JPS63265475A - Manufacture of superconducting electronic circuit - Google Patents

Manufacture of superconducting electronic circuit

Info

Publication number
JPS63265475A
JPS63265475A JP62100951A JP10095187A JPS63265475A JP S63265475 A JPS63265475 A JP S63265475A JP 62100951 A JP62100951 A JP 62100951A JP 10095187 A JP10095187 A JP 10095187A JP S63265475 A JPS63265475 A JP S63265475A
Authority
JP
Japan
Prior art keywords
superconducting
ceramic
electronic circuit
energy beam
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62100951A
Other languages
Japanese (ja)
Inventor
Koichiro Otori
紘一郎 鳳
Tsunekimi Oohira
大平 恒公
Takeshi Nozaki
健 野崎
Akira Negishi
明 根岸
Takeo Ozawa
小沢 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62100951A priority Critical patent/JPS63265475A/en
Publication of JPS63265475A publication Critical patent/JPS63265475A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a superconducting electronic circuit with a high transition temperature by a method wherein an energy beam is applied to the required region of a ceramics whose superconducting characteristics are varied in accordance with the composition and the ceramic is partially modified to form an electronic circuit. CONSTITUTION:An energy beam is applied to the required region of a ceramic whose superconducting characteristics are varied in accordance with the composition and the ceramic is partially modified to form an electronic circuit. As the superconducting characteristics of the ceramic are varied in accordance with the types and ratios of component elements, the superconducting transition temperature of the required region of the ceramic can be controlled by doping the region with the component elements or other elements. Therefore, the elements are so added as to draw a required pattern to make the pattern part superconducting or non-superconducting. With this constitution, as a wiring resistance R is practically zero in the integrated circuit, a delay in the wiring of the integrated circuit can be significantly reduced and a high speed operation can be realized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超伝導電子回路の作成法に関し、特に超伝導転
移温度の高い酸化物超伝導体を用いた超伝導電子回路の
作成法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a superconducting electronic circuit, and particularly to a method for producing a superconducting electronic circuit using an oxide superconductor having a high superconducting transition temperature. It is.

[従来の技術1 従来超伝導材料としてはニオブ系の合金材料が主流をな
しており、ジョセフソン素子などに使用されている。し
かし合金系の超伝導材料は転移温度が低く、液体ヘリウ
ムで冷却しなければならないという欠点がある。
[Prior art 1] Conventionally, niobium-based alloy materials have been the mainstream as superconducting materials, and are used in Josephson elements and the like. However, alloy-based superconducting materials have the disadvantage of having a low transition temperature and must be cooled with liquid helium.

最近(La−5r) 21:uO,やYBa2Cu30
tなどに代表される酸化物超伝導体が高い超伝導転移温
度を有することが発表されている。しかしこれら超伝導
酸化物を用いて電子回路を形成するのは困難であり、超
伝導電子回路は未だ実現されていない。
Recent (La-5r) 21: uO, YBa2Cu30
It has been announced that oxide superconductors such as t have a high superconducting transition temperature. However, it is difficult to form electronic circuits using these superconducting oxides, and superconducting electronic circuits have not yet been realized.

[発明が解決しようとする問題点] 本発明は上述した合金系超伝導材料の超伝導転移温度の
低さ、酸化物超伝導材料における電子回路形成の困難を
解決し、高い転移温度を有する超伝導電子回路の作成法
を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the low superconducting transition temperature of alloy-based superconducting materials and the difficulty in forming electronic circuits in oxide superconducting materials. The purpose is to provide a method for creating conduction electronic circuits.

E問題点を解決するための手段] このような目的を達成するために本発明は、組成によっ
て超伝導特性が変化するセラミックスの所望の領域にエ
ネルギービームを照射してセラミックスを部分的に改質
することによって電子回路を形成することを特徴とする
Means for Solving Problem E] In order to achieve such an object, the present invention partially modifies ceramics by irradiating an energy beam to a desired region of ceramics whose superconducting properties change depending on the composition. It is characterized by forming an electronic circuit by doing so.

[作 用] 酸化物(セラミックス)超伝導材料の超伝導特性はその
組成すなわち構成元素の種類と比率によって大きく変化
するので、超伝導性を示し得るセラミックスの所望の領
域に構成元素あるいはその他の元素を添加することによ
ってその部分の超伝導転移温度を制御することができる
。従って所定のパターンを描くように元素の添加を行っ
て、その部分のみを超伝導体とし、あるいはその部分の
みを非超伝導体とすることによって、高い超伝導転移温
度を有する酸化物超伝導電子回路を得ることができる。
[Function] The superconducting properties of oxide (ceramic) superconducting materials vary greatly depending on their composition, that is, the types and ratios of constituent elements. By adding , the superconducting transition temperature of that part can be controlled. Therefore, by adding elements in a predetermined pattern to make only that part a superconductor or only that part a non-superconductor, it is possible to create an oxide superconducting electron with a high superconducting transition temperature. You can get the circuit.

[実施例J 以下に図面を参照して本発明の詳細な説明する。[Example J The present invention will be described in detail below with reference to the drawings.

去]111 第1図ないし第3図に本発明の超伝導電子回路の作製法
の第1の実施例を示す。
111 Figures 1 to 3 show a first embodiment of the method for manufacturing a superconducting electronic circuit of the present invention.

焼結法など適宜な方法によって作製したY2BaO。Y2BaO produced by an appropriate method such as a sintering method.

絶縁基板1上に、スパッタ法、無電解めっき法などによ
って厚さ約0.06μmのCu層2を形成する(第1図
)。ついで第2図に示すように、Cu層2の所望の部分
にレーザービーム3を照射する。
A Cu layer 2 having a thickness of approximately 0.06 μm is formed on an insulating substrate 1 by sputtering, electroless plating, or the like (FIG. 1). Then, as shown in FIG. 2, a desired portion of the Cu layer 2 is irradiated with a laser beam 3.

レーザービームとして、Nd:YAGパルスレーザ−の
2倍高調波(波長0.53μm)を用い、ビーム径約2
pm、ピークパワー10’W/ cm’ 、パルス幅0
.1μmで照射すると、Cu層2の被照射部は溶融し、
その直下のY28aOy絶縁基板1と反応して厚さ0.
25μm程度のY2BaCu、07層4が形成される。
As the laser beam, a double harmonic of Nd:YAG pulse laser (wavelength 0.53 μm) is used, and the beam diameter is approximately 2.
pm, peak power 10'W/cm', pulse width 0
.. When irradiated at 1 μm, the irradiated part of the Cu layer 2 melts,
It reacts with the Y28aOy insulating substrate 1 directly below it, and the thickness becomes 0.
A Y2BaCu, 07 layer 4 of about 25 μm is formed.

このYBa2u30tは超伝導転移温度93にの超伝導
体である0次に未反応のCu層を硫酸でエツチングして
除去すると第3図に示すように、Y2BaO,絶縁基板
1の表面に形成されたY2BaCu30を超伝導配線パ
ターン4を得ることができる。
This YBa2u30t is a superconductor with a superconducting transition temperature of 93. When the zero-order unreacted Cu layer is removed by etching with sulfuric acid, Y2BaO is formed on the surface of the insulating substrate 1, as shown in FIG. A superconducting wiring pattern 4 can be obtained using Y2BaCu30.

夾適■ユ 第4図に本発明の他の実施例を示す。Eligibility ■Yu FIG. 4 shows another embodiment of the invention.

焼結法などで作製したYJaCus07絶縁体基板5を
酸素雰囲気中に置き、レーザビーム6で基板5の表面を
所望のパターンに沿って走査する。実施例1と同様の照
射条件で照射すると、基板5の被照射部分のみが加熱さ
れて雰囲気中の酸素原子と反応し、厚さ約0.2μ濡の
組成Y2BaCu、02の酸化物層7が形成される。
A YJaCus07 insulator substrate 5 manufactured by a sintering method or the like is placed in an oxygen atmosphere, and the surface of the substrate 5 is scanned along a desired pattern with a laser beam 6. When irradiated under the same irradiation conditions as in Example 1, only the irradiated portion of the substrate 5 is heated and reacts with oxygen atoms in the atmosphere, forming an oxide layer 7 of composition Y2BaCu,02 with a thickness of approximately 0.2 μm. It is formed.

このように絶縁基板をレーザビームで照射することによ
って、基板を改質し、所望の配線パターンを得ることが
できる。
By irradiating the insulating substrate with a laser beam in this manner, the substrate can be modified and a desired wiring pattern can be obtained.

1直」ユ 第5図に本発明の方法によって作製したマイクロブリッ
ジ型ジョセフソン素子の一例を示す。
FIG. 5 shows an example of a microbridge type Josephson device manufactured by the method of the present invention.

まずSi基板11の全面にスパッタ法などの適宜な方法
で厚さ約1μmのYBaxCu30を超伝導層12を形
、成し、接地層とする。ついで例えばCVD法によって
厚さ約1μmのSin、絶縁層13を形成し、さらにそ
の上にスパッタ法などによってYBa2Cu3O7超伝
導層を形成し、フォトエツチングによってジョセフソン
素子14の形状に成形する。次に、ジョセフソン素子1
4の幅の狭い部分に幅約1μm、厚さ約0.06μmの
Ni1i15を形成する。この時、中央部14^のみは
、あらかじめ電子ビーム露光あるいはイオンビーム露光
で形成した幅0.1μIのレジスト層で覆っておき、N
iをYBa2Cu3O7表面に接触させない。モしてN
i膜をビーム径1μm程度のNd:YAGパルスレーザ
−で走査する。こうすると、レーザー照射された部分1
5のNiが溶融して直下のYBa2Cu3O7と反応し
てその組成を改質して超伝導性を失わせるが、中央部1
4AのみはNiの侵入がなく、超伝導性が失われない。
First, a superconducting layer 12 of YBaxCu 30 having a thickness of approximately 1 μm is formed on the entire surface of a Si substrate 11 by an appropriate method such as sputtering, and is used as a ground layer. Next, for example, a CVD method is used to form an insulating layer 13 of about 1 .mu.m thick of Sin, and a YBa2Cu3O7 superconducting layer is formed thereon by a sputtering method or the like, and the layer is formed into the shape of a Josephson element 14 by photoetching. Next, Josephson element 1
Ni1i15 having a width of about 1 μm and a thickness of about 0.06 μm is formed on the narrow portion of the substrate 4. At this time, only the central portion 14^ is covered with a resist layer having a width of 0.1 μI formed in advance by electron beam exposure or ion beam exposure, and N
i is not brought into contact with the YBa2Cu3O7 surface. Do it N
The i-film is scanned with a Nd:YAG pulse laser with a beam diameter of about 1 μm. In this way, the laser irradiated area 1
5 melts and reacts with YBa2Cu3O7 directly below, modifying its composition and losing its superconductivity, but the central part 1
Only in 4A, there is no Ni intrusion, and superconductivity is not lost.

残ったNiをエツチングして除去すると、中央部14A
のみで超伝導体がつながったマイクロブリッジ型ジョセ
フソン素子14が形成される。
When the remaining Ni is etched and removed, the central part 14A
A microbridge-type Josephson element 14 in which superconductors are connected is formed.

図示を省略したが、ジョセフソン素子14を駆動するた
めの配線を例えば実施例1.2に示した各方法によって
設けることができる。またジョセフソン素子14を動作
させるに必要な素子や回路をSt基板11に形成して一
体化したジョセフソン素子を作ることができる。
Although not shown, wiring for driving the Josephson element 14 can be provided by, for example, the methods shown in Example 1.2. Further, it is possible to form an integrated Josephson element by forming elements and circuits necessary for operating the Josephson element 14 on the St substrate 11.

レーザービームとしては上述したNd:YAGレーザー
のみでなく、エキシマ−レーザー等の紫外レーザー、 
C02レーザー等の赤外レーザーを使用することができ
る。紫外レーザーはセラミックスの電子系、赤外レーザ
ーはセラミックスの格子撮動にエネルギーが吸収される
。レーザーの波長を選択することによって、セラミック
ス中へのエネルギーの侵入深さを調節できる。
Laser beams include not only the above-mentioned Nd:YAG laser, but also ultraviolet lasers such as excimer lasers,
An infrared laser such as a C02 laser can be used. The energy of ultraviolet lasers is absorbed by the electronic system of ceramics, and the energy of infrared lasers is absorbed by the lattice imaging of ceramics. By selecting the laser wavelength, the depth of energy penetration into the ceramic can be adjusted.

エネルギービームとして電子ビームを使用してセラミッ
クスまたはセラミックス上に形成した薄膜を加熱して反
応を起こさせ、セラミックスを改質することもできる。
Ceramics can also be modified by using an electron beam as an energy beam to heat ceramics or a thin film formed on ceramics to cause a reaction.

電子ビームを用いる場合は、加速電圧によって侵入深さ
を調節することができる。
When using an electron beam, the penetration depth can be adjusted by adjusting the accelerating voltage.

本発明の適用対象が上述したYBa2u3O7に限られ
ず、(La−5r) 2CuOx、(La−Ba) a
cuoll 、(y−sr) 2cuo。
The application target of the present invention is not limited to the above-mentioned YBa2u3O7, but also (La-5r) 2CuOx, (La-Ba) a
cuoll, (y-sr) 2cuo.

その他の酸化物超伝導体に広く適用できることは言うま
でもない。
Needless to say, the present invention can be widely applied to other oxide superconductors.

本発明による回路パターン幅は最小0.1μ腸まで狭く
形成することができる。
The circuit pattern width according to the present invention can be formed as narrow as a minimum of 0.1 μm.

[発明の効果] 本発明によれば、超伝導転移温度の高い酸化物超伝導体
を用いてジョセフソン素子、超伝導トランジスタのよう
な新しい高速素子を実現することができる0本発明によ
る電子回路を集積回路に適用した場合、配線抵抗(R)
が実質的に0となるので、集積回路の配線遅延(主にC
XRで決まる)が極めて小さく、高速化が実現できる。
[Effects of the Invention] According to the present invention, new high-speed devices such as Josephson devices and superconducting transistors can be realized using oxide superconductors with high superconducting transition temperatures.Electronic circuits according to the present invention When applied to an integrated circuit, the wiring resistance (R)
is virtually 0, so the wiring delay of integrated circuits (mainly C
(determined by XR) is extremely small, and high speed can be achieved.

さらに配線抵抗が実質的に0なので、配線の線幅と厚み
を小さくできるので素子と配線の高密度化が可能である
。また素子の発熱が小さいので一層の高密度が可能とな
る。
Further, since the wiring resistance is substantially 0, the line width and thickness of the wiring can be reduced, so that it is possible to increase the density of elements and wiring. Furthermore, since the heat generation of the element is small, even higher density is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例における超伝導配線パ
ターンの作製法を説明する工程図、第4図は本発明の他
の実施例を説明する斜視図、 第5図はマイクロブリッジ型ジョセフソン素子の製法を
説明する斜視図である。 1・・・Y2BaOt基板、 2・・・Cu層、 3・・・レーザービーム、 4 ・・・Y、BaCu、07配線層、5−−−Y2B
aCu、O,基板、 6・・・レーザービーム、 11−5 i基板、 12・・・YBa、Cu30.接地層、13・・・Si
n、層、 14・・・ジョセフソン素子、 15・・・1膜、 16・・・レーザービーム。 指定代理人 工業技術院電子技術総合研究所長→ 第2図 第3図 第4涼1
1 to 3 are process diagrams illustrating a method for manufacturing a superconducting wiring pattern in an embodiment of the present invention, FIG. 4 is a perspective view illustrating another embodiment of the present invention, and FIG. 5 is a microbridge FIG. 2 is a perspective view illustrating a method for manufacturing a Josephson type Josephson element. 1... Y2BaOt substrate, 2... Cu layer, 3... Laser beam, 4... Y, BaCu, 07 wiring layer, 5---Y2B
aCu, O, substrate, 6...laser beam, 11-5 i-substrate, 12...YBa, Cu30. Ground layer, 13...Si
n, layer, 14...Josephson element, 15...1 film, 16...laser beam. Designated agent Director, Electronics Technology Research Institute, Agency of Industrial Science and Technology → Figure 2 Figure 3 Figure 4 Ryo 1

Claims (1)

【特許請求の範囲】 1)組成によつて超伝導特性が変化するセラミックスの
所望の領域にエネルギービームを照射して該セラミック
スを部分的に改質することによって電子回路を形成する
ことを特徴とする超伝導電子回路の作成法。 2)前記セラミックスのエネルギービーム照射前の組成
が所定温度において超伝導性を示さない組成であり、エ
ネルギービーム照射部のみを前記所定温度において超伝
導性を有するように改質することを特徴とする特許請求
の範囲第1項記載の超伝導電子回路の作成法。 3)前記セラミックスのエネルギービーム照射前の組成
が所定温度において超伝導性を示す組成であり、エネル
ギービーム照射部のみが前記所定温度において超伝導性
を示さないように改質することを特徴とする特許請求の
範囲第1項記載の超伝導電子回路の作成法。4)前記エ
ネルギービームがレーザービームであることを特徴とす
る特許請求の範囲第1項ないし第3項のいずれかの項に
記載の超伝導電子回路の作成法。 5)前記エネルギービームが電子ビームであることを特
徴とする特許請求の範囲第1項ないし第3項のいずれか
の項に記載の超伝導電子回路の作成法。 6)前記セラミックスの表面に密着して薄膜を形成し、
該薄膜を構成する元素によつて前記セラミックスを改質
することを特徴とする特許請求の範囲第1項ないし第5
項のいずれかの項に記載の超伝導電子回路の作成法。 7)前記セラミックスを、該セラミックスを囲む流体媒
質を構成する元素によって改質することを特徴とする特
許請求の範囲第1項ないし第5項のいずれかの項に記載
の超伝導電子回路の作成法。
[Claims] 1) An electronic circuit is formed by partially modifying the ceramic by irradiating an energy beam to a desired region of the ceramic whose superconducting properties change depending on the composition. A method for creating superconducting electronic circuits. 2) The composition of the ceramic before energy beam irradiation is such that it does not exhibit superconductivity at a predetermined temperature, and only the energy beam irradiated portion is modified to have superconductivity at the predetermined temperature. A method for producing a superconducting electronic circuit according to claim 1. 3) The composition of the ceramic before energy beam irradiation is a composition that exhibits superconductivity at a predetermined temperature, and only the energy beam irradiated portion is modified so that it does not exhibit superconductivity at the predetermined temperature. A method for producing a superconducting electronic circuit according to claim 1. 4) The method for producing a superconducting electronic circuit according to any one of claims 1 to 3, wherein the energy beam is a laser beam. 5) The method for producing a superconducting electronic circuit according to any one of claims 1 to 3, wherein the energy beam is an electron beam. 6) forming a thin film in close contact with the surface of the ceramic;
Claims 1 to 5, characterized in that the ceramic is modified by the elements constituting the thin film.
A method for producing a superconducting electronic circuit as described in any of the following paragraphs. 7) Creation of a superconducting electronic circuit according to any one of claims 1 to 5, characterized in that the ceramic is modified with an element constituting a fluid medium surrounding the ceramic. Law.
JP62100951A 1987-04-23 1987-04-23 Manufacture of superconducting electronic circuit Pending JPS63265475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100951A JPS63265475A (en) 1987-04-23 1987-04-23 Manufacture of superconducting electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100951A JPS63265475A (en) 1987-04-23 1987-04-23 Manufacture of superconducting electronic circuit

Publications (1)

Publication Number Publication Date
JPS63265475A true JPS63265475A (en) 1988-11-01

Family

ID=14287659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100951A Pending JPS63265475A (en) 1987-04-23 1987-04-23 Manufacture of superconducting electronic circuit

Country Status (1)

Country Link
JP (1) JPS63265475A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144689A (en) * 1987-03-30 1989-06-06 Sumitomo Electric Ind Ltd Formation of superconducting circuit
JPH02201976A (en) * 1989-01-30 1990-08-10 Agency Of Ind Science & Technol Manufacture of wiring pattern of tl superconductor
JPH02309684A (en) * 1989-05-25 1990-12-25 Nippon Steel Corp Manufacture of superconducting material
JPH07142777A (en) * 1991-04-01 1995-06-02 Semiconductor Energy Lab Co Ltd Manufacture of oxide superconducting material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132381A (en) * 1981-02-10 1982-08-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of high melting point compound thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132381A (en) * 1981-02-10 1982-08-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of high melting point compound thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144689A (en) * 1987-03-30 1989-06-06 Sumitomo Electric Ind Ltd Formation of superconducting circuit
JPH02201976A (en) * 1989-01-30 1990-08-10 Agency Of Ind Science & Technol Manufacture of wiring pattern of tl superconductor
JPH02309684A (en) * 1989-05-25 1990-12-25 Nippon Steel Corp Manufacture of superconducting material
JPH07142777A (en) * 1991-04-01 1995-06-02 Semiconductor Energy Lab Co Ltd Manufacture of oxide superconducting material

Similar Documents

Publication Publication Date Title
US5162298A (en) Grain boundary junction devices using high tc superconductors
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
JPS63265475A (en) Manufacture of superconducting electronic circuit
JPS63265473A (en) Manufacture of superconducting electronic circuit
EP0478466B1 (en) A superconducting device and a method for manufacturing the same
JP3149996B2 (en) How to make Josephson bonds
JP2925571B2 (en) How to make a superconducting circuit
JP2641969B2 (en) Superconducting element and fabrication method
JPH06283775A (en) Method of forming superconducting josephson element
JPS63265474A (en) Manufacture of superconductng electronic circuit
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JP2614941B2 (en) Superconducting element and fabrication method
JP3149460B2 (en) Method of manufacturing Josephson device
JP2656853B2 (en) Superconducting element and fabrication method
JPH04171872A (en) Josephson device and manufacture thereof
JPH04171874A (en) Josephson device and manufacture thereof
WO1999017382A1 (en) Method for manufacturing coplanar josephson device
JPH06338639A (en) Manufacture of josephson element
JPH05343754A (en) Superconductive device and manufacture thereof
JP2776004B2 (en) Method of manufacturing Josephson device
JPH01257380A (en) Josephson device
JPS60160674A (en) Integrated circuit device
JPH02309684A (en) Manufacture of superconducting material
JPS63310182A (en) Manufacture of superconductive wiring
JPH01107582A (en) Forming method of superconductor circuit and superconductor element