JP2641969B2 - Superconducting element and fabrication method - Google Patents

Superconducting element and fabrication method

Info

Publication number
JP2641969B2
JP2641969B2 JP2257851A JP25785190A JP2641969B2 JP 2641969 B2 JP2641969 B2 JP 2641969B2 JP 2257851 A JP2257851 A JP 2257851A JP 25785190 A JP25785190 A JP 25785190A JP 2641969 B2 JP2641969 B2 JP 2641969B2
Authority
JP
Japan
Prior art keywords
superconducting
thin film
oxide
channel
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2257851A
Other languages
Japanese (ja)
Other versions
JPH04134881A (en
Inventor
孝夫 中村
博史 稲田
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2257851A priority Critical patent/JP2641969B2/en
Priority to CA002052378A priority patent/CA2052378C/en
Priority to DE69114435T priority patent/DE69114435T2/en
Priority to EP91402596A priority patent/EP0478466B1/en
Publication of JPH04134881A publication Critical patent/JPH04134881A/en
Priority to US08/183,894 priority patent/US5514877A/en
Priority to US08/521,736 priority patent/US5683968A/en
Application granted granted Critical
Publication of JP2641969B2 publication Critical patent/JP2641969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子およびその作製方法に関する。
より詳細には、新規な構成の超電導素子およびその作製
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a superconducting element and a method for manufacturing the same.
More specifically, the present invention relates to a superconducting element having a novel configuration and a method for manufacturing the same.

従来の技術 超電導を使用した代表的な素子に、ジョセフソン素子
がある。ジョセフソン素子は、一対の超電導体をトンネ
ル障壁を介して結合した構成であり、高速スイッチング
動作が可能である。しかしながら、ジョセフソン素子は
2端子の素子であり、論理回路を実現するためには複雑
な回路構成になってしまう。
2. Description of the Related Art A typical element using superconductivity is a Josephson element. The Josephson element has a configuration in which a pair of superconductors are coupled via a tunnel barrier, and can perform high-speed switching operation. However, the Josephson element is a two-terminal element, and requires a complicated circuit configuration to realize a logic circuit.

一方、超電導を利用した3端子素子としては、超電導
ベーストランジスタ、超電導FET等がある。第3図に、
超電導ベーストランジスタの概念図を示す。第3図の超
電導ベーストランジスタは、超電導体または常電導体で
構成されたエミッタ21、絶縁体で構成されたトンネル障
壁22、超電導体で構成されたベース23、半導体アイソレ
ータ24および常電導体で構成されたコレクタ25を積層し
た構成になっている。この超電導ベーストランジスタ
は、トンネル障壁22を通過した高速電子を利用した低電
力消費、高速動作の素子である。
On the other hand, examples of a three-terminal element utilizing superconductivity include a superconducting base transistor and a superconducting FET. In FIG.
1 shows a conceptual diagram of a superconducting base transistor. The superconducting base transistor shown in FIG. 3 comprises an emitter 21 composed of a superconductor or a normal conductor, a tunnel barrier 22 composed of an insulator, a base 23 composed of a superconductor, a semiconductor isolator 24, and a normal conductor. The collector 25 is stacked. This superconducting base transistor is an element of low power consumption and high speed operation utilizing high speed electrons passing through the tunnel barrier 22.

第4図に、超電導FETの概念図を示す。第4図の超電
導FETは、超電導体で構成されている超電導ソースで電
極41および超電導ドレイン電極42が、半導体層43上に互
いに近接して配置されている。超電導ソース電極41およ
び超電導ドレイン電極42の間の部分の半導体層43は、下
側が大きく削られ厚さが薄くなっている。また、半導体
層43の下側表面にはゲート絶縁膜46が形成され、ゲート
絶縁膜46上にゲート電極44が設けられている。
FIG. 4 shows a conceptual diagram of a superconducting FET. The superconducting FET shown in FIG. 4 is a superconducting source composed of a superconductor, in which an electrode 41 and a superconducting drain electrode 42 are arranged on a semiconductor layer 43 close to each other. The lower portion of the semiconductor layer 43 between the superconducting source electrode 41 and the superconducting drain electrode 42 is largely shaved and thin. A gate insulating film 46 is formed on the lower surface of the semiconductor layer 43, and a gate electrode 44 is provided on the gate insulating film 46.

超電導FETは、超電導近接効果で超電導ソース電極41
および超電導ドレイン電極42間の半導体層43を流れる超
電導電流を、ゲート電圧で制御する低電力消費、高速動
作の素子である。
The superconducting FET has a superconducting source electrode 41 due to the superconducting proximity effect.
Further, the superconducting current flowing in the semiconductor layer 43 between the superconducting drain electrodes 42 is controlled by a gate voltage, and is a low power consumption and high speed operation element.

さらに、ソース電極、ドレイン電極間に超電導体でチ
ャネルを形成し、この超電導チャネルを流れる電流をゲ
ート電極に印加する電圧で制御する3端子の超電導素子
も発表されている。
Further, a three-terminal superconducting element in which a channel is formed by a superconductor between a source electrode and a drain electrode and a current flowing through the superconducting channel is controlled by a voltage applied to a gate electrode has been disclosed.

発明が解決しようとする課題 上記の超電導ベーストランジスタおよび超電導FET
は、いずれも半導体層と超電導体層とが積層された部分
を有する。ところが、近年研究が進んでいる酸化物超電
導体を使用して、半導体層と超電導体層との積層構造を
作製することは困難である。また、この構造が作製でき
ても半導体層と超電導体層の間の界面の制御が難しく、
素子として、満足な動作をしなかった。
PROBLEM TO BE SOLVED BY THE INVENTION Superconducting base transistor and superconducting FET described above
Have a portion where a semiconductor layer and a superconductor layer are laminated. However, it is difficult to produce a stacked structure of a semiconductor layer and a superconductor layer using an oxide superconductor that has been studied in recent years. In addition, even if this structure can be manufactured, it is difficult to control the interface between the semiconductor layer and the superconductor layer,
The device did not operate satisfactorily.

また、超電導FETは、超電導近接効果を利用するた
め、超電導ソース電極41および超電導ドレイン電極42
を、それぞれ構成する超電導体のコヒーレンス長の数倍
程度以内に近接させて作製しなければならない。特に酸
化物超電導体は、コヒーレンス長が短いので、酸化物超
電導体を使用した場合には、超電導ソース電極41および
超電導ドレイン電極42間の距離は、数10nm以下にしなけ
ればならない。このような微細加工は非常に困難であ
り、従来は酸化物超電導体を使用した超電導FETを再現
性よく作製できなかった。
In addition, the superconducting FET uses the superconducting proximity effect, so that the superconducting source electrode 41 and the superconducting drain electrode 42
Must be made close to each other within about several times the coherence length of the superconductor constituting each. In particular, since the oxide superconductor has a short coherence length, when an oxide superconductor is used, the distance between the superconducting source electrode 41 and the superconducting drain electrode 42 must be several tens nm or less. Such microfabrication is very difficult, and conventionally, a superconducting FET using an oxide superconductor could not be produced with good reproducibility.

さらに、従来の超電導チャネルを有する超電導素子
は、変調動作は確認されたが、キャリア密度が高いた
め、完全なオン/オフ動作ができなかった。酸化物超電
導体は、キャリア密度が低いので、超電導チャネルに使
用することにより、完全なオン/オフ動作を行う上記の
素子の実現の可能性が期待されている。しかしながら、
超電導チャネルは5nm程度の厚さにしなければならず、
そのような構成の実現することは困難であった。
Further, in the conventional superconducting element having a superconducting channel, a modulation operation was confirmed, but complete on / off operation could not be performed due to a high carrier density. Since the oxide superconductor has a low carrier density, the possibility of realizing the above-mentioned element which performs a complete on / off operation by using it for a superconducting channel is expected. However,
The superconducting channel must be about 5 nm thick,
It has been difficult to realize such a configuration.

そこで本発明の目的は、上記従来技術の問題点を解決
した、新規な構成の超電導素子およびその作製方法を提
供することにある。
Therefore, an object of the present invention is to provide a superconducting element having a novel configuration and a method of manufacturing the superconducting element, which has solved the above-mentioned problems of the related art.

問題を解決するための手段 本発明に従うと、基板上に成膜された酸化物超電導薄
膜に形成された超電導チャネルと、該超電導チャネルの
両端近傍に配置されて該超電導チャネルに電流を流すソ
ース電極およびドレイン電極と、前記超電導チャネル上
に配置されて該超電導チャネルに流れる電流を制御する
ゲート電極を具備する超電導素子において、前記酸化物
超電導薄膜が平坦な上面を有するc軸配向の薄膜であ
り、前記酸化物超電導薄膜中に前記基板の成分元素が下
側から凸状に拡散した領域があり、この領域が拡散元素
によって超電導性を失った非超電導領域であり、前記酸
化物超電導薄膜の前記非超電導領域上に薄い超電導チャ
ネルを具備することを特徴とする超電導素子が提供され
る。
Means for Solving the Problems According to the present invention, a superconducting channel formed on an oxide superconducting thin film formed on a substrate, and a source electrode disposed near both ends of the superconducting channel and flowing a current through the superconducting channel And a drain electrode, a superconducting element comprising a gate electrode disposed on the superconducting channel and controlling a current flowing through the superconducting channel, wherein the oxide superconducting thin film is a c-axis oriented thin film having a flat top surface, In the oxide superconducting thin film, there is a region in which the component elements of the substrate are diffused in a convex manner from below, and this region is a non-superconducting region that has lost superconductivity due to the diffusing element, and the non-superconducting region of the oxide superconducting thin film A superconducting device is provided, comprising a thin superconducting channel on a superconducting region.

また、本発明においては、上記の超電導素子の作製方
法として、基板上にc軸配向の酸化物超電導薄膜を形成
する工程と、この酸化物超電導薄膜の一部に局所的にエ
ネルギを印加して前記基板の成分元素を酸化物超電導薄
膜中に下側から凸状に拡散させ、拡散元素により酸化物
超電導体の超電導性を失わせて非超電導領域を形成する
工程とを含むことを特徴とする方法が提供される。
Further, in the present invention, as a method of manufacturing the above-described superconducting element, a step of forming a c-axis oriented oxide superconducting thin film on a substrate, and locally applying energy to a part of the oxide superconducting thin film, Forming a non-superconducting region by diffusing the constituent elements of the substrate into the oxide superconducting thin film in a convex manner from below, and losing the superconductivity of the oxide superconductor by the diffusing element. A method is provided.

作用 本発明の超電導素子は、酸化物超電導体による超電導
チャネルと、超電導チャネルに電流を流すソース電極お
よびドレイン電極と、超電導チャネルを流れる電流を制
御するゲート電極とを具備する。本発明の超電導素子で
は、各電極は必ずしも超電導電極である必要がない。
The superconducting element of the present invention includes a superconducting channel made of an oxide superconductor, a source electrode and a drain electrode for flowing a current through the superconducting channel, and a gate electrode for controlling a current flowing through the superconducting channel. In the superconducting element of the present invention, each electrode does not necessarily need to be a superconducting electrode.

また、従来の超電導FETが、超電導近接効果を利用し
て半導体中に超電導電流を流すのに対し、本発明の超電
導素子では、主電流は超電導体中を流れる。従って、従
来の超電導FETを作製するときに必要な微細加工技術の
制限が緩和される。
Further, while a conventional superconducting FET uses a superconducting proximity effect to flow a superconducting current through a semiconductor, in the superconducting element of the present invention, a main current flows through the superconductor. Therefore, the limitation of the fine processing technology required when manufacturing the conventional superconducting FET is eased.

超電導チャネルは、ゲート電極に印加された電圧で開
閉させるために、ゲート電極により発生される電界の方
向に、厚さが5nm程度でなければならない。本発明の主
眼は、このような極薄の超電導チャネルを実現すること
にある。本発明の超電導素子では、酸化物超電導薄膜中
に拡散した基板成分により酸化物超電導薄膜中に非超電
導領域が形成され、この非超電導領域により薄くなった
超電導部分を超電導チャネルとする。
The superconducting channel must be about 5 nm thick in the direction of the electric field generated by the gate electrode in order to open and close with the voltage applied to the gate electrode. The main point of the present invention is to realize such an ultra-thin superconducting channel. In the superconducting element of the present invention, a non-superconducting region is formed in the oxide superconducting thin film by the substrate component diffused in the oxide superconducting thin film, and the superconducting portion thinned by the non-superconducting region is used as a superconducting channel.

本発明の超電導素子では、上記の非超電導領域によ
り、極薄の超電導チャネルを形成する。従って、この非
超電導領域は、超電導素子の超電導チャネル部分の下側
となる酸化物超電導薄膜の一部に形成されなければなら
ない。従って、本発明の方法では、例えば、集束イオン
ビーム、レーザ等を使用して酸化物超電導薄膜の超電導
チャネルとなる部分に局所的にエネルギを印加し、下方
の基板の成分元素を拡散させる。
In the superconducting element of the present invention, an extremely thin superconducting channel is formed by the non-superconducting region. Therefore, this non-superconducting region must be formed in a part of the oxide superconducting thin film below the superconducting channel portion of the superconducting element. Therefore, in the method of the present invention, for example, a focused ion beam, a laser, or the like is used to locally apply energy to a portion to be a superconducting channel of the oxide superconducting thin film, thereby diffusing component elements of a substrate below.

本発明の超電導素子において、基板には、MgO、SrTiO
3等の酸化物単結晶基板が使用可能である。これらの基
板上には、配向性の高い結晶からなる酸化物超電導薄膜
を成長させることが可能であるので好ましい。また、表
面に絶縁層を有する半導体基板を使用することもでき
る。
In the superconducting element of the present invention, MgO, SrTiO
An oxide single crystal substrate such as 3 can be used. On these substrates, an oxide superconducting thin film composed of highly oriented crystals can be grown, which is preferable. Alternatively, a semiconductor substrate having an insulating layer on the surface can be used.

また、本発明の超電導素子には、Y−Ba−Cu−O系酸
化物超電導体、Bi−Sr−Ca−Cu−O系酸化物超電導体、
Tl−Ba−Ca−Cu−O系酸化物超電導体等任意の酸化物超
電導体を使用することができる。
Further, the superconducting element of the present invention, a Y-Ba-Cu-O-based oxide superconductor, Bi-Sr-Ca-Cu-O-based oxide superconductor,
Any oxide superconductor such as a Tl-Ba-Ca-Cu-O-based oxide superconductor can be used.

以下、本発明を実施例により、さらに詳しく説明する
が、以下の開示は本発明の単なる実施例に過ぎず、本発
明の技術的範囲をなんら制限するものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following disclosure is merely an example of the present invention, and does not limit the technical scope of the present invention.

実施例 第1図に、本発明の超電導素子の断面図を示す。第1
図の超電導素子は、基板5上に成膜され、基板成分が拡
散して超電導性を失った非超電導領域50が形成された酸
化物超電導薄膜1を有する。酸化物超電導薄膜1の非超
電導領域50の上の部分は、厚さ約5nmの極薄の超電導チ
ャネル10になっている。超電導チャネル10の上にはゲー
ト電極4が配置され、酸化物超電導薄膜1上の超電導チ
ャネル10の両側には、ソース電極2およびドレイン電極
3が配置されている。
Embodiment FIG. 1 shows a sectional view of a superconducting element of the present invention. First
The superconducting element shown in the figure has an oxide superconducting thin film 1 formed on a substrate 5 and formed with a non-superconducting region 50 in which a substrate component has diffused and has lost superconductivity. The portion above the non-superconducting region 50 of the oxide superconducting thin film 1 is an ultra-thin superconducting channel 10 having a thickness of about 5 nm. A gate electrode 4 is disposed on the superconducting channel 10, and a source electrode 2 and a drain electrode 3 are disposed on both sides of the superconducting channel 10 on the oxide superconducting thin film 1.

第2図を参照して、本発明の超電導素子を本発明の方
法で作製する手順を説明する。まず、第2図(a)に示
すような基板5上に第2図(b)に示すよう酸化物超電
導薄膜1を、オフアクシススパッタリング法、反応性蒸
着法、MBE法、CVD法等の方法で形成する。酸化物超電導
薄膜1の厚さは200〜300nmが好ましく、酸化物超電導体
としては、Y−Ba−Cu−O系酸化物超電導体、Bi−Sr−
Ca−Cu−O系酸化物超電導体、Tl−Ba−Ca−Cu−O系酸
化物超電導体が好ましく、c軸配向の薄膜とすることが
好ましい。これは、c軸配向の酸化物超電導薄膜は、基
板と平行な方向の臨界電流密度が大きいからである。基
板5としては、MgO(100)基板、SrTiO3(100)基板等
の絶縁体基板、または表面に、例えばMgAl2O4およびBaT
iO3を積層した絶縁膜を有するSi等の半導体基板が好ま
しい。
With reference to FIG. 2, a procedure for manufacturing the superconducting element of the present invention by the method of the present invention will be described. First, an oxide superconducting thin film 1 as shown in FIG. 2 (b) is formed on a substrate 5 as shown in FIG. 2 (a) by a method such as off-axis sputtering, reactive evaporation, MBE, CVD or the like. Formed. The thickness of the oxide superconducting thin film 1 is preferably 200 to 300 nm, and as the oxide superconductor, a Y-Ba-Cu-O-based oxide superconductor, Bi-Sr-
A Ca-Cu-O-based oxide superconductor and a Tl-Ba-Ca-Cu-O-based oxide superconductor are preferable, and a c-axis oriented thin film is preferable. This is because the c-axis oriented oxide superconducting thin film has a large critical current density in a direction parallel to the substrate. As the substrate 5, an insulating substrate such as a MgO (100) substrate or a SrTiO 3 (100) substrate, or a substrate such as MgAl 2 O 4 and BaT
A semiconductor substrate such as Si having an insulating film in which iO 3 is laminated is preferable.

次に、第1図(c)に示すよう酸化物超電導薄膜1に
矢印で示すよう局所的にレーザビームまたは集束イオン
ビームを照射して基板5の構成元素を酸化物超電導薄膜
1に拡散させ、非超電導領域50を形成する。酸化物超電
導薄膜1の非超電導領域50の上の部分は超電導チャネル
10となる。
Next, as shown by an arrow in FIG. 1 (c), the oxide superconducting thin film 1 is locally irradiated with a laser beam or a focused ion beam to diffuse constituent elements of the substrate 5 into the oxide superconducting thin film 1, The non-superconducting region 50 is formed. The portion above the non-superconducting region 50 of the oxide superconducting thin film 1 is a superconducting channel.
It becomes 10.

非超電導領域50をレーザビームを照射して形成する場
合、レーザとしては、エキシマレーザ、炭酸ガスレー
ザ、YAGレーザ等の高出力レーザが好ましい。例えば、
波長514nmのArレーザを使用する場合、照射出力は2.0W
とし、100μm/秒で走査するすることが好ましい。一
方、集束イオンビームを照射して非超電導領域50を形成
する場合、照射イオンはArイオンが好ましく、ビーム径
を0.2μm以下とし、加速電圧が50kV以下であることが
好ましい。
When the non-superconducting region 50 is formed by irradiating a laser beam, a high-output laser such as an excimer laser, a carbon dioxide laser, and a YAG laser is preferable. For example,
When an Ar laser with a wavelength of 514 nm is used, the irradiation output is 2.0 W
It is preferable to scan at 100 μm / sec. On the other hand, when the non-superconducting region 50 is formed by irradiating the focused ion beam, the irradiated ions are preferably Ar ions, the beam diameter is preferably 0.2 μm or less, and the acceleration voltage is preferably 50 kV or less.

次に、超電導チャネル10上にゲート電極を作製する。
ゲート電極は、絶縁体層上に金属層が積層された構造と
することが好ましい。従って、第2図(d)に示すよう
酸化物超電導薄膜1上に絶縁膜6および金属膜7を積層
する。絶縁膜6にはMgO等酸化物超電導薄膜との界面で
大きな準位を作らない絶縁体を用いることが好ましく、
その厚さは10nm以上とする。また、金属膜7にはAuまた
はTi、W等の高融点金属、これらのシリサイドを用いる
ことが好ましい。この積層された膜を第2図(e)に示
すよう超電導チャネル10の上の部分だけ残してエッチン
グにより除去し、ゲート電極4を形成する。
Next, a gate electrode is formed on superconducting channel 10.
The gate electrode preferably has a structure in which a metal layer is stacked over an insulator layer. Therefore, the insulating film 6 and the metal film 7 are laminated on the oxide superconducting thin film 1 as shown in FIG. It is preferable to use an insulator that does not form a large level at the interface with the oxide superconducting thin film such as MgO for the insulating film 6,
Its thickness is 10 nm or more. Further, it is preferable to use Au, a high melting point metal such as Ti or W, or a silicide thereof for the metal film 7. As shown in FIG. 2 (e), the laminated film is removed by etching while leaving only the portion above the superconducting channel 10 to form the gate electrode 4.

最後に、第2図(f)に示すようゲート電極4の両側
にゲート電極4に使用したものと同様の金属でソース電
極2およびドレイン電極3を形成して、本発明の超電導
素子が完成する。
Finally, as shown in FIG. 2 (f), the source electrode 2 and the drain electrode 3 are formed on both sides of the gate electrode 4 with the same metal as that used for the gate electrode 4, thereby completing the superconducting element of the present invention. .

本発明の超電導素子を本発明の方法で作製すると、超
電導FETを作製する場合に要求される微細加工技術の制
限が緩和される。また、表面が平坦にできるので、後に
必要に応じ配線を形成することが容易になる。従って、
作製が容易であり、素子の性能も安定しており、再現性
もよい。
When the superconducting element of the present invention is manufactured by the method of the present invention, the restriction on the fine processing technology required when manufacturing a superconducting FET is relaxed. Further, since the surface can be flattened, it becomes easy to form wiring later if necessary. Therefore,
It is easy to manufacture, the performance of the element is stable, and the reproducibility is good.

発明の効果 以上説明したように、本発明の超電導素子は、超電導
チャネル中を流れる超電導電流ゲート電圧で制御する構
成となっている。従って、従来の超電導FETのように、
超電導近接効果を利用していないので微細加工技術が緩
和される。また、超電導体と半導体を積層する必要もな
いので、酸化物超電導体を使用して高性能な素子が作製
できる。
Effect of the Invention As described above, the superconducting element of the present invention is configured to be controlled by the superconducting current gate voltage flowing in the superconducting channel. Therefore, like the conventional superconducting FET,
Since the superconducting proximity effect is not used, the fine processing technology is relaxed. Further, since there is no need to stack a superconductor and a semiconductor, a high-performance element can be manufactured using an oxide superconductor.

本発明により、超電導技術の電子デバイスへの応用が
さらに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の超電導素子の概略図であり、 第2図は、本発明の方法により本発明の超電導素子を作
製する場合の工程を示す概略図であり、 第3図は、超電導ベーストランジスタの概略図であり、 第4図は、超電導FETの概略図である。 [主な参照番号] 1……酸化物超電導薄膜、 2……ソース電極、 3……ドレイン電極、 4……ゲート電極、5……基板
FIG. 1 is a schematic view of a superconducting element of the present invention, FIG. 2 is a schematic view showing a process for producing a superconducting element of the present invention by a method of the present invention, and FIG. FIG. 4 is a schematic diagram of a base transistor, and FIG. 4 is a schematic diagram of a superconducting FET. [Main Reference Numbers] 1 ... Oxide superconducting thin film, 2 ... Source electrode, 3 ... Drain electrode, 4 ... Gate electrode, 5 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−170080(JP,A) 特開 平2−234479(JP,A) 特開 平1−214178(JP,A) 特開 昭63−273371(JP,A) 特開 昭63−281481(JP,A) 特開 昭64−86577(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-170080 (JP, A) JP-A-2-234479 (JP, A) JP-A 1-214178 (JP, A) JP-A-63-1988 273371 (JP, A) JP-A-63-281481 (JP, A) JP-A-64-86577 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に成膜された酸化物超電導薄膜に形
成された超電導チャネルと、該超電導チャネルの両端近
傍に配置されて該超電導チャネルに電流を流すソース電
極およびドレイン電極と、前記超電導チャネル上に配置
されて該超電導チャネルに流れる電流を制御するゲート
電極を具備する超電導素子において、前記酸化物超電導
薄膜が平坦な上面を有するc軸配向の薄膜であり、前記
酸化物超電導薄膜中に前記基板の成分元素が下側から凸
状に拡散した領域があり、この領域が拡散元素によって
超電導性を失った非超電導領域であり、前記酸化物超電
導薄膜の前記非超電導領域上に薄い超電導チャネルを具
備することを特徴とする超電導素子。
A superconducting channel formed on an oxide superconducting thin film formed on a substrate; a source electrode and a drain electrode disposed near both ends of the superconducting channel to flow a current through the superconducting channel; In a superconducting element including a gate electrode disposed on a channel to control a current flowing through the superconducting channel, the oxide superconducting thin film is a c-axis oriented thin film having a flat upper surface, and There is a region in which the component elements of the substrate are diffused from below in a convex shape, and this region is a non-superconducting region having lost superconductivity due to the diffusing element, and a thin superconducting channel is formed on the non-superconducting region of the oxide superconducting thin film. A superconducting element comprising:
【請求項2】前記酸化物超電導薄膜の前記超電導チャネ
ルの両側の部分に、超電導チャネルよりも厚い超電導領
域を有することを特徴とする請求項1に記載の超電導素
子。
2. The superconducting element according to claim 1, wherein a portion of the oxide superconducting thin film on both sides of the superconducting channel has a superconducting region thicker than the superconducting channel.
【請求項3】前記酸化物超電導薄膜の厚い超電導領域上
にソース電極およびドレイン電極が配置されていること
を特徴とする請求項2に記載の超電導素子。
3. The superconducting device according to claim 2, wherein a source electrode and a drain electrode are arranged on the superconducting region having a large thickness of the oxide superconducting thin film.
【請求項4】基板上にc軸配向の酸化物超電導薄膜を形
成する工程と、この酸化物超電導薄膜の一部に局所的に
エネルギを印加して前記基板の成分元素を酸化物超電導
薄膜中に下側から凸状に拡散させ、拡散元素により酸化
物超電導体の超電導性を失わせて非超電導領域を形成す
る工程とを含むことを特徴とする請求項1〜3のいずれ
か1項に記載の超電導素子の作製方法。
4. A step of forming a c-axis oriented oxide superconducting thin film on a substrate, and locally applying energy to a part of the oxide superconducting thin film to cause the constituent elements of the substrate to be removed from the oxide superconducting thin film. Forming a non-superconducting region by diffusing the superconductivity of the oxide superconductor with a diffusing element in a convex shape from below. A method for manufacturing the superconducting element according to the above.
JP2257851A 1990-09-27 1990-09-27 Superconducting element and fabrication method Expired - Lifetime JP2641969B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2257851A JP2641969B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method
CA002052378A CA2052378C (en) 1990-09-27 1991-09-27 Superconducting device and a method for manufacturing the same
DE69114435T DE69114435T2 (en) 1990-09-27 1991-09-27 Superconducting device and its manufacturing process.
EP91402596A EP0478466B1 (en) 1990-09-27 1991-09-27 A superconducting device and a method for manufacturing the same
US08/183,894 US5514877A (en) 1990-09-27 1994-01-21 Superconducting device and a method for manufacturing the same
US08/521,736 US5683968A (en) 1990-09-27 1995-08-31 Method for manufacturing a superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257851A JP2641969B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method

Publications (2)

Publication Number Publication Date
JPH04134881A JPH04134881A (en) 1992-05-08
JP2641969B2 true JP2641969B2 (en) 1997-08-20

Family

ID=17312042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257851A Expired - Lifetime JP2641969B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method

Country Status (1)

Country Link
JP (1) JP2641969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69316092T2 (en) * 1992-06-24 1998-07-16 Sumitomo Electric Industries Method for producing a superconducting device with a superconducting channel made of oxide superconducting material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486577A (en) * 1987-05-01 1989-03-31 Nippon Telegraph & Telephone Preparation of superconductive oxide film
JPS63273371A (en) * 1987-05-01 1988-11-10 Fujikura Ltd Manufacture of superconducting electric circuit
JP2641447B2 (en) * 1987-05-13 1997-08-13 株式会社日立製作所 Superconducting switching element
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH01214178A (en) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp Manufacture of josephson junction
JP2973423B2 (en) * 1989-03-07 1999-11-08 日本電気株式会社 Superconducting element and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04134881A (en) 1992-05-08

Similar Documents

Publication Publication Date Title
US5717222A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5446015A (en) Superconducting device having a reduced thickness of oxide superconducting layer
US5637555A (en) Method for manufacturing a three-terminal superconducting device having an extremely short superconducting channel
JP2641969B2 (en) Superconducting element and fabrication method
US5854493A (en) Superconduting device having an extremely short superconducting channel formed of oxide superconductor material and method for manufacturing the same
JP2614941B2 (en) Superconducting element and fabrication method
JP2641970B2 (en) Superconducting element and fabrication method
JP2641971B2 (en) Superconducting element and fabrication method
JP2641978B2 (en) Superconducting element and fabrication method
JP2614940B2 (en) Superconducting element and fabrication method
JP2656853B2 (en) Superconducting element and fabrication method
JP2597747B2 (en) Superconducting element and fabrication method
JP2614939B2 (en) Superconducting element and fabrication method
JP2597743B2 (en) Superconducting element fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JP2641976B2 (en) Superconducting element and fabrication method
JP2738144B2 (en) Superconducting element and fabrication method
JP2597745B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2641977B2 (en) Superconducting element fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JP2667289B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2641974B2 (en) Superconducting element and fabrication method