JP3149460B2 - Method of manufacturing Josephson device - Google Patents

Method of manufacturing Josephson device

Info

Publication number
JP3149460B2
JP3149460B2 JP17370591A JP17370591A JP3149460B2 JP 3149460 B2 JP3149460 B2 JP 3149460B2 JP 17370591 A JP17370591 A JP 17370591A JP 17370591 A JP17370591 A JP 17370591A JP 3149460 B2 JP3149460 B2 JP 3149460B2
Authority
JP
Japan
Prior art keywords
thin film
metal oxide
manufacturing
josephson device
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17370591A
Other languages
Japanese (ja)
Other versions
JPH0521855A (en
Inventor
晃 榎原
謙太郎 瀬恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17370591A priority Critical patent/JP3149460B2/en
Publication of JPH0521855A publication Critical patent/JPH0521855A/en
Application granted granted Critical
Publication of JP3149460B2 publication Critical patent/JP3149460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超伝導応用技術の一つ
であるジョセフソン素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a Josephson device, which is one of superconducting applied technologies.

【0002】[0002]

【従来の技術】近年発見された酸化物超伝導体の中に
は、その超伝導遷移温度が液体窒素温度(77.3K)
を越えるものがあり、超伝導体の応用分野を大きく広げ
ることとなった。この金属酸化物超伝導体の実用化の一
つであるジョセフソン素子については、様々な製造方法
が考案され、試されている。酸化物超伝導体を二つに割
り、再びわずかに接触させたブレーク型ジョセフソン素
子、酸化物超伝導膜作製の際に起こる粒成長の現象を積
極的に利用する、いわゆる粒界接合を利用したジョセフ
ソン素子などが従来試作されているが、主として再現性
に問題があり、実用化にはほど遠い。また、トンネル型
ジョセフソン接合では、きわめて薄い(約数nm厚)絶
縁膜を超伝導体で挟み込む必要があり、安定な絶縁膜の
形成が難しい金属酸化物超伝導体を用いたものは作製が
きわめて困難である。
2. Description of the Related Art Some oxide superconductors discovered recently have a superconducting transition temperature of liquid nitrogen temperature (77.3K).
And greatly expanded the field of application of superconductors. Various manufacturing methods have been devised and tested for the Josephson device, which is one of the practical applications of this metal oxide superconductor. A break-type Josephson device in which the oxide superconductor is divided into two parts and brought into slight contact again, utilizing the so-called grain boundary junction, which actively utilizes the phenomenon of grain growth that occurs when producing an oxide superconductor film Josephson devices have been produced as prototypes, but they have problems with reproducibility and are far from practical. In a tunnel-type Josephson junction, it is necessary to sandwich an extremely thin (about several nm) insulating film with a superconductor, and a device using a metal oxide superconductor, which is difficult to form a stable insulating film, cannot be manufactured. Extremely difficult.

【0003】これに対して、弱結合型ジョセフソン接合
として、ブリッジ型ジョセフソン接合は、微小なブリッ
ジ部で2つの超伝導部分を接続したもので、構造が2次
元的で、通常のエッチングプロセスを用いて作製できる
ため、作製プロセスは単純で簡便であり、さらに、他の
電子デバイスとのモノリシック化の可能性等の利点があ
り、実用性が高い。
On the other hand, a bridge-type Josephson junction, which is a weak-coupling Josephson junction, is a structure in which two superconducting portions are connected by a minute bridge portion, has a two-dimensional structure, and has a normal etching process. Therefore, the manufacturing process is simple and simple, and furthermore, there are advantages such as possibility of monolithic formation with other electronic devices, and the practicality is high.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ブリッ
ジ型ジョセフソン接合では、原理上、ブリッジ部の寸法
がコヒーレント長(数nm)程度であることが必要であ
り、このコヒーレント長に加工する方法および精度が課
題となっている。
However, in the bridge-type Josephson junction, the dimensions of the bridge portion need to be approximately the coherent length (several nanometers) in principle, and the method and accuracy of processing to the coherent length are required. Is an issue.

【0005】本発明は、このような加工精度を解決した
ジョセフソン素子の製造方法の提供を目的としている。
An object of the present invention is to provide a method of manufacturing a Josephson element which has solved such processing accuracy.

【0006】[0006]

【課題を解決するための手段】本発明のジョセフソン素
子の製造方法では、金属酸化物超伝導薄膜にエッチング
により作製されたブリッジ部に対して紫外線を照射する
ことにより、従来の課題を克服した。
In the method of manufacturing a Josephson device according to the present invention, the conventional problems have been overcome by irradiating a bridge portion formed by etching a metal oxide superconducting thin film with ultraviolet rays. .

【0007】[0007]

【作用】本発明のジョセフソン素子の製造方法では、ブ
リッジ部をエッチングで作製した後、紫外線照射する。
紫外線照射によって金属酸化物超伝導薄膜中に酸素欠損
が生成され、超伝導特性が劣化、あるいは、消滅するこ
とを例えば特願平2−216885号等で本発明者らに
よって明らかにした。その後本発明者らの鋭意努力の結
果、この紫外線照射の効果は、照射量(照射強度×照射
時間)の増加によって、徐々に膜表面から内部に影響が
およぶことが判り、照射量を正確に制御すれば、膜表面
から思う深さまで、超伝導特性を劣化させることも判明
した。したがってブリッジ部の実効的な厚さだけを選択
的に超電導特性を劣化もしくは消滅させることで、比較
的低いエッチング精度でも再現性よくブリッジ型ジョセ
フソン接合が作製できる。
According to the method of manufacturing a Josephson device of the present invention, a bridge portion is formed by etching and then irradiated with ultraviolet rays.
The present inventors have clarified in Japanese Patent Application No. 2-216885 or the like that oxygen vacancies are generated in the metal oxide superconducting thin film by ultraviolet irradiation, and the superconducting properties are deteriorated or disappear. As a result of the intensive efforts of the present inventors, it has been found that the effect of this ultraviolet irradiation gradually affects the inside from the film surface due to an increase in the irradiation amount (irradiation intensity × irradiation time), and the irradiation amount is accurately adjusted. It was also found that if controlled, the superconducting properties deteriorate from the film surface to the desired depth. Therefore, by selectively deteriorating or eliminating the superconducting characteristics only by the effective thickness of the bridge portion, a bridge-type Josephson junction can be produced with good reproducibility even with relatively low etching accuracy.

【0008】[0008]

【実施例】本発明のジョセフソン素子は、基板上に金属
酸化物超伝導薄膜を形成し、この薄膜をエッチングによ
りブリッジ型ジョセフソン素子の概略形状を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the Josephson device of the present invention, a metal oxide superconducting thin film is formed on a substrate, and the thin film is etched to form a schematic shape of a bridge type Josephson device.

【0009】本発明に供される基板としては、例えばM
gO等の通常の基板材料が適応できる。
The substrate used in the present invention is, for example, M
Normal substrate materials such as gO can be applied.

【0010】本発明で形成される金属酸化物超伝導薄膜
は、例えばスパッタ蒸着、CVD蒸着、電子ビーム蒸
着、抵抗加熱蒸着等が適応されるが、金属酸化物超伝導
薄膜の組成制御が容易であるためスパッタ蒸着が好まし
い。
For the metal oxide superconducting thin film formed in the present invention, for example, sputter vapor deposition, CVD vapor deposition, electron beam vapor deposition, resistance heating vapor deposition, etc. are applied, but the composition control of the metal oxide superconducting thin film is easy. Therefore, sputter deposition is preferred.

【0011】また、本発明のエッチング方法としては、
例えばイオンビームエッチング等の通常の手法で充分行
える。
Further, the etching method of the present invention includes:
For example, a normal method such as ion beam etching can be sufficiently used.

【0012】本発明に供される金属酸化物超伝導薄膜
は、紫外線照射により超伝導特性が変化する材料であれ
ば何れでも良い。例えばA−B−Cu−O系複合化合物
(但しAはSc、Y、La、およびLa系列元素(原子
番号57、59〜60、62〜71)の内少なくとも1
種、BはBa、SrなどIIa族元素の内少なくとも1
種、かつAおよびB両元素とCu元素の濃度は0.5≦
(A+B)/Cu≦2.5の関係を満足する)、Bi−
Sr−Ca−Cu−O系複合化合物、Bi−Sr−Ca−
Cu−O系複合化合物中のSr原子の一部をPbで置換
された化合物、Tl−Ba−Ca−Cu−O系複合化合
物、もしくはTl−Ba−Ca−Cu−O系複合化合物
中のBa原子の一部をPbで置換された化合物等の銅系
複合酸化物または非銅系複合酸化物が供される。但し、
これらの超伝導材料は各超伝導転移温度が変わることに
よって、作製したジョセフソン素子の動作温度が変化す
ること勿論である。
The metal oxide superconducting thin film used in the present invention may be any material as long as its superconducting properties change when irradiated with ultraviolet light. For example, an AB—Cu—O-based composite compound (where A is at least one of Sc, Y, La, and La series elements (atomic numbers 57, 59 to 60, and 62 to 71))
Species, B is at least one of Group IIa elements such as Ba and Sr
Species, and the concentration of both A and B elements and Cu element is 0.5 ≦
(A + B) /Cu≦2.5 is satisfied), Bi−
Sr-Ca-Cu-O-based composite compound, Bi-Sr-Ca-
A compound in which a part of Sr atoms in a Cu-O-based composite compound is substituted with Pb, a Tl-Ba-Ca-Cu-O-based composite compound, or a Ba in a Tl-Ba-Ca-Cu-O-based composite compound A copper-based composite oxide or a non-copper-based composite oxide such as a compound in which some of the atoms are substituted with Pb is provided. However,
Of course, in these superconducting materials, the operating temperature of the manufactured Josephson element changes as each superconducting transition temperature changes.

【0013】エッチングで概略形成されたジョセフソン
素子のブリッジ部にのみ選択的に紫外線を照射して、こ
のブリッジ部を非超伝導化する。本発明のジョセフソン
素子は、ブリッジ部に紫外線を照射することを特徴とし
ている。超伝導体にエネルギー線を照射すると超伝導特
性が変化することは、前述した特願平2−216885
号で開示したが、紫外線よりもエネルギーの高いエネル
ギー線を照射すると、例え照射量を制御したとしてもエ
ネルギー線は超伝導薄膜の内部にまで到達し、照射した
部分の超伝導特性は制御できない。したがって、照射す
るエネルギー線のエネルギーが低い紫外線の場合のみ照
射量制御で超伝導特性が制御できる。本発明に適応でき
る紫外線の波長領域は、400〜300nmの近紫外線
もしくは300〜190nmの遠紫外線である。
Ultraviolet rays are selectively applied only to the bridge portion of the Josephson element roughly formed by etching to make this bridge portion non-superconductive. The Josephson element of the present invention is characterized in that the bridge portion is irradiated with ultraviolet rays. Irradiation of a superconductor with an energy beam causes a change in superconductivity, as described in Japanese Patent Application No. 2-216885.
However, when an energy ray having a higher energy than ultraviolet rays is irradiated, even if the irradiation amount is controlled, the energy ray reaches the inside of the superconducting thin film, and the superconducting property of the irradiated part cannot be controlled. Therefore, the superconductivity can be controlled by controlling the irradiation amount only in the case of ultraviolet rays having low energy of the irradiated energy rays. The wavelength range of ultraviolet light applicable to the present invention is near ultraviolet light of 400 to 300 nm or far ultraviolet light of 300 to 190 nm.

【0014】以下に、本発明の一実施例について図面を
用いて説明する。図1は、本発明の一実施例のジョセフ
ソン素子の製造方法の一工程を表したものである。ここ
で、基板11上に、例えばスパッタリングで金属酸化物
超伝導薄膜12を形成する。次に、フォトリソグラフィ
ーとドライエッチングなどの手法を用いて図1のよう
に、2つの電極部13とそれらをつなぐブリッジ部14
を形成する。そして最後に、ブリッジ部14に対して、
紫外線を照射する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows one step of a method for manufacturing a Josephson device according to one embodiment of the present invention. Here, the metal oxide superconducting thin film 12 is formed on the substrate 11 by, for example, sputtering. Next, as shown in FIG. 1, two electrode portions 13 and a bridge portion 14 connecting them are formed by using a method such as photolithography and dry etching.
To form And finally, for the bridge part 14,
Irradiate with ultraviolet light.

【0015】紫外線照射によって、ブリッジ部14の表
面部分から超伝導性を劣化させ、実効的なブリッジ部の
厚さを制御できる。そして、照射量を適当に調節するこ
とによって、実効的ブリッジ厚を、コヒーレント長程度
まで、きわめて薄くすることができ、これによって、ブ
リッジ型ジョセフソン効果が現れる。
The superconductivity is deteriorated from the surface portion of the bridge portion 14 by the ultraviolet irradiation, and the effective thickness of the bridge portion can be controlled. Then, by appropriately adjusting the irradiation amount, the effective bridge thickness can be extremely reduced to about the coherent length, whereby the bridge-type Josephson effect appears.

【0016】エッチングで作製するときのブリッジ部1
4の実際の幅は、10μm程度以下であればよく、通常
のドライエッチングプロセスで十分実現可能で、集束イ
オンビームなど超高精度の加工は必要としない。また、
紫外線照射の領域も、ブリッジ部14の全部、あるいは
一部分に照射すればよく、したがって、フォトマスクな
どを利用して高精度に露光する必要はなく、メタルマス
クを試料の上に置く程度で十分である。
Bridge part 1 when manufactured by etching
The actual width of 4 may be about 10 μm or less, which can be sufficiently realized by a normal dry etching process, and does not require ultra-high precision processing such as a focused ion beam. Also,
The ultraviolet irradiation area may be applied to the whole or a part of the bridge portion 14. Therefore, it is not necessary to perform exposure with high precision using a photomask or the like, and it is sufficient to place a metal mask on the sample. is there.

【0017】本発明の効果をさらに理解させるために、
図1を引用して具体的な実施例について述べる。
In order to further understand the effects of the present invention,
A specific embodiment will be described with reference to FIG.

【0018】実施例1 MgO単結晶を基板11として用い、その(100)面
上に金属酸化物超伝導薄膜12を高周波プレーナマグネ
トロンスッパタにより形成した。スパッタでは、焼結し
たBiSrCaCuO粉末をターゲットに用いた。スパ
ッタ条件は、Ar,O2混合ガスの圧力を0.5Pa、
ガス混合比Ar:O2=1:5、スパッタ電力は150
W、スパッタ時間は10分で、薄膜の厚さ110nmで
ある。なお、スパッタの際の基板11の温度は580℃
にした。できた薄膜12の超伝導転移温度は80Kであ
った。また、この薄膜12の表面はジョセフソン接合を
形成するのには十分の平坦度を有していた。
Example 1 An MgO single crystal was used as a substrate 11, and a metal oxide superconducting thin film 12 was formed on a (100) plane thereof by a high-frequency planar magnetron sputtering. In sputtering, sintered BiSrCaCuO powder was used as a target. The sputtering conditions were as follows: Ar, O 2 mixed gas pressure 0.5 Pa;
Gas mixture ratio Ar: O 2 = 1: 5, sputtering power 150
W, the sputtering time is 10 minutes, and the thickness of the thin film is 110 nm. The temperature of the substrate 11 at the time of sputtering is 580 ° C.
I made it. The superconducting transition temperature of the resulting thin film 12 was 80K. The surface of the thin film 12 had sufficient flatness to form a Josephson junction.

【0019】この金属酸化物超伝導薄膜12の表面に、
ネガ型フォトレジスト(OMR)を回転塗布した。幅、
長さともに10μmのブリッジパターンのフォトマスク
を用いて露光し、現像して、エッチングのためのマスク
を膜12上に形成した。エッチングは、アルゴンイオン
ビームエッチング装置を利用し、約600μA/cm 2
のイオン電流密度で、約25分エッチングを行い、図1
のような金属酸化物超伝導薄膜によるパターンを形成し
た。エッチング後、表面に残っているレジスト膜は、酸
素プラズマによって酸化させ、取り除いた。
On the surface of the metal oxide superconducting thin film 12,
A negative photoresist (OMR) was spin-coated. width,
Photomask with bridge pattern of 10μm in length
Exposure using a mask, developing and etching
Was formed on the film 12. Etching is argon ion
Approximately 600 μA / cm using a beam etching device Two
Etching was performed for about 25 minutes at an ion current density of FIG.
A pattern of metal oxide superconducting thin film like
Was. After etching, the remaining resist film on the surface
Oxidized by elementary plasma and removed.

【0020】次に、紫外線照射を行なった。光源には、
160Wの低圧水銀ランプを用い、試料周辺でのオゾン
生成を防ぐため、試料は減圧ヘリウムガス中にセットし
た。試料上にメタルマスクをおいて、ブリッジ部14に
のみ紫外線が照射されるようにして、約1時間の紫外線
照射を行ない、素子作製工程は終了する。
Next, ultraviolet irradiation was performed. For the light source,
The sample was set in reduced pressure helium gas using a 160 W low pressure mercury lamp to prevent ozone generation around the sample. A metal mask is placed on the sample, and only the bridge portion 14 is irradiated with ultraviolet light, and ultraviolet light irradiation is performed for about 1 hour, thereby completing the device manufacturing process.

【0021】電極部13の間に定電流を流しながら、そ
の両端の電圧を測定し、電圧・電流特性を観測しなが
ら、10GHz前後のマイクロ波をブリッジ部に照射し
たところ、膜12の超伝導転移温度以下の温度では、電
流を増減させると、約20μV程度の階段状の電圧変
化、いわゆるシャピロ(Shapiro)ステップが観測され
た。このことから、本製造方法によって、ジョセフソン
接合が形成されたことを確認した。
When a constant current is passed between the electrode portions 13, the voltage at both ends is measured, and while observing the voltage-current characteristics, a microwave of about 10 GHz is applied to the bridge portion. At a temperature lower than the transition temperature, when the current was increased or decreased, a stepwise voltage change of about 20 μV, a so-called Shapiro step, was observed. From this, it was confirmed that a Josephson junction was formed by the present manufacturing method.

【0022】上記実施例では、金属酸化物超伝導薄膜1
2として、Bi−Sr−Ca−Cu−O超伝導薄膜を用
いたが、この種のものに限る必要はなく、A−B−Cu
−O複合化合物を用いた場合でも、同様に本発明は有効
であった。ここに、AはSc、Y、La、およびLa系
列元素(原子番号57、59〜60、62〜71)の内
少なくとも1種、BはBa、SrなどIIa族元素の内少
なくとも1種、かつA、B元素とCu元素の濃度が0.
5≦(A+B)/Cu≦2.5を満足すれば、作製した
薄膜の超伝導転移温度に多少の差は生じるが基本的に本
発明にとってその有効性に変化を与えない。さらに、B
i−Sr−Ca−Cu−O化合物中のSr原子の一部をPb
で置換された化合物、あるいは、Tl−Ba−Ca−C
u−O化合物またはTl−Ba−Ca−Cu−O化合物
中のBa原子の一部をPbで置換された化合物を用いて
も同様に本発明は有効であった。
In the above embodiment, the metal oxide superconducting thin film 1
2, a Bi-Sr-Ca-Cu-O superconducting thin film was used. However, the present invention is not limited to this type, and AB-Cu-
The present invention was similarly effective when the —O composite compound was used. Here, A is at least one of Sc, Y, La, and La series elements (atomic numbers 57, 59 to 60, 62 to 71), B is at least one of Group IIa elements such as Ba and Sr, and The concentration of the A, B and Cu elements is 0.
If 5 ≦ (A + B) /Cu≦2.5 is satisfied, there will be some difference in the superconducting transition temperature of the prepared thin film, but basically there is no change in its effectiveness for the present invention. Further, B
Some of the Sr atoms in the i-Sr-Ca-Cu-O compound are converted to Pb
Or Tl-Ba-Ca-C
The present invention was similarly effective when a compound in which a part of Ba atoms in the u-O compound or Tl-Ba-Ca-Cu-O compound was substituted with Pb was used.

【0023】[0023]

【発明の効果】本発明のジョセフソン素子の製造方法で
は、金属酸化物超伝導薄膜をエッチングで加工したのち
に、紫外線照射を行なう。紫外線照射量を制御すること
によって、通常のブリッジ型ジョセフソン接合作製にと
って従来必要であった、数nm程度の加工精度を必要と
せずに、良好な特性のジョセフソン素子を再現性よく作
製できる。
According to the method for manufacturing a Josephson device of the present invention, a metal oxide superconducting thin film is processed by etching and then irradiated with ultraviolet rays. By controlling the amount of ultraviolet irradiation, a Josephson element having good characteristics can be manufactured with good reproducibility without requiring processing accuracy of about several nm, which is conventionally required for manufacturing a normal bridge type Josephson junction.

【0024】ジョセフソン素子は、超高性能マイクロ波
ミキサーや超高感度磁界計測装置などではきわめて重要
な構成要素であり、また、金属酸化物超伝導体の中で、
将来さらに転移温度の高い材料の発見も期待できること
から、本発明の工業的価値は高い。
The Josephson element is a very important component in an ultra-high-performance microwave mixer, an ultra-sensitive magnetic field measuring device, and the like.
Since the discovery of a material having a higher transition temperature can be expected in the future, the industrial value of the present invention is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のジョセフソン素子の製造法
の一工程における斜視図
FIG. 1 is a perspective view showing one step of a method for manufacturing a Josephson device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 金属酸化物超伝導薄膜 3 電極部 4 ブリッジ部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Metal oxide superconducting thin film 3 Electrode part 4 Bridge part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−161789(JP,A) 特開 平1−125002(JP,A) 特開 平1−220875(JP,A) 特開 平1−257380(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/22 - 39/24 H01L 39/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-161789 (JP, A) JP-A-1-125002 (JP, A) JP-A-1-220875 (JP, A) JP-A-1- 257380 (JP, A) (58) Fields studied (Int. Cl. 7 , DB name) H01L 39/22-39/24 H01L 39/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に金属酸化物超伝導薄膜を形成した
後、前記金属酸化物超伝導薄膜をエッチングにより2つ
の電極部と前記2つの電極部をつなぐ微少なブリッジ部
を形成した後、前記ブリッジ部に波長190〜400nmの紫外
線を照射し、前記ブリッジ部を構成する前記金属酸化物
導薄膜の表面に酸素欠損を生じさせることを特徴と
するジョセフソン素子の製造方法
After a metal oxide superconducting thin film is formed on a substrate, the metal oxide superconducting thin film is etched to form two electrode portions and a minute bridge portion connecting the two electrode portions. Ultraviolet light with a wavelength of 190 to 400 nm
Irradiating a line, the metal oxide constituting the bridge portion
Method of manufacturing a Josephson device characterized by causing oxygen deficiency in the surface of the superconductive thin film
【請求項2】 金属酸化物超伝導薄膜が、A−B−Cu
−O複合化合物であることを特徴とする、請求項1記載
のジョセフソン素子の製造方法。ここに、AはSc、
Y、La、およびLa系列元素(原子番号57、59〜
60、62〜71)の内少なくとも1種、BはIIa族元
素の内少なくとも1種、かつAおよびB両元素とCu元
素の濃度は、0.5≦(A+B)/Cu≦2.5。
2. The superconducting metal oxide thin film is AB-Cu
The method for producing a Josephson device according to claim 1, wherein the method is a —O composite compound. Where A is Sc,
Y, La, and La series elements (atomic numbers 57, 59 to
60, 62 to 71), B is at least one of Group IIa elements, and the concentration of both A and B elements and Cu element is 0.5 ≦ (A + B) /Cu≦2.5.
【請求項3】 金属酸化物超伝導薄膜が、Bi−Sr−C
a−Cu−O系化合物、前記Bi−Sr−Ca−Cu−O系化
合物中のSr原子の一部をPbで置換された化合物、T
l−Ba−Ca−Cu−O系化合物または前記Tl−B
a−Ca−Cu−O系化合物中のBa原子の一部をPb
で置換された化合物の何れかであることを特徴とする、
請求項1記載のジョセフソン素子の製造方法。
3. The method according to claim 1, wherein the metal oxide superconducting thin film is Bi-Sr-C.
an a-Cu-O-based compound, a compound in which part of the Sr atoms in the Bi-Sr-Ca-Cu-O-based compound is substituted with Pb,
1-Ba-Ca-Cu-O-based compound or Tl-B
Part of Ba atoms in a-Ca-Cu-O-based compound is converted to Pb
Characterized in that it is any of the compounds substituted with
A method for manufacturing a Josephson device according to claim 1.
JP17370591A 1991-07-15 1991-07-15 Method of manufacturing Josephson device Expired - Fee Related JP3149460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17370591A JP3149460B2 (en) 1991-07-15 1991-07-15 Method of manufacturing Josephson device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17370591A JP3149460B2 (en) 1991-07-15 1991-07-15 Method of manufacturing Josephson device

Publications (2)

Publication Number Publication Date
JPH0521855A JPH0521855A (en) 1993-01-29
JP3149460B2 true JP3149460B2 (en) 2001-03-26

Family

ID=15965605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17370591A Expired - Fee Related JP3149460B2 (en) 1991-07-15 1991-07-15 Method of manufacturing Josephson device

Country Status (1)

Country Link
JP (1) JP3149460B2 (en)

Also Published As

Publication number Publication date
JPH0521855A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US5162298A (en) Grain boundary junction devices using high tc superconductors
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
EP0325765A1 (en) Josephson device having a Josephson junction structure suitable for an oxide superconductor
Soutome et al. Investigation of ramp-type Josephson junctions with surface-modified barriers
EP0414205B1 (en) Methods of manufacturing thin film superconductors and superconductor devices
JP3149460B2 (en) Method of manufacturing Josephson device
US20080146449A1 (en) Electrical device and method of manufacturing same
Lacquantii et al. Properties of RF-sputtered Nb/Al-AlO/sub x//Nb Josephson SNAP junctions
Frenkel et al. SEM and electrical studies of current induced superconducting-resistive transitions in Y1Ba2Cu3O7− x thin films
US5856205A (en) Josephson junction device of oxide superconductor having low noise level at liquid nitrogen temperature
JP2776004B2 (en) Method of manufacturing Josephson device
US5873985A (en) Process of making squid device having tilt-boundary junction
JP3147999B2 (en) Josephson junction device and method of manufacturing the same
JPH01208878A (en) Superconducting device, superconducting wiring and manufacture thereof
JP2976427B2 (en) Method of manufacturing Josephson device
JPS63265475A (en) Manufacture of superconducting electronic circuit
Radparvar et al. All niobium nitride Josephson tunnel junctions with thermally oxidized magnesium barrier
JPH04171874A (en) Josephson device and manufacture thereof
JP2899287B2 (en) Josephson element
Holdeman et al. Niobium microbridges for SQUID applications
JP2641972B2 (en) Superconducting element and manufacturing method thereof
JP3085492B2 (en) Micro-bridge type Josephson device and stacked type Josephson device
Tsuge et al. Microfabrication processes for high-J/sub c/superconducting films
JPH06338639A (en) Manufacture of josephson element
Park et al. Properties of bridge‐type weak‐link device with YBCO thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees