JPH04134881A - Superconducting device and manufacture thereof - Google Patents

Superconducting device and manufacture thereof

Info

Publication number
JPH04134881A
JPH04134881A JP2257851A JP25785190A JPH04134881A JP H04134881 A JPH04134881 A JP H04134881A JP 2257851 A JP2257851 A JP 2257851A JP 25785190 A JP25785190 A JP 25785190A JP H04134881 A JPH04134881 A JP H04134881A
Authority
JP
Japan
Prior art keywords
superconducting
channel
thin film
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2257851A
Other languages
Japanese (ja)
Other versions
JP2641969B2 (en
Inventor
Takao Nakamura
孝夫 中村
Hiroshi Inada
博史 稲田
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2257851A priority Critical patent/JP2641969B2/en
Priority to EP91402596A priority patent/EP0478466B1/en
Priority to DE69114435T priority patent/DE69114435T2/en
Priority to CA002052378A priority patent/CA2052378C/en
Publication of JPH04134881A publication Critical patent/JPH04134881A/en
Priority to US08/183,894 priority patent/US5514877A/en
Priority to US08/521,736 priority patent/US5683968A/en
Application granted granted Critical
Publication of JP2641969B2 publication Critical patent/JP2641969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make it possible to eliminate the need for a fine processing technology and prepare a high performance device which uses an oxide superconductor by controlling a superconducting current flowing in a superconducting circuit with gate voltage. CONSTITUTION:A gate electrode 4 is installed to a superconducting device in order to control a superconducting channel 10 by an oxide superconductor, a source electrode 2 which passes electric current thereto, a drain electrode 3, and electric current flowing in the superconducting channel. The main current flows in the superconductor. The superconducting channel is turned on and off with the voltage applied to the gate electrode 4. Energy is applied to a part which forms a superconducting channel for a thin film 1 by using focusing ion beam, laser or the like so that the component elements of a substrate 5 located below may be diffused, thereby forming a non-superconducting region in the thin film 1. This construction makes it possible to produce the superconducting channel from the superconductive portion whose thickness is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子およびその作製方法に関する。よ
り詳細には、新規な構成の超電導素子およびその作製方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting element and a method for manufacturing the same. More specifically, the present invention relates to a superconducting element with a novel configuration and a method for manufacturing the same.

従来の技術 超電導を使用した代表的な素子に、ジョセフソン素子が
ある。ジョセフソン素子は、一対の超電導体をトンネル
障壁を介して結合した構成であり、高速スイッチング動
作が可能である。しかしながら、ジョセフソン素子は2
端子の素子であり、論理回路を実現するためには複雑な
回路構成になってしまう。
A Josephson device is a typical device using conventional technology superconductivity. A Josephson device has a configuration in which a pair of superconductors are coupled via a tunnel barrier, and is capable of high-speed switching operation. However, the Josephson element is 2
It is a terminal element and requires a complicated circuit configuration to realize a logic circuit.

一方、超電導を利用した3端子素子としては、超電導ベ
ーストランジスタ、超電導FET等がある。第3図に、
超電導ベーストランジスタの概念図を示す。第3図の超
電導ベーストランジスタは、超電導体または常電導体で
構成されたエミッタ21、絶縁体で構成されたトンネル
障壁22、超電導体で構成されたベース23、半導体ア
イソレータ24および常電導体で構成されたコレクタ2
5を積層した構成になっている。この超電導ベーストラ
ンジスタは、トンネル障壁22を通過した高速電子を利
用した低電力消費、高速動作の素子である。
On the other hand, three-terminal elements using superconductivity include superconducting base transistors, superconducting FETs, and the like. In Figure 3,
A conceptual diagram of a superconducting base transistor is shown. The superconducting base transistor shown in FIG. 3 is composed of an emitter 21 made of a superconductor or a normal conductor, a tunnel barrier 22 made of an insulator, a base 23 made of a superconductor, a semiconductor isolator 24, and a normal conductor. collector 2
It has a structure in which 5 layers are stacked. This superconducting base transistor is a low-power consumption, high-speed operation element that utilizes high-speed electrons that have passed through the tunnel barrier 22.

第4図に、超電導FETの概念図を示す。第4図の超電
導FETは、超電導体で構成されている超電導ソース電
極41および超電導ドレイン電極42が、半導体層43
上に互いに近接して配置されている。超電導ソース電極
41および超電導ドレイン電極42の間の部分の半導体
層43は、下側が大きく削られ厚さが薄くなっている。
FIG. 4 shows a conceptual diagram of a superconducting FET. In the superconducting FET of FIG. 4, a superconducting source electrode 41 and a superconducting drain electrode 42 made of a superconductor are connected to a semiconductor layer 43
are placed close to each other on top. The semiconductor layer 43 in the portion between the superconducting source electrode 41 and the superconducting drain electrode 42 has its lower side largely shaved and has a reduced thickness.

また、半導体層43の下側表面にはゲート絶縁膜46が
形成され、ゲート絶縁膜46上にゲート電極44が設け
られている。
Further, a gate insulating film 46 is formed on the lower surface of the semiconductor layer 43, and a gate electrode 44 is provided on the gate insulating film 46.

超電導FETは、超電導近接効果で超電導ソース電極4
1および超電導ドレイン電極42間の半導体層43を流
れる超電導電流を、ゲート電圧で制御する低電力消費、
高速動作の素子である。
A superconducting FET has a superconducting source electrode 4 due to the superconducting proximity effect.
1 and the superconducting current flowing through the semiconductor layer 43 between the superconducting drain electrode 42 by controlling the superconducting current with a gate voltage;
It is a high-speed operating element.

さらに、ソース電極、ドレイン電極間に超電導体でチャ
ネルを形成し、この超電導チャネルを流れる電流をゲー
ト電極に印加する電圧で制御する3端子の超電導素子も
発表されている。
Furthermore, a three-terminal superconducting element has been announced in which a channel is formed between a source electrode and a drain electrode using a superconductor, and the current flowing through this superconducting channel is controlled by a voltage applied to a gate electrode.

発明が解決しようとする課題 上記の超電導ベーストランジスタおよび超電導FETは
、いずれも半導体層と超電導体層とが積層された部分を
有する。ところが、近年研究が進んでいる酸化物超電導
体を使用して、半導体層と超電導体層との積層構造を作
製することは困難である。また、この構造が作製できて
も半導体層と超電導体層の間の界面の制御が難しく、素
子として満足な動作をしなかった。
Problems to be Solved by the Invention The above-described superconducting base transistor and superconducting FET both have a portion in which a semiconductor layer and a superconductor layer are laminated. However, it is difficult to fabricate a stacked structure of a semiconductor layer and a superconductor layer using oxide superconductors, which have been studied in recent years. Moreover, even if this structure could be fabricated, it was difficult to control the interface between the semiconductor layer and the superconductor layer, and the device did not operate satisfactorily.

また、超電導FETは、超電導近接効果を利用するため
、超電導ソース電極41および超電導ドレイン電極42
を、それぞれを構成する超電導体のコヒーレンス長の数
倍程度以内に近接させて作製しなければならない。特に
酸化物超電導体は、コヒーレンス長が短いので、酸化物
超電導体を使用した場合には、超電導ソース電極41お
よび超電導ドレイン電極42間の距離は、数IQnm以
下にしなければならない。このような微細加工は非常に
困難であり、従来は酸化物超電導体を使用した超電導F
ETを再現性よく作製できなかった。
Furthermore, in order to utilize the superconducting proximity effect, the superconducting FET has a superconducting source electrode 41 and a superconducting drain electrode 42.
must be made close to each other within several times the coherence length of the superconductor that constitutes each. In particular, an oxide superconductor has a short coherence length, so when an oxide superconductor is used, the distance between the superconducting source electrode 41 and the superconducting drain electrode 42 must be several IQ nm or less. Such microfabrication is extremely difficult, and conventionally superconducting F using oxide superconductors
ET could not be produced with good reproducibility.

さらに、従来の超電導チャネルを有する超電導素子は、
変調動作は確認されたが、キャリア密度が高いため、完
全なオン/オフ動作ができなかった。酸化物超電導体は
、キャリア密度が低いので、超電導チャネルに使用する
ことにより、完全なオン/オフ動作を行う上記の素子の
実現の可能性が期待されている。しかしながら、超電導
チャネルは5r+m程度の厚さにしなければならず、そ
のような構成の実現することは困難であった。
Furthermore, superconducting devices with conventional superconducting channels are
Although modulation operation was confirmed, complete on/off operation was not possible due to the high carrier density. Since oxide superconductors have a low carrier density, it is expected that by using them for superconducting channels, it will be possible to realize the above-mentioned devices that perform perfect on/off operation. However, the thickness of the superconducting channel must be approximately 5r+m, and it has been difficult to realize such a configuration.

そこで本発明の目的は、上記従来技術の問題点を解決し
た、新規な構成の超電導素子およびその作製方法を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a superconducting element having a novel configuration and a method for manufacturing the same, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、基板上に成膜された酸化物超電導薄膜
に形成された超電導チャネルと、該超電導チャネルの両
端近傍に配置されて該超電導チャネルに電流を流すソー
ス電極およびドレイン電極と、前記超電導チャネル上に
配置されて該超電導チャネルに流れる電流を制御するゲ
ート電極を具備する超電導素子において、前記酸化物超
電導薄膜中に前記基板の成分元素が拡散して超電導性を
失った非超電導領域が形成され、前記酸化物超電導薄膜
の前記非超電導領域上に薄い前記超電導チャネルを具備
することを特徴とする超電導素子が提供される。
Means for Solving the Problems According to the present invention, there are provided a superconducting channel formed in an oxide superconducting thin film formed on a substrate, and source electrodes disposed near both ends of the superconducting channel to flow current through the superconducting channel. and a superconducting element comprising a drain electrode and a gate electrode disposed on the superconducting channel to control current flowing through the superconducting channel, in which component elements of the substrate diffuse into the oxide superconducting thin film to achieve superconductivity. A superconducting device is provided, characterized in that a missing non-superconducting region is formed and the thin superconducting channel is provided on the non-superconducting region of the oxide superconducting thin film.

また、本発明では、基板上に酸化物超電導薄膜を形成し
、該酸化物超電導薄膜の一部に局所的にエネルギを印加
して前記基板の成分元素を拡散させ、前記非超電導領域
を形成する工程を含むことを特徴とする超電導素子の作
製方法が提供される。
Further, in the present invention, an oxide superconducting thin film is formed on a substrate, and energy is locally applied to a part of the oxide superconducting thin film to diffuse component elements of the substrate to form the non-superconducting region. A method for manufacturing a superconducting element is provided, the method comprising the steps of:

−代理 本発明の超電導素子は、酸化物超電導体による超電導チ
ャネルと、超電導チャネルに電流を流すソース電極およ
びドレイン電極と、超電導チャネルを流れる電流を制御
するゲート電極とを具備する。本発明の超電導素子では
、各電極は必ずしも超電導電極である必要がない。
- Surrogate The superconducting element of the present invention includes a superconducting channel made of an oxide superconductor, a source electrode and a drain electrode that allow current to flow through the superconducting channel, and a gate electrode that controls the current flowing through the superconducting channel. In the superconducting element of the present invention, each electrode does not necessarily have to be a superconducting electrode.

また、従来の超電導FETが、超電導近接効果を利用し
て半導体中に超電導電流を流すのに対し、本発明の超電
導素子では、主電流は超電導体中を流れる。従って、従
来の超電導FETを作製するときに必要な微細加工技術
の制限が緩和される。
Furthermore, while conventional superconducting FETs use the superconducting proximity effect to cause a superconducting current to flow through the semiconductor, in the superconducting element of the present invention, the main current flows through the superconductor. Therefore, restrictions on microfabrication techniques required when manufacturing conventional superconducting FETs are relaxed.

超電導チャネルは、ゲート電極に印加された電圧で開閉
させるために、ゲート電極により発生される電界の方向
に、厚さが5r+m程度でなければならない。本発明の
主眼は、このような極薄の超電導チャネルを実現するこ
とにある。本発明の超電導素子では、酸化物超電導薄膜
中に拡散した基板成分により酸化物超電導薄膜中に非超
電導領域が形成され、この非超電導領域により薄くなっ
た超電導部分を超電導チャネルとする。
The superconducting channel must have a thickness of the order of 5r+m in the direction of the electric field generated by the gate electrode in order to be opened and closed by the voltage applied to the gate electrode. The main focus of the present invention is to realize such an ultra-thin superconducting channel. In the superconducting element of the present invention, a non-superconducting region is formed in the oxide superconducting thin film by the substrate components diffused into the oxide superconducting thin film, and the superconducting portion thinned by the non-superconducting region is used as a superconducting channel.

本発明の超電導素子では、上記の非超電導領域により、
極薄の超電導チャネルを形成する。従って、この非超電
導領域は、超電導素子の超電導チャネル部分の下側とな
る酸化物超電導薄膜の一部に形成されなければならない
。従って、本発明の方法では、例えば、集束イオンビー
ム、レーザ等を使用して酸化物超電導薄膜の超電導チャ
ネルとなる部分に局所的にエネルギを印加し、下方の基
板の成分元素を拡散させる。
In the superconducting element of the present invention, the above-mentioned non-superconducting region allows
Forms ultra-thin superconducting channels. Therefore, this non-superconducting region must be formed in a portion of the oxide superconducting thin film underlying the superconducting channel portion of the superconducting element. Therefore, in the method of the present invention, energy is locally applied to the portion of the oxide superconducting thin film that will become the superconducting channel using, for example, a focused ion beam, laser, etc., thereby diffusing the constituent elements of the underlying substrate.

本発明の超電導素子において、基板には、MgO,5r
Ti03等の酸化物単結晶基板が使用可能である。
In the superconducting element of the present invention, the substrate includes MgO, 5r
An oxide single crystal substrate such as TiO3 can be used.

これらの基板上には、配向性の高い結晶からなる酸化物
超電導薄膜を成長させることが可能であるので好ましい
。また、表面に絶縁層を有する半導体基板を使用するこ
ともできる。
These substrates are preferable because it is possible to grow an oxide superconducting thin film made of highly oriented crystals. Furthermore, a semiconductor substrate having an insulating layer on its surface can also be used.

また、本発明の超電導素子には、Y −Ba −CuO
系酸化物超電導体、Bi −3r−Ca−Cu−”O系
酸化物超電導体、TI −Ba−Ca −Cu−0系酸
化物超電導体等任意の酸化物超電導体を使用することが
できる。
Further, the superconducting element of the present invention includes Y-Ba-CuO
Any oxide superconductor can be used, such as a Bi-3r-Ca-Cu-''O-based oxide superconductor, a TI-Ba-Ca-Cu-0-based oxide superconductor, and the like.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の超電導素子の断面図を示す。Example FIG. 1 shows a cross-sectional view of the superconducting element of the present invention.

第1図の超電導素子は、基板5上に成膜され、基板成分
が拡散して超電導性を失った非超電導領域50が形成さ
れた酸化物超電導薄膜1を有する。酸化物超電導薄膜1
の非超電導領域50の上の部分は、厚さ約5nmの極薄
の超電導チャネル10になっている。超電導チャネル1
0の上にはゲート電極4が配置され、酸化物超電導薄膜
1上の超電導チャネル10の両側には、ソース電極2お
よびドレイン電極3が配置されている。
The superconducting element shown in FIG. 1 has an oxide superconducting thin film 1 formed on a substrate 5 and having a non-superconducting region 50 in which substrate components have diffused and lost superconductivity. Oxide superconducting thin film 1
The upper part of the non-superconducting region 50 is an extremely thin superconducting channel 10 with a thickness of about 5 nm. Superconducting channel 1
A gate electrode 4 is arranged on the oxide superconducting thin film 1, and a source electrode 2 and a drain electrode 3 are arranged on both sides of the superconducting channel 10 on the oxide superconducting thin film 1.

第2図を参照して、本発明の超電導素子を本発明の方法
で作製する手順を説明する。まず、第2図(a)に示す
ような基板5上に第2図ら)に示すよう酸化物超電導薄
膜1を、オファクシススバッタリング法、反応性蒸着法
、MBE法、CVD法等の方法で形成する。酸化物超電
導薄膜1の厚さは200〜300 nmが好ましく、酸
化物超電導体としては、Y−Ba−Cu−0系酸化物超
電導体、B1−5r−Ca−Cu−0系酸化物超電導体
、TI −Ba−Ca −Cu −0系酸化物超電導体
が好ましく、C軸配向の薄膜とすることが好ましい。こ
れは、C軸配向の酸化物超電導薄膜は、基板と平行な方
向の臨界電流密度が大きいからである。基板5としては
、Mg0(100)基板、SrT+03(100)基板
等の絶縁体基板、または表面に、例えばMgAl2O4
およびBaTiO2を積層した絶縁膜を有するSi等の
半導体基板が好ましい。
Referring to FIG. 2, the procedure for manufacturing the superconducting element of the present invention using the method of the present invention will be described. First, an oxide superconducting thin film 1 as shown in FIG. 2(a) is deposited on a substrate 5 as shown in FIG. to form. The thickness of the oxide superconducting thin film 1 is preferably 200 to 300 nm, and the oxide superconductor is a Y-Ba-Cu-0 based oxide superconductor or a B1-5r-Ca-Cu-0 based oxide superconductor. , TI-Ba-Ca-Cu-0 based oxide superconductors are preferred, and a C-axis oriented thin film is preferred. This is because the C-axis oriented oxide superconducting thin film has a large critical current density in the direction parallel to the substrate. The substrate 5 may be an insulating substrate such as a Mg0 (100) substrate or a SrT+03 (100) substrate, or a surface coated with, for example, MgAl2O4.
A semiconductor substrate made of Si or the like having an insulating film laminated with BaTiO2 and BaTiO2 is preferable.

次に、第1図(C)に示すよう酸化物超電導薄膜1に矢
印で示すよう局所的にレーザビームまたは集束イオンビ
ームを照射して基板5の構成元素を酸化物超電導薄膜1
に拡散させ、非超電導領域50を形成する。酸化物超電
導薄膜1の非超電導領域50の上の部分は超電導チャネ
ル10となる。
Next, as shown in FIG. 1(C), the oxide superconducting thin film 1 is locally irradiated with a laser beam or a focused ion beam as shown by the arrow to remove the constituent elements of the substrate 5 from the oxide superconducting thin film 1.
to form a non-superconducting region 50. A portion of the oxide superconducting thin film 1 above the non-superconducting region 50 becomes a superconducting channel 10.

非超電導領域50をレーザビームを照射して形成する場
合、レーザとしては、エキシマレーザ、炭酸ガスレーザ
、YAGレーザ等の高出力レーザが好ましい。例えば、
波長514 r++++のArレーデを使用する場合、
照射出力は2.OWとし、100μm/秒で走査するす
ることが好ましい。一方、集束イオンビームを照射して
非超電導領域50を形成する場合、照射イオンはArイ
オンが好ましく、ビーム径を0.2μm以下とし、加速
電圧が50kV以下であることが好ましい。
When forming the non-superconducting region 50 by irradiating a laser beam, the laser is preferably a high-power laser such as an excimer laser, a carbon dioxide laser, or a YAG laser. for example,
When using an Ar radar with a wavelength of 514 r++++,
The irradiation output is 2. It is preferable to use OW and scan at 100 μm/sec. On the other hand, when forming the non-superconducting region 50 by irradiating a focused ion beam, the irradiated ions are preferably Ar ions, the beam diameter is preferably 0.2 μm or less, and the acceleration voltage is preferably 50 kV or less.

次に、超電導チャネル10上にゲート電極を作製する。Next, a gate electrode is fabricated on the superconducting channel 10.

ゲート電極は、絶縁体層上に金属層が積層された構造と
することが好ましい。従って、第2図(d)に示すよう
酸化物超電導薄膜1上に絶縁膜6および金属膜7を積層
する。絶縁膜6にはMgO等酸化物超電導薄膜との界面
で大きな準位を作らない絶縁体を用いることが好ましく
、その厚さは10nm以上とする。また、金属膜7には
AuまたはT11W等の高融点金属、これらのシリサイ
ドを用いることが好ましい。この積層された膜を第2図
(e)に示すよう超電導チャネル10の上の部分だけ残
してエツチングにより除去し、ゲート電極4を形成する
The gate electrode preferably has a structure in which a metal layer is laminated on an insulator layer. Therefore, an insulating film 6 and a metal film 7 are laminated on the oxide superconducting thin film 1 as shown in FIG. 2(d). It is preferable to use an insulator such as MgO that does not create a large level at the interface with the oxide superconducting thin film for the insulating film 6, and the thickness thereof is set to 10 nm or more. Further, it is preferable to use a high melting point metal such as Au or T11W, or a silicide thereof for the metal film 7. The stacked films are removed by etching leaving only the portion above the superconducting channel 10, as shown in FIG. 2(e), to form the gate electrode 4.

最後に、第2図げ)に示すようゲート電極4の両側にゲ
ート電極4に使用したものと同様の金属でソース電極2
およびドレイン電極3を形成して、本発明の超電導素子
が完成する。
Finally, as shown in FIG.
Then, a drain electrode 3 is formed to complete the superconducting element of the present invention.

本発明の超電導素子を本発明の方法で作製すると、超電
導FETを作製する場合に要求される微細加工技術の制
限が緩和される。また、表面が平坦にできるので、後に
必要に応じ配線を形成することが容易になる。従って、
作製が容易であり、素子の性能も安定しており、再現性
もよい。
When the superconducting element of the present invention is manufactured by the method of the present invention, restrictions on microfabrication techniques required when manufacturing a superconducting FET are relaxed. Furthermore, since the surface can be made flat, it becomes easier to form wiring later as required. Therefore,
It is easy to manufacture, has stable device performance, and has good reproducibility.

発明の詳細 な説明したように、本発明の超電導素子は、超電導チャ
ネル中を流れる超電導電流をゲート電圧で制御する構成
となっている。従って、従来の超電導FETのように、
超電導近接効果を利用していないので微細加工技術が緩
和される。また、超電導体と半導体を積層する必要もな
いので、酸化物超電導体を使用して高性能な素子が作製
できる。
As described in detail, the superconducting element of the present invention has a configuration in which the superconducting current flowing in the superconducting channel is controlled by the gate voltage. Therefore, like the conventional superconducting FET,
Since the superconducting proximity effect is not used, microfabrication technology is relaxed. Furthermore, since there is no need to stack a superconductor and a semiconductor, high-performance devices can be manufactured using oxide superconductors.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の超電導素子の概略図であり、第2図
は、本発明の方法により本発明の超電導素子を作製する
場合の工程を示す概略図であり、第3図は、超電導ベー
ストランジスタの概略図であり、 第4図は、超電導FETの概略図である。 〔主な参照番号〕 1・・・酸化物超電導薄膜、 2・・・ソース電極、 3・・・ドレイン電極、 4・・・ゲート電極、 5・・・基板 特許出願人  住友電気工業株式会社 拳
FIG. 1 is a schematic diagram of the superconducting device of the present invention, FIG. 2 is a schematic diagram showing the steps for producing the superconducting device of the present invention by the method of the present invention, and FIG. 3 is a schematic diagram of the superconducting device of the present invention. FIG. 4 is a schematic diagram of a base transistor; FIG. 4 is a schematic diagram of a superconducting FET. [Main reference numbers] 1... Oxide superconducting thin film, 2... Source electrode, 3... Drain electrode, 4... Gate electrode, 5... Substrate patent applicant Sumitomo Electric Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に成膜された酸化物超電導薄膜に形成され
た超電導チャネルと、該超電導チャネルの両端近傍に配
置されて該超電導チャネルに電流を流すソース電極およ
びドレイン電極と、前記超電導チャネル上に配置されて
該超電導チャネルに流れる電流を制御するゲート電極を
具備する超電導素子において、前記酸化物超電導薄膜中
に前記基板の成分元素が拡散して超電導性を失った非超
電導領域が形成され、前記酸化物超電導薄膜の前記非超
電導領域上に薄い前記超電導チャネルを具備することを
特徴とする超電導素子。
(1) A superconducting channel formed in an oxide superconducting thin film formed on a substrate, a source electrode and a drain electrode arranged near both ends of the superconducting channel to flow a current through the superconducting channel, and a source electrode and a drain electrode arranged on the superconducting channel. In a superconducting element comprising a gate electrode disposed in a gate electrode for controlling a current flowing through the superconducting channel, a non-superconducting region is formed in which component elements of the substrate diffuse into the oxide superconducting thin film and lose superconductivity; A superconducting element, characterized in that the thin superconducting channel is provided on the non-superconducting region of the oxide superconducting thin film.
(2)請求項1に記載の超電導素子を作製する方法にお
いて、基板上に酸化物超電導薄膜を形成し、該酸化物超
電導薄膜の一部に局所的にエネルギを印加して前記基板
の成分元素を拡散させ、前記非超電導領域を形成する工
程を含むことを特徴とする超電導素子の作製方法。
(2) In the method for producing a superconducting element according to claim 1, an oxide superconducting thin film is formed on a substrate, and energy is locally applied to a part of the oxide superconducting thin film to obtain the constituent elements of the substrate. A method for manufacturing a superconducting element, the method comprising the step of diffusing the non-superconducting region to form the non-superconducting region.
JP2257851A 1990-09-27 1990-09-27 Superconducting element and fabrication method Expired - Lifetime JP2641969B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2257851A JP2641969B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method
EP91402596A EP0478466B1 (en) 1990-09-27 1991-09-27 A superconducting device and a method for manufacturing the same
DE69114435T DE69114435T2 (en) 1990-09-27 1991-09-27 Superconducting device and its manufacturing process.
CA002052378A CA2052378C (en) 1990-09-27 1991-09-27 Superconducting device and a method for manufacturing the same
US08/183,894 US5514877A (en) 1990-09-27 1994-01-21 Superconducting device and a method for manufacturing the same
US08/521,736 US5683968A (en) 1990-09-27 1995-08-31 Method for manufacturing a superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2257851A JP2641969B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method

Publications (2)

Publication Number Publication Date
JPH04134881A true JPH04134881A (en) 1992-05-08
JP2641969B2 JP2641969B2 (en) 1997-08-20

Family

ID=17312042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2257851A Expired - Lifetime JP2641969B2 (en) 1990-09-27 1990-09-27 Superconducting element and fabrication method

Country Status (1)

Country Link
JP (1) JP2641969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594257A (en) * 1992-06-24 1997-01-14 Sumitomo Electric Industries, Ltd. Superconducting device having a superconducting channel formed of oxide superconductor material and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273371A (en) * 1987-05-01 1988-11-10 Fujikura Ltd Manufacture of superconducting electric circuit
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6486577A (en) * 1987-05-01 1989-03-31 Nippon Telegraph & Telephone Preparation of superconductive oxide film
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH01214178A (en) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp Manufacture of josephson junction
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273371A (en) * 1987-05-01 1988-11-10 Fujikura Ltd Manufacture of superconducting electric circuit
JPS6486577A (en) * 1987-05-01 1989-03-31 Nippon Telegraph & Telephone Preparation of superconductive oxide film
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH01214178A (en) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp Manufacture of josephson junction
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594257A (en) * 1992-06-24 1997-01-14 Sumitomo Electric Industries, Ltd. Superconducting device having a superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5817531A (en) * 1992-06-24 1998-10-06 Sumitomo Electric Industries, Ltd. Superconducting device having a superconducting channel formed of oxide superconductor material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2641969B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US5717222A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
US5637555A (en) Method for manufacturing a three-terminal superconducting device having an extremely short superconducting channel
US5854493A (en) Superconduting device having an extremely short superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH04134881A (en) Superconducting device and manufacture thereof
EP0477063A1 (en) Superconducting device having a reduced thickness of oxide superconducting layer and method for manufacturing the same
JP2614941B2 (en) Superconducting element and fabrication method
JP2641970B2 (en) Superconducting element and fabrication method
JP2641971B2 (en) Superconducting element and fabrication method
JPH04134886A (en) Superconducting device and manufacture thereof
JP2614940B2 (en) Superconducting element and fabrication method
JP2641978B2 (en) Superconducting element and fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JP2597747B2 (en) Superconducting element and fabrication method
JP2614939B2 (en) Superconducting element and fabrication method
JPH04168780A (en) Superconducting element
JPH04127587A (en) Manufacture of superconductive element
JP2738144B2 (en) Superconducting element and fabrication method
JP2641976B2 (en) Superconducting element and fabrication method
JP2597745B2 (en) Superconducting element and fabrication method
JPH04134884A (en) Superconducting device
JP2667289B2 (en) Superconducting element and fabrication method
JP2641977B2 (en) Superconducting element fabrication method
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JP2599500B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method