooling process, the relationship of σ w12 / (2M 1 t 1 )> Hc 1 and σ w12 / (2M 2 t 2 ) <Hc 2 ± σ w23 / (2M 2 t 2 ) can be satisfied. As a result of reversing each sublattice magnetization of one magnetic film so as to be aligned with the same type of sublattice magnetization of the second magnetic film, the recording magnetic domain existing in the first magnetic film in the state (F) is erased. (H).
Then, it is cooled to room temperature and returns to the initial state (A).

さらに(A)の状態からレーザ光を照射して改めて低
レベルに加熱しても、(G)の状態から前述の過程と同
じ過程をたどり(A)の状態に戻る。
Further, even if the laser light is irradiated again from the state of (A) and heated to a low level again, the state of (G) returns to the state of (A) by following the same process as the above-described process.

以上説明した4つの過程を繰り返すことによってオー
バーライト動作が可能となり、従来の交換結合している
2つの磁性膜を記録膜として用いたオーバーライト方法
の欠点である外部磁界印加装置が2つ必要であるという
問題点を解決することができる。
By repeating the above-described four steps, an overwrite operation can be performed, and two external magnetic field applying devices which are disadvantages of the conventional overwrite method using two exchange-coupled magnetic films as recording films are required. The problem that there is can be solved.

実施例 以下本発明の1実施例の光磁気記録媒体及びその記録
方式について、図面を参照しながら説明する。
Embodiment A magneto-optical recording medium according to an embodiment of the present invention and a recording method thereof will be described below with reference to the drawings.

第1図は、本発明の1実施例における光磁気記録媒体
の構成を示すものである。第1図に於いて、11はポリカ
ーボネイト樹脂からなる基板、12及び16はZnS膜からな
る保護膜、13は室温付近において大きな保磁力を有する
TbFe膜からなる第1磁性膜、14は第1磁性膜のキュリー
温度TC1付近に補償温度を有するGdTbFe膜からなる第2
磁性膜、15はTC1付近で希土類金属副格子磁化と遷移金
属副格子磁化の大きさが同等となる組成であるSmFeCo膜
からなる第3磁性膜であり、第1磁性膜13及び第2磁性
膜14及び第3磁性膜15から記録膜が構成されている。こ
こで基板11上の各膜はスパッタリング法により形成し、
各膜厚は保護膜12及び16を80nm、第1磁性膜13を60nm、
第2磁性膜14及び第3磁性膜15を70nmと設定する。ま
た、第1磁性膜13のキュリー温度TC1を120℃、第2磁性
膜14のキュリー温度TC2を200℃、第3磁性膜15のキュリ
ー温度TC3を250℃に設定する。
FIG. 1 shows the configuration of a magneto-optical recording medium according to one embodiment of the present invention. In FIG. 1, 11 is a substrate made of a polycarbonate resin, 12 and 16 are protective films made of a ZnS film, and 13 has a large coercive force near room temperature.
A first magnetic film 14 made of a TbFe film, and a second magnetic film 14 made of a GdTbFe film having a compensation temperature near the Curie temperature T C1 of the first magnetic film.
Magnetic film, 15 is a third magnetic film comprising a SmFeCo film size of the transition metal sublattice magnetization and the rare earth metal sublattice magnetization is composition comprising the same in the vicinity of T C1, the first magnetic layer 13 and the second magnetic The recording film is composed of the film 14 and the third magnetic film 15. Here, each film on the substrate 11 is formed by a sputtering method,
The thicknesses of the protective films 12 and 16 are 80 nm, the thickness of the first magnetic film 13 is 60 nm,
The second magnetic film 14 and the third magnetic film 15 are set to 70 nm. The Curie temperature T C1 of the first magnetic film 13 is set to 120 ° C., the Curie temperature T C2 of the second magnetic film 14 is set to 200 ° C., and the Curie temperature T C3 of the third magnetic film 15 is set to 250 ° C.

以上のように構成された光磁気記録媒体を第2図にお
ける(A)の状態に着磁後、線速度6m/secで移動させ、
第5図に示すように強度変調されたレーザ光を照射す
る。9mWのレーザ光を照射している部分(a)では記録
膜の到達温度が高レベルとなり記録磁区の形成が行わ
れ、5mWのレーザ光を照射している部分(b)では記録
膜の到達温度が低レベルとなって記録磁区の消去が行わ
れるという安定したオーバーライト動作が実現できるこ
とになる。
After magnetizing the magneto-optical recording medium configured as described above to the state (A) in FIG. 2, it was moved at a linear velocity of 6 m / sec.
As shown in FIG. 5, an intensity-modulated laser beam is irradiated. In the part irradiated with 9 mW laser light (a), the temperature reached by the recording film is at a high level, and a recording magnetic domain is formed. In the part irradiated with 5 mW laser light (b), the temperature reached by the recording film Becomes low level and the recording magnetic domain is erased, thereby achieving a stable overwrite operation.

以上のように本発明によれば、簡単な構成で安定性,
消去性に優れたオーバーライトが可能となる。
As described above, according to the present invention, the stability and the simple configuration are improved.
Overwriting with excellent erasability becomes possible.

なお、本実施例の光磁気記録媒体では、基板11として
ポリカーボネイト、保護膜12及び16としてZnS膜、第1
磁性膜13としてTbFe膜、第2磁性膜14としてGdTbFe膜、
第3磁性膜15としてSmFeCo膜を用いたが、基板11は他の
プラスチックあるいはガラス、保護膜12及び16はTaO2
の酸化物の膜あるいはZnSe等の他のカルコゲン化物の膜
あるいはSiN等の窒化物の膜あるいはそれらの混合物の
膜、互いに交換結合している3つの磁性膜については、
第1磁性膜13は室温付近において大きな保磁力を有する
他の希土類−遷移金属系フェリ磁性膜あるいは他のフェ
リ磁性材料の垂直磁化膜、第2磁性膜14は第1磁性膜の
キュリー温度TC1付近に補償温度を有する他の希土類−
遷移金属系フェリ磁性膜あるいは他のフェリ磁性材料の
垂直磁化膜であって、TC1より高いキュリー温度TC2を有
するもの、第3磁性膜15はTC1付近で2つの種類の副格
子磁化の大きさが同等となる組成である他の希土類−遷
移金属系フェロ磁性膜(希土類金属としてSm,Nd,Pr等の
軽希土類金属を単独あるいは複合して含むもの)あるい
は他のフェロ磁性材料の垂直磁化膜であって、TC2より
高いキュリー温度TC3を有するものを用いてもよい。
In the magneto-optical recording medium of this embodiment, the substrate 11 is made of polycarbonate, the protective films 12 and 16 are made of a ZnS film,
A TbFe film as the magnetic film 13, a GdTbFe film as the second magnetic film 14,
Although the SmFeCo film was used as the third magnetic film 15, the substrate 11 was made of another plastic or glass, and the protective films 12 and 16 were made of an oxide film such as TaO 2 or another chalcogenide film such as ZnSe or SiN. For a nitride film, a film of a mixture thereof, and three magnetic films exchange-coupled to each other,
The first magnetic film 13 is a perpendicular magnetization film of another rare earth-transition metal based ferrimagnetic film or another ferrimagnetic material having a large coercive force near room temperature, and the second magnetic film 14 is a Curie temperature T C1 of the first magnetic film. Other rare earths with compensation temperature near
A transition metal ferrimagnetic film or a perpendicular magnetization film of another ferrimagnetic material having a Curie temperature T C2 higher than T C1 , and a third magnetic film 15 having two types of sublattice magnetization near T C1 . Perpendicular to other rare earth-transition metal ferromagnetic films (composed of light rare earth metals such as Sm, Nd, Pr, etc., alone or in combination) or other ferromagnetic materials having the same composition A magnetic film having a Curie temperature T C3 higher than T C2 may be used.

さらに、第3磁性膜の高温における垂直性及び磁化方
向の安定性を向上させて本発明の光磁気記録媒体のオー
バーライト動作をより安定したものにするために、第6
図に示すように新たに第3磁性膜と交換結合している第
4磁性膜を設けると効果的である。この第4磁性膜とし
ては、室温以上において第3磁性膜より大きな保磁力を
有し、TC3以上のキュリー温度TC4を有することが必要で
あるため、CoCr等の遷移金属系フェロ磁性膜や室温付近
からTC3までの温度範囲において遷移金属副格子磁化が
優勢である希土類−遷移金属系フェリ磁性膜あるいはT
C3付近における第3磁性膜の優勢な副格子磁化と同一種
類の副格子磁化が室温付近からTC3までの温度範囲にお
いて優勢である他のフェロ磁性材料またはフェリ磁性材
料の垂直磁化膜が適している。
Further, in order to improve the perpendicularity and the stability of the magnetization direction of the third magnetic film at a high temperature and to make the overwriting operation of the magneto-optical recording medium of the present invention more stable,
It is effective to newly provide a fourth magnetic film exchange-coupled with the third magnetic film as shown in the figure. The fourth magnetic film needs to have a larger coercive force at room temperature or higher than the third magnetic film and have a Curie temperature T C4 equal to or higher than T C3 , so that a transition metal ferromagnetic film such as CoCr or the like can be used. Rare earth-transition metal based ferrimagnetic film or T in which transition metal sublattice magnetization is dominant in the temperature range from around room temperature to TC3
Third and perpendicular magnetization film of predominant sublattice magnetization of the same type of other ferromagnetic material or ferrimagnetic material which is a dominant sublattice magnetization in a temperature range from about room temperature to T C3 of the magnetic film is suitable in the vicinity C3 I have.

また、本実施例の記録方式では照射レーザ光の変調法
として強度のみの変調を用いたが、パルス幅の変調のみ
あるいはパルス幅変調と強度変調を組み合わせて用いて
高レベル時と低レベル時との記録膜の温度差を設けても
よい。
Further, in the recording method of the present embodiment, modulation of only intensity is used as a modulation method of the irradiation laser light, but only at the time of high level and at the time of low level using only pulse width modulation or a combination of pulse width modulation and intensity modulation. May be provided.

発明の効果 以上のように本発明は、情報が記録され、その再生が
行われるための第1磁性膜と第1磁性膜への記録を制御
するための第2磁性膜及び第2磁性膜の磁化状態を制御
するための第3磁性膜とからなる記録膜を用いた構成の
光磁気記録媒体に、強度変調あるいはパルス幅変調した
レーザ光を照射することによって、レーザ光照射領域の
記録膜の到達温度が高レベルの時と低レベルの時とで、
第1磁性膜のキュリー温度TC1付近での第2磁性膜にお
ける副格子磁化の向きを第3磁性膜からの交換結合力に
よって逆転させる動作とともに、その後の冷却過程にお
いて第2磁性膜の副格子磁化の向きを交換結合力によっ
て第1磁性膜に転写する動作を行って、簡単な構成で安
定性,消去性に優れたオーバーライトを実現できるもの
である。
As described above, according to the present invention, the first magnetic film for recording and reproducing information, the second magnetic film for controlling recording on the first magnetic film, and the second magnetic film By irradiating an intensity-modulated or pulse-width-modulated laser beam to a magneto-optical recording medium using a recording film composed of a third magnetic film for controlling the magnetization state, When the reached temperature is high level and low level,
The operation of reversing the direction of the sublattice magnetization in the second magnetic film near the Curie temperature T C1 of the first magnetic film by the exchange coupling force from the third magnetic film, and in the subsequent cooling process, the sublattice of the second magnetic film By performing an operation of transferring the direction of magnetization to the first magnetic film by the exchange coupling force, overwriting with excellent stability and erasability can be realized with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例における光磁気記録媒体の構
成図、第2図は本発明の光磁気記録媒体のオーバーライ
ト動作の模式図、第3図は本発明の1実施例における光
磁気記録媒体の第2磁性膜である希土類−遷移金属系フ
ェリ磁性膜の副格子磁化と保磁力の温度依存性の模式
図、第4図は本発明の1実施例における光磁気記録媒体
の第3磁性膜である希土類−遷移金属系フェロ磁性膜の
副格子磁化と保磁力の温度依存性の模式図、第5図は本
発明の1実施例における照射レーザ光の駆動状態を示す
図、第6図は本発明の他の実施例における光磁気記録媒
体の構成図、第7図は従来の1つのオーバーライト方法
の構成図である。 11……基板、12……保護膜、13……第1磁性膜、14……
第2磁性膜、15……第3磁性膜、16……保護膜61……基
板、62……保護膜、63……第1磁性膜、64……第2磁性
膜、65……第3磁性膜、66……第4磁性膜、67……保護
膜。
FIG. 1 is a structural view of a magneto-optical recording medium according to one embodiment of the present invention, FIG. 2 is a schematic diagram of an overwrite operation of the magneto-optical recording medium of the present invention, and FIG. FIG. 4 is a schematic diagram of the temperature dependence of sublattice magnetization and coercive force of a rare earth-transition metal based ferrimagnetic film as a second magnetic film of a magnetic recording medium. FIG. 4 is a diagram of a magneto-optical recording medium according to an embodiment of the present invention. FIG. 5 is a schematic view showing the temperature dependence of the sublattice magnetization and coercive force of a rare earth-transition metal ferromagnetic film which is a three-magnetic film. FIG. 5 is a view showing a driving state of irradiation laser light in one embodiment of the present invention. FIG. 6 is a configuration diagram of a magneto-optical recording medium according to another embodiment of the present invention, and FIG. 7 is a configuration diagram of one conventional overwriting method. 11 ... substrate, 12 ... protective film, 13 ... first magnetic film, 14 ...
Second magnetic film, 15 Third magnetic film, 16 Protective film 61 Substrate, 62 Protective film, 63 First magnetic film, 64 Second magnetic film, 65 Third Magnetic film, 66: fourth magnetic film, 67: protective film.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−205835(JP,A) 特開 平2−24801(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 11/105 506 G11B 11/105 586 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-205835 (JP, A) JP-A-2-24801 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G11B 11/105 506 G11B 11/105 586

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】記録膜を光入射側から第1磁性膜、第2磁
性膜、第3磁性膜の3層の垂直磁化膜で構成し、第1磁
性膜のキュリー温度TC1<第2磁性膜のキュリー温度TC2
<第3磁性膜のキュリー温度TC3の関係を満足し、第1
磁性膜、第2磁性膜はともにフェリ磁性膜があるのに対
して第3磁性膜はフェロ磁性膜であり、第2磁性膜は室
温とキュリー温度TC2の間であってTC1付近に補償温度を
有する組成の磁性膜があるのに対して第3磁性膜はTC1
付近で2つの副格子磁化の大きさが同等になる組成を有
する磁性膜であり、各磁性膜はそれぞれの副格子磁化に
基づき互いに交換結合していて、室温付近における第1
磁性膜と第2磁性膜との交換結合力が第2磁性膜と第3
磁性膜との交換結合力及び第1磁性膜の保磁力より弱く
設定されており、かつ室温付近における第2磁性膜と第
3磁性膜との交換結合力が第2磁性膜の保磁力より強く
設定されていることを特徴とする光磁気記録媒体。
The recording film is composed of a first magnetic film, a second magnetic film, and a third magnetic film in order from the light incident side. The Curie temperature of the first magnetic film T C1 <second magnetic film Curie temperature of membrane T C2
<Satisfies the relationship of the Curie temperature T C3 of the third magnetic film,
The magnetic film and the second magnetic film both have a ferrimagnetic film, whereas the third magnetic film is a ferromagnetic film, and the second magnetic film is between room temperature and the Curie temperature T C2 and is compensated near T C1. While there is a magnetic film having a composition having a temperature, the third magnetic film has T C1
A magnetic film having a composition in which the magnitudes of the two sublattice magnetizations become equal in the vicinity of each other, and the respective magnetic films are exchange-coupled to each other based on the respective sublattice magnetizations.
The exchange coupling force between the magnetic film and the second magnetic film is higher than the third magnetic film and the third magnetic film.
The exchange coupling force with the magnetic film and the coercive force of the first magnetic film are set to be weaker, and the exchange coupling force between the second magnetic film and the third magnetic film near room temperature is stronger than the coercive force of the second magnetic film. A magneto-optical recording medium characterized by being set.
【請求項2】第1磁性膜及び第2磁性膜は希土類−遷移
金属系フェリ磁性膜であり、第3磁性膜は希土類−遷移
金属系フェロ磁性膜であることを特徴とする請求項1記
載の光磁気記録媒体。
2. The method according to claim 1, wherein the first magnetic film and the second magnetic film are a rare earth-transition metal ferrimagnetic film, and the third magnetic film is a rare earth-transition metal ferromagnetic film. Magneto-optical recording medium.
【請求項3】希土類−遷移金属系フェリ磁性膜は希土類
金属としてTb,Gd,Dyの重希土類金属のみかあるいは重希
土類金属とSm,Nd,Prの軽希土類金属の双方を含み、希土
類−遷移金属系フェロ磁性膜は希土類金属として軽希土
類金属のみを含むことを特徴とする請求項2記載の光磁
気記録媒体。
3. The rare earth-transition metal ferrimagnetic film contains only rare rare earth metals such as Tb, Gd, and Dy as rare earth metals or both heavy rare earth metals and light rare earth metals such as Sm, Nd, and Pr. 3. The magneto-optical recording medium according to claim 2, wherein the metal-based ferromagnetic film contains only a light rare earth metal as the rare earth metal.
【請求項4】記録膜を光入射側から第1磁性膜、第2磁
性膜、第3磁性膜、第4磁性膜の4層の垂直磁化膜で構
成し、第1磁性膜のキュリー温度TC1<第2磁性膜のキ
ュリー温度TC2<第3磁性膜のキュリー温度TC3≦第4磁
性膜のキュリー温度TC4の関係を満足し、第1磁性膜、
第2磁性膜はともにフェリ磁性膜であるのに対して第3
磁性膜はフェロ磁性膜であり、第2磁性膜は室温とTC2
の間であってTC1付近に補償温度を有する組成の磁性膜
があるのに対して第3磁性膜はTC1付近で2つの副格子
磁化の大きさが同等になる組成の磁性膜であり、第4磁
性膜はTC3付近における第3磁性膜の優勢な副格子磁化
と同一種類の副格子磁化が室温付近からTC3までの温度
範囲において優勢であるフェロ磁性膜またはフェリ磁性
膜であり、各磁性膜はそれぞれの副格子磁化に基づき互
いに交換結合していて、室温付近における第1磁性膜と
第2磁性膜との交換結合力が第2磁性膜と第3磁性膜と
の交換結合力及び第1磁性膜の保磁力より弱く設定され
ており、かつ室温付近における第2磁性膜と第3磁性膜
との交換結合力が第2磁性膜の保磁力より強く設定され
ていることを特徴とする光磁気記録媒体。
4. The recording film is composed of four perpendicular magnetic films of a first magnetic film, a second magnetic film, a third magnetic film, and a fourth magnetic film from the light incident side, and has a Curie temperature T of the first magnetic film. C1 <Curie temperature T C2 of second magnetic film <Curie temperature T C3 of third magnetic film ≦ Curie temperature T C4 of fourth magnetic film
While the second magnetic film is a ferrimagnetic film,
The magnetic film is a ferromagnetic film, and the second magnetic film is room temperature and T C2
Be a third magnetic film magnetic film having a composition magnitudes of the two sub-lattice magnetization is equal around T C1 whereas there is a magnetic film having a composition having a compensation temperature in the vicinity of T C1 be between the fourth magnetic layer is an ferromagnetic film or ferrimagnetic film predominant in the temperature range from the third magnetic film predominant sublattice magnetization of the same type of sublattice magnetization near room temperature in the vicinity of T C3 to T C3 The respective magnetic films are exchange-coupled to each other based on their respective sublattice magnetizations, and the exchange coupling force between the first magnetic film and the second magnetic film near room temperature indicates the exchange coupling between the second magnetic film and the third magnetic film. And the exchange coupling force between the second magnetic film and the third magnetic film near room temperature is set to be stronger than the coercive force of the second magnetic film. Characteristic magneto-optical recording medium.
【請求項5】第1磁性膜及び第2磁性膜は希土類−遷移
金属系フェリ磁性膜であり、第3磁性膜は希土類−遷移
金属系フェロ磁性膜であり、第4磁性膜はCoCrの遷移金
属系フェロ磁性膜あるいは室温付近からTC3までの温度
範囲において遷移金属副格子磁化が優勢である希土類−
遷移金属系フェリ磁性膜であることを特徴とする請求項
4記載の光磁気記録媒体。
5. The first magnetic film and the second magnetic film are rare earth-transition metal ferrimagnetic films, the third magnetic film is a rare earth-transition metal ferromagnetic film, and the fourth magnetic film is a transition of CoCr. Metal-based ferromagnetic films or rare earths in which transition metal sublattice magnetization is dominant in the temperature range from room temperature to TC3-
5. The magneto-optical recording medium according to claim 4, wherein the magneto-optical recording medium is a transition metal ferrimagnetic film.
【請求項6】希土類−遷移金属系フェリ磁性膜は希土類
金属としてTb,Gd,Dyの重希土類金属のみかあるいは重希
土類金属とSm,Nd,Prの軽希土類金属の双方を含み、希土
類−遷移金属系フェロ磁性膜は希土類金属として軽希土
類金属のみを含むことを特徴とする請求項5記載の光磁
気記録媒体。
6. The rare earth-transition metal ferrimagnetic film contains only rare rare earth metals such as Tb, Gd and Dy or both heavy rare earth metals and light rare earth metals such as Sm, Nd and Pr as rare earth metals. 6. The magneto-optical recording medium according to claim 5, wherein the metal ferromagnetic film contains only a light rare earth metal as the rare earth metal.
【請求項7】請求項1あるいは請求項4に記載の光磁気
記録媒体に、外部磁界を用いず、照射レーザ光の変調の
みを行って記録膜の到達温度を高,低2つのレベルに設
定することによってオーバーライトすることを特徴とす
る光磁気記録媒体の記録方法。
7. The temperature reached by a recording film is set to two levels, high and low, by modulating only the irradiation laser light without using an external magnetic field on the magneto-optical recording medium according to claim 1 or 4. Recording method for a magneto-optical recording medium, characterized in that overwriting is performed.
JP02288682A 1990-10-26 1990-10-26 Magneto-optical recording medium and recording method thereof Expired - Fee Related JP3089659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02288682A JP3089659B2 (en) 1990-10-26 1990-10-26 Magneto-optical recording medium and recording method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02288682A JP3089659B2 (en) 1990-10-26 1990-10-26 Magneto-optical recording medium and recording method thereof

Publications (2)

Publication Number Publication Date
JPH04162232A JPH04162232A (en) 1992-06-05
JP3089659B2 true JP3089659B2 (en) 2000-09-18

Family

ID=17733326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02288682A Expired - Fee Related JP3089659B2 (en) 1990-10-26 1990-10-26 Magneto-optical recording medium and recording method thereof

Country Status (1)

Country Link
JP (1) JP3089659B2 (en)

Also Published As

Publication number Publication date
JPH04162232A (en) 1992-06-05

Similar Documents

Publication Publication Date Title
EP0257530B2 (en) Thermo-magnetic recording method applying power modulated laser on magnetically coupled double layer structure of perpendicular anisotropy film
US5175714A (en) Method of magneto-optically recording/erasing information and magneto-optical information storage medium including recording and bias layers satisfying certain conditions
JPH06162589A (en) Magneto-optical recording medium and magneto-optical recording method
KR960011791B1 (en) Thermomagnetic recording method
JPH0535499B2 (en)
JP2503708B2 (en) Magneto-optical recording medium and device
JP3089659B2 (en) Magneto-optical recording medium and recording method thereof
JP2829970B2 (en) Thermomagnetic recording medium
JP3092363B2 (en) Magneto-optical recording medium
JP2828993B2 (en) Magneto-optical recording medium and information recording method using the same
KR930010474B1 (en) Manufacturing method of optical magnetic materials
JP2809224B2 (en) Thermomagnetic recording device
JP3162168B2 (en) Magneto-optical recording medium
JP3613267B2 (en) Magneto-optical recording medium
JPH07161082A (en) Magneto-optical recording medium and magneto-optical recording method
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2828092B2 (en) Thermomagnetic recording medium and thermomagnetic recording method
JP2531327B2 (en) Magneto-optical recording medium
EP0780841A2 (en) Magnetooptical recording medium using a magnetic phase transformation material and a recording method using the medium
JPH06309710A (en) Magneto-optical recording medium
JPH06309708A (en) Magneto-optical recording medium
JPH04366442A (en) Magneto optical recording medium and its recording method
JPS63237242A (en) Magneto-optical recording system
JPH04141844A (en) Magneto-optical recording medium and recording system thereof
JPH05347038A (en) Medium and method for magneto-optical recording

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees