JPH01107582A - Forming method of superconductor circuit and superconductor element - Google Patents

Forming method of superconductor circuit and superconductor element

Info

Publication number
JPH01107582A
JPH01107582A JP62263817A JP26381787A JPH01107582A JP H01107582 A JPH01107582 A JP H01107582A JP 62263817 A JP62263817 A JP 62263817A JP 26381787 A JP26381787 A JP 26381787A JP H01107582 A JPH01107582 A JP H01107582A
Authority
JP
Japan
Prior art keywords
superconducting
circuit
wiring
focused
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263817A
Other languages
Japanese (ja)
Inventor
Satoshi Haraichi
聡 原市
Naoya Isada
諫田 尚哉
Takayoshi Sowa
曽和 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62263817A priority Critical patent/JPH01107582A/en
Publication of JPH01107582A publication Critical patent/JPH01107582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To form an arbitrary superconductor circuit, by forming an insulator and a switching circuit on a superconductor thin film by using focused beam. CONSTITUTION:Impurity ions are implanted into a desired place in a superconductive layer 1 by using a focused ion beam 4. Thus an ion implanted layer 5 is formed. In the ion implanted layer 5, a superconductive state is broken, and an insulator is formed. Meanwhile, when the ion beam, which is emitted from a liquid metal ion source or an electric-field ionizing ion source, is used, the beam can be focused into a micron order or less. Thus, the ions can be implanted accurately both for a position and a depth. Therefore, the insulator can be formed in an arbitrary region on the superconductive thin film layer. Wirings, which are crossed in three dimensions through the insulating film with respect to superconductive wirings, are formed by using local films formed with the focused beam. Power sources, which supply currents to the locally formed film wirings, are provided. Thus, a switching circuit is formed. In this way, an arbitrary superconductor circuit can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導素子に係り、特に任意の回路形成を行う
のに好適な、集束ビームを用いた超電導回路の形成方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting element, and particularly to a method for forming a superconducting circuit using a focused beam, which is suitable for forming any circuit.

〔従来の技術〕[Conventional technology]

現在世界中で、セラミック特にY−Ba−Cu−0系の
高温超電導体のし烈な開発競争が行なわれている。その
中で最近セラミック高温超電導体に不純物を打ち込むと
抵抗が急激に上昇することが報告された。例えば日経マ
イクロデバイシダ198フ年9月号のP47 rY−B
a−Cu−F−〇系超電導は本物、中国が追試に成功」
の記事では、本来臨界温度を下げる目的でY−Ba−C
u−0系超電導体にFを打ち込んだ実験で、単にFを打
ち込んだだけでは抵抗が逆に急激に上昇する事実が報告
されている。
Currently, intense competition is underway around the world to develop ceramics, particularly Y-Ba-Cu-0-based high-temperature superconductors. Among these, it has recently been reported that when impurities are implanted into ceramic high-temperature superconductors, the resistance increases rapidly. For example, P47 rY-B of Nikkei Microdevices September 198 issue.
A-Cu-F-〇 system superconductivity is real, China succeeds in follow-up test.”
In the article, Y-Ba-C was originally used for the purpose of lowering the critical temperature.
In an experiment in which F was implanted into a u-0 superconductor, it was reported that simply implanting F would cause a sudden increase in resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の報告例では、超電導体全体に不純物としてFイオ
ンを打ち込むと抵抗が急激に上昇する事実が報告されて
いる。
In the above reported example, it is reported that when F ions are implanted as an impurity into the entire superconductor, the resistance increases rapidly.

一方集束イオンビームを用いれば、試料中の任意の微小
領域に精度よく選択的に不純物を打ち込むことができる
On the other hand, if a focused ion beam is used, impurities can be selectively implanted into any minute region in a sample with high precision.

そこで、基板上に形成した超電導薄膜層に対して、集束
イオンビームを用いて選択的に不純物を打ち込み絶縁体
を形成することにより、超電導配線の直接描画や超電導
回路の切断が可能である。
Therefore, by selectively implanting impurities into a superconducting thin film layer formed on a substrate using a focused ion beam to form an insulator, it is possible to directly draw superconducting wiring and cutting superconducting circuits.

さらに集束ビームを用いて超電導配線のスイッチング回
路が形成できれば、超電導薄膜層に対して任意の回路形
成が可能となる。
Furthermore, if a switching circuit of superconducting wiring can be formed using a focused beam, it becomes possible to form any circuit on a superconducting thin film layer.

本発明の目的は、集束ビームを用いて超電導薄膜上に絶
縁体およびスイッチング回路を形成し、任意の超電導回
路の形成を可能にした超電導回路の形成方法および超電
導素子を提供することにある。
An object of the present invention is to provide a method for forming a superconducting circuit and a superconducting element, which make it possible to form an arbitrary superconducting circuit by forming an insulator and a switching circuit on a superconducting thin film using a focused beam.

〔問題点を解決するための手段〕[Means for solving problems]

超電導薄膜上への絶縁体形成は、集束イオンビームを用
いて選択的に不純物を打ち込むことにより達成される。
Formation of an insulator on a superconducting thin film is achieved by selectively implanting impurities using a focused ion beam.

またスイッチング回路の形成は、集束イオンビーム等の
集束ビームによる局所成膜を用いて、超電導配線に対し
て絶縁膜を介して立体交叉する配線を形成し、既局所成
膜配線に電流を供給するための電源を設けることにより
達成される。
In addition, to form a switching circuit, local film formation using a focused beam such as a focused ion beam is used to form wiring that three-dimensionally intersects the superconducting wiring via an insulating film, and supplies current to the already locally formed wiring. This is achieved by providing a power source for

〔作用〕[Effect]

セラミック超電導体内では、各々の構成原子が規則的に
配列し結晶構造を形成している。この結晶中に高エネル
ギーのイオンを打ち込むと、結晶構造を破壊し不純物準
位をつくるため、超電導電流の流れを妨げ抵抗が急激に
上昇する。そこで、集束イオンビームを用いて、超電導
薄膜中に選択的に不純物イオンを打ち込むことにより、
打ち込み箇所に絶縁体を形成することができる。
Inside the ceramic superconductor, the constituent atoms are regularly arranged to form a crystal structure. When high-energy ions are implanted into this crystal, the crystal structure is destroyed and impurity levels are created, blocking the flow of superconducting current and causing a sudden increase in resistance. Therefore, by selectively implanting impurity ions into the superconducting thin film using a focused ion beam,
An insulator can be formed at the implant location.

また、超電導体には3つの臨界条件すなわち臨界温度T
c、臨界電流密度J 、c、臨界磁界Heがあり、−い
ずれかの条件が臨界を越えると超電導状態が破壊されて
しまう、そこで、集束イオンビーム等の集束ビームによ
る局所成膜を用いて、超電導配線に対して絶縁膜を介し
て立体交叉する配線を形成し、既局所成膜配線に十分な
電流を供給すれば、その電流により発生する磁場をHe
より十分大きくでき、超電導電流をしゃ断できる。これ
により超電導回路におけるスイッチングが可能である。
In addition, superconductors have three critical conditions: critical temperature T
There is a critical current density J, c, a critical magnetic field He, and - if any of the conditions exceeds the critical value, the superconducting state will be destroyed.Therefore, local film formation using a focused beam such as a focused ion beam is used to By forming a wiring that three-dimensionally intersects the superconducting wiring via an insulating film and supplying sufficient current to the locally formed wiring, the magnetic field generated by the current can be reduced to He
It can be made sufficiently larger and can cut off superconducting current. This allows switching in superconducting circuits.

〔実施例〕〔Example〕

以下本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

〈実施例1〉 第1図に本実施例の原理を示す。基板3上に絶縁層2を
介して超電導層1を形成しである。超電導層lに対して
、集束イオンビーム4を用いて所望箇所に不純物イオン
を打ち込み、イオン打ち込み層5を形成する。イオン打
ち込み層5は超電導状態を破壊して、絶縁体を形成する
。一方液体金属イオン源や電界電離イオン源から放出し
たイオンビームを用いれば、μmオーダー以下にビーム
を集束でき、位置、深さともに精度よくイオンを打ち込
むことができるので、超電導薄膜層上の任意の領域に絶
縁体を形成することができる。
<Embodiment 1> FIG. 1 shows the principle of this embodiment. A superconducting layer 1 is formed on a substrate 3 with an insulating layer 2 interposed therebetween. Impurity ions are implanted into desired locations of the superconducting layer 1 using a focused ion beam 4 to form an ion implantation layer 5. The ion implantation layer 5 destroys the superconducting state and forms an insulator. On the other hand, if an ion beam emitted from a liquid metal ion source or a field ion source is used, the beam can be focused on the order of micrometers or less, and the ions can be implanted with high precision in both position and depth. An insulator can be formed in the region.

第2図に本実施例による超電導配線形成例を示す。超電
導配線を形成すべき領域の周囲に、集束イオンビームを
用いてイオン打ち込み層5gt5bを形成し、周囲の超
電導層と分離絶縁することにより、超電導配線6を形成
する。この方法を用いれば、集束イオンビームを用いて
超電導配線の直接描画を行うことができる。
FIG. 2 shows an example of forming superconducting wiring according to this embodiment. An ion implantation layer 5gt5b is formed using a focused ion beam around a region where a superconducting wiring is to be formed, and the superconducting wiring 6 is formed by separating and insulating it from the surrounding superconducting layers. Using this method, superconducting wiring can be directly drawn using a focused ion beam.

第3図に本実施例によるジョセフソン接合の形成例を示
す。集束イオンビームを用いて−rオン打ち込み層5c
、5dを形成し、両打ち込み層に狭まれた微小なブリッ
ジ部により、ジョセフソン接合7を形成したものである
。ここで、集束イオンビームは打ち込みに用いる場合は
、加速エネルギーが100key以上であるが、加速エ
ネルギーを数10keyに下げ、ビーム電流を増やせば
、物理的なスパッタ加工の効果が顕著になる。そこでス
パッタ加工を用いて超電導層の所望の領域を加工するこ
とにより、第3図と同様のジョセフソン接合を形成した
例を第4図に示した。
FIG. 3 shows an example of forming a Josephson junction according to this embodiment. -r on implantation layer 5c using a focused ion beam
, 5d are formed, and a Josephson junction 7 is formed by a minute bridge portion narrowed between both implanted layers. Here, when a focused ion beam is used for implantation, the acceleration energy is 100 keys or more, but if the acceleration energy is lowered to several tens of keys and the beam current is increased, the effect of physical sputtering becomes noticeable. FIG. 4 shows an example in which a Josephson junction similar to that shown in FIG. 3 was formed by processing a desired region of the superconducting layer using sputtering.

〈実施例2〉 第5図に本実施例の超電導スイッチング回路の形成方法
を示す。集束イオンビームや集束レーザビーム等の集束
ビームを、CVDガスふん囲気中で試料に照射すること
により、集束ビームの照射領域に局所成膜を行うことが
できる。例えば、集束ビームとしてA r Fレーザ光
をCVDガスとしてSiH4とN20の混合ガスを用い
て、Sin、絶縁膜を形成した例や、集束ビームとして
aaイオンビームをCVDガスとしてW(CO)、を用
いて、W配線を形成した例など、多数の局所成膜例が報
告されている。そこで、集束ビームによる局所成膜を用
いることにより、まず超電導配線9上にCVD絶縁膜1
0を形成する。さらにCVD絶縁膜10上を通り超電導
配線に対し立体交叉する様に。
<Example 2> FIG. 5 shows a method of forming a superconducting switching circuit of this example. By irradiating a sample with a focused beam such as a focused ion beam or a focused laser beam in a CVD gas atmosphere, it is possible to locally form a film in the area irradiated with the focused beam. For example, an example in which a Si insulating film is formed using an A r F laser beam as a focused beam and a mixed gas of SiH4 and N20 as a CVD gas, or an example in which an aa ion beam is used as a focused beam and W (CO) as a CVD gas is formed. Many examples of local film formation have been reported, including examples in which W wiring was formed using the same method. Therefore, by using local film formation using a focused beam, we first deposited a CVD insulating film 1 on the superconducting wiring 9.
form 0. Furthermore, it passes over the CVD insulating film 10 and intersects the superconducting wiring in three dimensions.

CVD配線12を形成する。CVD配線12の両端はパ
ッドlla、llbに接続し、電流を供給することがで
きる。
CVD wiring 12 is formed. Both ends of the CVD wiring 12 are connected to pads lla and llb to supply current.

以上の様にして形成したスイッチング回路の動作原理を
第6図に示す。ここで、超電導体には3つの臨界条件す
なわち臨界温度Tc、臨界電流密度Jc、臨界磁界Ha
があり、いずれかの条件が臨界を越えると超電導状態が
破壊される。そこで、超電導配線に外部からHcより十
分大きな磁界を与えることにより、超電導電流をしゃ断
することができる。第6図の左図では、CVD配線12
に電流を流しておらず、超電配線9内を超電導電流が流
れる。これに対し、第6図右図ではCVD配線12に十
分な電流を流して生じる磁場(図中の点線矢印)により
超電導電流をしゃ断する。以上 ノの様にしで、CVD
配線12への電流の0NOFFにより、超電導電流のス
イッチングを行うことができる。
FIG. 6 shows the operating principle of the switching circuit formed as described above. Here, superconductors have three critical conditions: critical temperature Tc, critical current density Jc, and critical magnetic field Ha.
If any of the conditions exceeds the critical level, the superconducting state will be destroyed. Therefore, by applying a magnetic field sufficiently larger than Hc to the superconducting wiring from the outside, the superconducting current can be interrupted. In the left diagram of FIG. 6, the CVD wiring 12
No current is flowing through the superconducting wire 9, and a superconducting current flows within the superconducting wire 9. On the other hand, in the right diagram of FIG. 6, the superconducting current is cut off by a magnetic field (dotted line arrow in the diagram) generated when a sufficient current is passed through the CVD wiring 12. As above, CVD
By turning off the current to the wiring 12, the superconducting current can be switched.

〈実施例3〉 第7図に本実施例の超電導素子およびその回路形成方法
を示す。超電導素子は、超電導電極13と、その間を格
子状に連結する超電導配線14と。
<Example 3> FIG. 7 shows a superconducting element of this example and a method for forming its circuit. The superconducting element includes superconducting electrodes 13 and superconducting wiring 14 connecting them in a grid pattern.

各・格子間に設けた電極15からなる。実施例1を用い
て、所望の超電導配線に絶縁部16a乃至16dを設は
配線を切断し、実施例2を用いて、所望の超電導配線に
スイッチング回路179乃至17dを設ける。以上の様
にして、全体として所望の動作を示す任意の回路を形成
することができる。
It consists of electrodes 15 provided between each grid. Using Example 1, insulating parts 16a to 16d are provided on desired superconducting wiring and the wiring is cut, and using Example 2, switching circuits 179 to 17d are provided on desired superconducting wiring. In the manner described above, any circuit that exhibits the desired operation as a whole can be formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、集束ビームを用い
て超電導薄膜上に絶縁体およびスイッチング回路を形成
できるので、任意の超電導回路を形成できる効果がある
As explained above, according to the present invention, an insulator and a switching circuit can be formed on a superconducting thin film using a focused beam, so that an arbitrary superconducting circuit can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の原理説明図、第2図は超電導配線形
成例を示す模式図、第3図および第4図はジョセフソン
接合形成例を示す模式図、第5図は実施例2のスイッチ
ング回路形成方法を示す模式図、第6図はスイッチング
回路の動作原理を示す模式図、第7図は実施例3の超電
素子およびその回路形成方法を示す模式図である。 1・・・超電導層、2・・・絶縁層、3・・・基板、4
・・・集束イオンビーム、5・・・イオン打ち込み層、
6・・・超電導配線、7・・・ジョセフソン接合、9・
・・超電導配線、10・・・CVD絶縁膜、12・・・
CVD配線。 代理人弁理士 小 川 勝 男(\、・″・J″゛、筋
 11i4 ′ 躬2圀 躬1 筋 4固 7・・・ジ:If!7・ル芋【@− 1ゴ iN               )礒っ     
  て \        CN
FIG. 1 is a diagram explaining the principle of Example 1, FIG. 2 is a schematic diagram showing an example of superconducting wiring formation, FIGS. 3 and 4 are schematic diagrams showing an example of Josephson junction formation, and FIG. 5 is a schematic diagram showing an example of forming a Josephson junction. FIG. 6 is a schematic diagram showing the operating principle of the switching circuit. FIG. 7 is a schematic diagram showing the superelectric element of Example 3 and the method for forming the circuit. DESCRIPTION OF SYMBOLS 1... Superconducting layer, 2... Insulating layer, 3... Substrate, 4
... Focused ion beam, 5... Ion implantation layer,
6...Superconducting wiring, 7...Josephson junction, 9.
...Superconducting wiring, 10...CVD insulation film, 12...
CVD wiring. Representative Patent Attorney Katsuo Ogawa (\,・″・J″゛, line 11i4' 躬2圀躬1 line 4 solid 7...ji: If!7・ruimo [@-1goiN) Isotsu
Te\CN

Claims (1)

【特許請求の範囲】 1、超電導層に対して、集束ビームによる加工あるいは
不純物打ち込みを用いて回路素子の絶縁を行い、また集
束ビームによる局所成膜を用いてスイッチング回路形成
を行うことを特徴とする超電導回路の形成方法。 2、集束イオンビームによるスパッタ加工、あるいは集
束レーザビームによる熱加工を用いて、超電導層の一部
を物理的に除去して回路素子の絶縁を行うことを特徴と
する特許請求の範囲第1項に記載の超電導回路の形成方
法。 3、集束イオンビームを用いて、超電導層の所望の領域
に選択的に不純物を打ち込み絶縁体を形成し、回路素子
の絶縁を行うことを特徴とする特許請求の範囲第1項に
記載の超電導回路の形成方法。 4、集束イオンビーム、集束電子ビーム、集束レーザビ
ーム等による局所成膜を用いて、超電導配線に対して絶
縁膜を介して立体交叉する配線を形成し、既局所成膜配
線に電流を流した時に生じる磁場を用いて、既超電導配
線のスイッチングを行う、スイッチング回路を形成する
ことを特徴とする特許請求の範囲第1項に記載の超電導
回路の形成方法。 5、格子状に形成した超電導配線と、格子間に設けた電
極からなり、超電導配線の所望箇所の切断を行い、また
既格子間電極を連結し超電導配線に対して絶縁膜を介し
て立体交叉する配線を形成し所望箇所にスイッチング回
路を形成することにより、任意の回路を形成できること
を特徴とする超電導素子。
[Claims] 1. A superconducting layer is characterized by insulating circuit elements by processing with a focused beam or implanting impurities, and forming a switching circuit by using local film formation by a focused beam. A method for forming superconducting circuits. 2. Claim 1, characterized in that the circuit elements are insulated by physically removing a part of the superconducting layer using sputter processing using a focused ion beam or thermal processing using a focused laser beam. The method for forming a superconducting circuit described in . 3. The superconductor according to claim 1, wherein impurities are selectively implanted into desired regions of the superconducting layer using a focused ion beam to form an insulator and insulate circuit elements. How to form a circuit. 4. Using local film formation using focused ion beams, focused electron beams, focused laser beams, etc., we formed wiring that three-dimensionally intersects the superconducting wiring through an insulating film, and passed current through the already locally formed wiring. 2. The method for forming a superconducting circuit according to claim 1, wherein a switching circuit is formed in which a superconducting wiring is switched using a magnetic field generated when the superconducting circuit is formed. 5. Consisting of superconducting wiring formed in a lattice shape and electrodes provided between the lattices, the superconducting wiring is cut at a desired location, and the existing interstitial electrodes are connected to create a three-dimensional intersection with the superconducting wiring via an insulating film. 1. A superconducting element characterized in that an arbitrary circuit can be formed by forming wiring and forming a switching circuit at a desired location.
JP62263817A 1987-10-21 1987-10-21 Forming method of superconductor circuit and superconductor element Pending JPH01107582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263817A JPH01107582A (en) 1987-10-21 1987-10-21 Forming method of superconductor circuit and superconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263817A JPH01107582A (en) 1987-10-21 1987-10-21 Forming method of superconductor circuit and superconductor element

Publications (1)

Publication Number Publication Date
JPH01107582A true JPH01107582A (en) 1989-04-25

Family

ID=17394650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263817A Pending JPH01107582A (en) 1987-10-21 1987-10-21 Forming method of superconductor circuit and superconductor element

Country Status (1)

Country Link
JP (1) JPH01107582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365271B2 (en) * 2003-12-31 2008-04-29 Superpower, Inc. Superconducting articles, and methods for forming and using same
US7417192B2 (en) 2004-09-22 2008-08-26 Superpower, Inc. Superconductor components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365271B2 (en) * 2003-12-31 2008-04-29 Superpower, Inc. Superconducting articles, and methods for forming and using same
US7417192B2 (en) 2004-09-22 2008-08-26 Superpower, Inc. Superconductor components

Similar Documents

Publication Publication Date Title
US6982240B1 (en) Method for making a superconductor device
US5162298A (en) Grain boundary junction devices using high tc superconductors
US5795848A (en) Oxide superconductor devices fabricated by impurity ion implantation
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
JPS5990977A (en) Superconductive tunnel junction element
US6188919B1 (en) Using ion implantation to create normal layers in superconducting-normal-superconducting Josephson junctions
JPH01161881A (en) Josephson element and its manufacture
JPH01107582A (en) Forming method of superconductor circuit and superconductor element
US6016433A (en) Oxide superconductor Josephson junction element and process for producing same
JPS63265473A (en) Manufacture of superconducting electronic circuit
JPS5873172A (en) Superconductive integrated circuit device
Simon et al. Progress towards a YBCO circuit process
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPS63265475A (en) Manufacture of superconducting electronic circuit
JP2000091654A (en) Manufacture of high-temperature single electron pair tunnel element using layered oxide superconducting material
JPS61206278A (en) Superconductive device
JP2849721B2 (en) Superconducting switch element
JPH06283775A (en) Method of forming superconducting josephson element
JP2641971B2 (en) Superconducting element and fabrication method
JPH05208898A (en) Production of high-temperature superconductive component
RU2065230C1 (en) Field-effect transistor
EP0433294A1 (en) Method of activation of superconductors and devices produced thereby.
JP2994190B2 (en) High-temperature superconducting thin film structure and method for producing the same
JPH11274584A (en) Layer-like high temperature superconductor specific josephson effect device and its manufacture
JPH01211985A (en) Manufacture of josephson element