JPS63264261A - Casting method for rare earth metal - Google Patents

Casting method for rare earth metal

Info

Publication number
JPS63264261A
JPS63264261A JP9769187A JP9769187A JPS63264261A JP S63264261 A JPS63264261 A JP S63264261A JP 9769187 A JP9769187 A JP 9769187A JP 9769187 A JP9769187 A JP 9769187A JP S63264261 A JPS63264261 A JP S63264261A
Authority
JP
Japan
Prior art keywords
mold
rare earth
cooling
earth metal
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9769187A
Other languages
Japanese (ja)
Inventor
Taiichiro Miwa
泰一郎 三輪
Shinzo Oshima
信三 大島
Shigeru Tokohira
床平 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9769187A priority Critical patent/JPS63264261A/en
Publication of JPS63264261A publication Critical patent/JPS63264261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a casting product of high quality in a stable by casting the molten metal of a rare earth metal in a specific height into the mold forcibly cooling the bottom face. CONSTITUTION:The bottom face of a mold is made of the structure capable of forced cooling, the liquid cooling by water, oil, etc., is usually used and in the case of water cooling a cooling water 5 is sufficiently flowed for cooling. The height of the side face frame 2 of the mold can optionally be selected by the thickness of the necessary casting product. The molten metal of a rare earth metal is cast into this forcibly cooled mold so as to become of the height less than 1/2 length of the longest line part dividing the bottom face. The casting product of high quality is obtd. in stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類金属の鋳造方法に関するものである。詳
しくは、スパッタリング用ターゲット等として好適な柱
状晶を主体とする希土類金属を鋳造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for casting rare earth metals. Specifically, the present invention relates to a method for casting rare earth metals mainly composed of columnar crystals suitable for sputtering targets and the like.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

希土類金属を鋳造する方法として、側面から温度調節が
出来る縦型の鋳型を用論る方法が知られている(例えば
特開昭j≦−1023−33号公報)が、このような鋳
型を用いる方法においては、側面を冷却して希土類金属
の溶湯な急冷すると、鋳型の中心部に引は巣が発生する
不都合があ〕、逆Kf1面を保温して希土類金属の溶湯
を徐冷すると、引は巣の発生はないが結晶が粗大となる
。iた、空冷の状態で鋳込みを行なうと、柱状晶が多く
なるが、側壁面近くと中心部では結晶の形状が大巾に異
な)、均一な結晶の鋳造物は得難論。
As a method for casting rare earth metals, it is known to use a vertical mold whose temperature can be controlled from the side (for example, Japanese Patent Application Laid-Open No. 1023-33). In this method, if the molten rare earth metal is rapidly cooled by cooling the side surface, there is an inconvenience that a shrinkage cavity will occur in the center of the mold. No nests occur, but the crystals become coarse. In addition, if casting is performed in an air-cooled state, there will be many columnar crystals, but the shape of the crystals differs widely between near the side wall surface and in the center), making it difficult to obtain a cast product with uniform crystals.

スパッタリング、例えば光磁気ディスク製造に訃けるス
パッタリングにおいてはfFK均一な膜厚のスパッタリ
ング面が要求されるが、スパッタリング用ターゲットと
して結晶の粗大な希土類金属を用いると結晶の方向依存
性を生じ同一スパッタリング牽件でスパッタリングを行
なっても膜厚が変化し均一な製品が得られない。
Sputtering, such as sputtering used in magneto-optical disk manufacturing, requires a sputtering surface with a uniform fFK film thickness, but if a rare earth metal with coarse crystals is used as a sputtering target, the crystals will be oriented in a dependent manner and the same sputtering force will be affected. Even if sputtering is performed under such conditions, the film thickness will change and a uniform product cannot be obtained.

また、スパッタリング用ターゲット中に引は巣が存在す
るとスパッタリング中に異常放電を発生するようにな夛
、製品の均−性管損なうことはもとよシ、スパッタリン
グの続行が不可能となる。
Furthermore, if there is a cavity in the sputtering target, abnormal discharge will occur during sputtering, which will not only damage the uniformity of the product but also make it impossible to continue sputtering.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、スパッタリング用ターゲット等として好
適で鋳造物を得るべく鋭意研究を重ねた結果、特定の構
造の鋳型を用いて希土類金属の鋳造を打力うことによシ
、安定して高品質の鋳造物が得られることを知荀して本
発明を完成した。
As a result of intensive research to obtain cast products suitable for use as sputtering targets, the inventors of the present invention have found that rare earth metals can be cast with a stable and high performance by using a casting mold with a specific structure. The present invention was completed based on the knowledge that high quality castings can be obtained.

す力わち本発明は工業的価値の大きい希土類金属剤進物
を製造することを目的とするものであシ、この目的は、
希土類金属の溶湯を、底面−を強制冷却した鋳型に、底
面を分割する最長線分のA長板下の高さに逐るように鋳
込むととKよって達成される。
Specifically, the purpose of the present invention is to produce rare earth metal products of great industrial value, and this purpose is to:
This is achieved by pouring a molten rare earth metal into a mold whose bottom surface is forcibly cooled so as to reach the height below the A long plate of the longest line dividing the bottom surface.

以下、本発明の詳細な説明する。。The present invention will be explained in detail below. .

本発明でいう希土類金属とは、原子番号!7〜7/のラ
ンタノイドと、イットリクムおよびスカンジウムを包含
するものである。これらはそれぞれの金属単独であって
も、またこれらの金属相互の合金であってもよい。まえ
、本発明の希土類金属は少量の希土類金属以外の金属、
例えば遷移金属を10重貴チ以下含有していてもよい。
The rare earth metals referred to in the present invention refer to atomic number! It includes 7 to 7/7 lanthanides, yttricum and scandium. These metals may be used alone or may be alloys of these metals. First, the rare earth metal of the present invention includes a small amount of metal other than the rare earth metal,
For example, it may contain 10 or less transition metals.

次に本発明で用いる鋳型について説明する。Next, the mold used in the present invention will be explained.

鋳型の底面は強制冷却できる構造であれば、平面状、凹
みを持つもの等任意に選ぶことができる。材質も特開制
限はなく、種々の金属、セラミックス等を使用すること
ができるが、通報鋼、ステンレスが好ましい。
The bottom surface of the mold can be arbitrarily selected, such as flat or recessed, as long as it has a structure that allows forced cooling. There are no restrictions on the material, and various metals, ceramics, etc. can be used, but steel and stainless steel are preferred.

強制冷却の方法は任意に選ぶことができるけれども、通
常、水冷及びオイル等による液冷が用いられる。また、
冷却フィンによる空冷でもよい。
Although the forced cooling method can be arbitrarily selected, water cooling and liquid cooling using oil or the like are usually used. Also,
Air cooling using cooling fins may also be used.

鋳型の底面は、溶湯を流し込む以前から冷却して訃くの
が好ましく、例えば水冷の場合には冷却水を充分に流し
て冷却しておくのがよい。
It is preferable to cool the bottom of the mold before pouring the molten metal. For example, in the case of water cooling, it is preferable to cool the bottom of the mold by sufficiently flowing cooling water.

冷却水量は溶湯の量、温度、鋳型の底面積等によフ左右
されるため、流量を特定できないが、冷却水の出口温が
り0℃以下、好ましくは7θ℃以下となるように冷却水
を供給することが好ましい。
The amount of cooling water depends on the amount of molten metal, temperature, bottom area of the mold, etc., so the flow rate cannot be specified, but the cooling water should be supplied so that the outlet temperature of the cooling water is 0℃ or less, preferably 7θ℃ or less. It is preferable to supply.

□鋳型の側面枠は、鋳造され九金属のI!!2!り外し
を考慮すると底面とは別に作ったものが好ましいが、鋳
型の上面が底面よルも広くシるように側面枠を傾斜させ
る等鋳造された金属の珀シ外し法’l慮していれば底面
と一体構造のものでもかまわない。材質としては、希土
類金属の溶湯上の合金を作シにくい、錆、ステンレス、
鋳鉄、窒化ホウ素等のセラミックスが好ましい。
□The side frame of the mold is made of nine metal I! ! 2! In consideration of removal, it is preferable to make the mold separately from the bottom, but please consider ways to remove the cast metal, such as slanting the side frames so that the top of the mold is wider than the bottom. Alternatively, it may be one that is integrated with the bottom surface. Materials include those that are difficult to form alloys on molten rare earth metals, rust, stainless steel,
Cast iron and ceramics such as boron nitride are preferred.

゛側面枠は放冷であっても、底面におけると同様の強制
冷却式であってもよいが、溶湯を鋳込んだ場合表面温度
が溶湯との合金を作る温R”*で上がる様な熱容量を持
つものであれば強制冷却が必要である。一方、表面m度
が合金形成まで上がらないものは放冷が好ましい。また
、セラミックスで側面枠を作れば通常の金属とは化合物
を作らないので放冷でかまわない。
゛The side frame may be cooled by air or forced cooling like the bottom, but the heat capacity must be such that when molten metal is poured, the surface temperature rises at the temperature R''* at which it forms an alloy with the molten metal. On the other hand, if the surface temperature does not reach the level of alloy formation, it is preferable to let it cool.Also, if the side frame is made of ceramics, it will not form a compound with ordinary metals. You can leave it to cool.

側面枠の高さは、所望する鋳造物の厚さによって任意に
選択することができる。通常、側面枠によって形成され
穴底面を分割する最長線分(円形の場合には直径)のW
長板下の高さが好ましい、#にスパッタリング用ターゲ
ットを製造する場合は底面を分割する最長線分の不要〜
晃長の範囲から選ぶのが好ましい。
The height of the side frame can be arbitrarily selected depending on the desired thickness of the casting. Usually, the W of the longest line segment (diameter in the case of a circle) that is formed by the side frame and divides the bottom of the hole.
When manufacturing a sputtering target at #, where the height below the long plate is preferable, the longest line dividing the bottom is not necessary.
It is preferable to choose from the Akinaga range.

本発明の鋳造においては、鋳型の上面は開放していても
よいが、引は巣の発生防止と柱状晶あるいは等軸晶の生
長を助長する目的で上面を保温するのが好ましい、保温
の方法としては、鋳型の上面に金属板、セラミック板、
無機質断熱材、あるいはそれらの組合せからなるカバー
を載置する方法等があげられる。具体的には、タンタル
、ニオブなどの金属板、あるいはセラミック板のような
断熱性の板で覆う方法が挙げられる。
In the casting of the present invention, the top surface of the mold may be open, but it is preferable to keep the top surface warm for the purpose of preventing the formation of shrinkage cavities and promoting the growth of columnar crystals or equiaxed crystals. As for the upper surface of the mold, metal plate, ceramic plate,
Examples include a method of placing a cover made of an inorganic heat insulating material or a combination thereof. Specifically, a method of covering with a metal plate such as tantalum or niobium, or a heat insulating plate such as a ceramic plate can be mentioned.

、希土類金属の鋳造を行なうには、上記した鋳型に希土
類金属の溶湯を流し込むが、溶湯の温度はその金属の融
点、よシ!θ℃、好ましくは100℃高い温度であるこ
とが好ましい。溶湯の温度があまシに低いと溶湯の流れ
が悪くなって、鋳込口で固まったフ、流水のむらによる
引け巣の発生の原因となったシする。
To cast rare earth metals, the molten rare earth metal is poured into the mold described above, but the temperature of the molten metal is the melting point of the metal. The temperature is preferably θ°C, preferably 100°C higher. If the temperature of the molten metal is too low, the flow of the molten metal will be poor, causing solidification at the casting opening and shrinkage cavities due to uneven water flow.

まえ、溶湯は底面内法を分割する最長線分の係長以下の
高さに鋳込むことが好ましい。IPIKスパッタリング
用ターゲタ−ゲットする場合には、底面内法を分割する
最長線分の名長〜晃長の高さに鋳込むことが好ましい。
First, it is preferable to pour the molten metal to a height that is equal to or lower than the length of the longest line dividing the bottom surface. When targeting an IPIK sputtering target, it is preferable to cast at a height between the nominal length and the optical length of the longest line segment that divides the bottom surface.

〔実施例〕〔Example〕

以下、本発明を実施例によ)説明する。 The present invention will be explained below with reference to examples.

実施例1 第1図に示すようを、水冷銅板上にリング状のステンレ
ス製枠な乗せて、内法直径//!簡の鋳型とし、上面に
タンタル板から彦る覆いをのせ、これに金属テルビウム
を14tjθ℃で鋳込み直径/4tOtm、厚さl0w
mの円板を得た。
Example 1 As shown in Fig. 1, a ring-shaped stainless steel frame was placed on a water-cooled copper plate, and the inner diameter was //! A simple mold was made, a cover made of tantalum plate was placed on the top, and terbium metal was poured into it at 14 tjθ℃ to a diameter of 4 tOtm and a thickness of 10w.
m disks were obtained.

得られた金属板の組織を調べたところ、結晶粒子の大き
さが下部で!0−100μ、上部で/σθ〜−〇〇μの
等軸晶でありた。又、内部をX線透過写真て調ぺ九とこ
ろ、引は巣は存在しなかった。
When we examined the structure of the obtained metal plate, we found that the size of the crystal grains was at the bottom! It was an equiaxed crystal with a diameter of 0-100μ and /σθ~−〇〇μ at the top. In addition, an X-ray photograph of the inside revealed that there were no nests.

そこで、下部より厚み7wmの円板を切出し、旋盤加工
で直径/2j■、厚さj箇のスパッー”タリング用ター
ゲットを得た。この部分の結晶粒子の大きさは!θ〜/
θθμであり九、このスパッタリング用ターゲットを使
用して、下記の条件でスパッターを行なった。
Therefore, a disk with a thickness of 7wm was cut out from the lower part, and a sputtering target with a diameter of /2j■ and a thickness of j was obtained by lathe processing.The size of the crystal grains in this part is !θ ~ /
θθμ, and using this sputtering target, sputtering was performed under the following conditions.

結果を第1表に示した。The results are shown in Table 1.

スパッタリング条件 使用装置      マグネトロン型スパッタ装買電 
  力       1)0 2θOOWθパッタリン
グ時間  30秒  プレスバッター /θ分メタ−ゲ
ット基盤間距離100van 使用基盤      ポリカーボネート比較例/ 金属テレビラムを厚さO0!■のタンタルで作られ九内
法厘径/り!鴫、高さ!Q■のるつぼに入れ真空誘導炉
内で/グ10℃迄加熱、溶解し、その稜♂℃/分の冷却
速度で冷却して凝固させた。
Equipment used for sputtering conditions Magnetron type sputtering equipment
Force 1) 0 2θOOOWθ Puttering time 30 seconds Press batter / θ minutes Distance between metal and get substrates 100van Substrate used Polycarbonate comparative example/Metal TV ram with thickness O0! ■Made from tantalum and has a diameter of 90 cm! Shizuku, height! The mixture was placed in a Q■ crucible and heated to 10°C/minute in a vacuum induction furnace to melt it, and then cooled to its edge at a cooling rate of ♂°C/minute to solidify.

その後、旋盤でメンタルのるつぼt−切削して直径lλ
!鰭、厚さ!簡のスパッタリング用ターゲットを得た。
Then, use a lathe to cut the mental crucible to a diameter of lλ.
! Fin, thick! A simple sputtering target was obtained.

この金属mwtを調べたところ、結晶粒子の大きさが/
、!〜3鴫の等軸晶であった。また、X線透過写真で内
部を調べたところ、引は巣は存在し力かった。
When we investigated this metal mwt, we found that the crystal grain size was /
,! It was an equiaxed crystal of ~3. In addition, when the inside was examined using X-ray photographs, it was found that there was a hive nest.

このスパッタリング用ターゲットを使用してポリカーボ
ネート板上に実施例と同一条件でスパッターを行なった
Using this sputtering target, sputtering was performed on a polycarbonate plate under the same conditions as in the example.

第1表に示す様に比較例/で得られたものは膜厚の変化
が大きくスパッタリング用ターゲットとしては適してい
ないことが解った。
As shown in Table 1, it was found that the film obtained in Comparative Example/ had a large change in film thickness and was not suitable as a sputtering target.

〔発明の効果〕〔Effect of the invention〕

本発明に依って得られる鋳造物はそろった直径の等軸晶
又は粒状晶であシ、又引は巣が内部に存在し力いので、
スパッタリンク用ターゲット及びその他の用途に好適で
ある。
The castings obtained according to the present invention have equiaxed crystals or granular crystals with uniform diameters, or have cavities inside and are strong.
Suitable for sputter link targets and other uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1で使用した鋳型である。 /は銅製水冷板、コはステンレス與側面枠、3はタンタ
ル裂カバー、グは鋳込口、!は冷却水の流れをそれぞれ
示す。 出 願 人  三菱化成工業株式会社 代 理 人  弁理士 長谷用  − (ほか1名) 第 1 図
FIG. 1 shows the mold used in Example 1 of the present invention. / is a copper water-cooled plate, ko is a stainless steel side frame, 3 is a tantalum crack cover, gu is a casting hole, ! indicate the flow of cooling water. Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent attorney: Yo Hase - (1 other person) Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)希土類金属の溶湯を、底面を強制冷却した鋳型に
、底面を分割する最長線分の1/2長以下の高さに鋳込
むことを特徴とする希土類金属の鋳造方法。
(1) A method for casting rare earth metals, which is characterized by pouring molten rare earth metal into a mold whose bottom surface is forcibly cooled to a height that is less than 1/2 the length of the longest line dividing the bottom surface.
(2)鋳型の上面を保温する特許請求の範囲第1項記載
の希土類金属の鋳造方法。
(2) The rare earth metal casting method according to claim 1, wherein the upper surface of the mold is kept warm.
JP9769187A 1987-04-21 1987-04-21 Casting method for rare earth metal Pending JPS63264261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9769187A JPS63264261A (en) 1987-04-21 1987-04-21 Casting method for rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9769187A JPS63264261A (en) 1987-04-21 1987-04-21 Casting method for rare earth metal

Publications (1)

Publication Number Publication Date
JPS63264261A true JPS63264261A (en) 1988-11-01

Family

ID=14198976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9769187A Pending JPS63264261A (en) 1987-04-21 1987-04-21 Casting method for rare earth metal

Country Status (1)

Country Link
JP (1) JPS63264261A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798640A (en) * 1980-12-08 1982-06-18 Seiko Epson Corp Permanent magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798640A (en) * 1980-12-08 1982-06-18 Seiko Epson Corp Permanent magnet

Similar Documents

Publication Publication Date Title
US7951468B2 (en) Method of unidirectional solidification of castings and associated apparatus
US7264038B2 (en) Method of unidirectional solidification of castings and associated apparatus
US2951272A (en) Method and apparatus for producing grain-oriented ingots
JPS63264261A (en) Casting method for rare earth metal
JPH11199216A (en) Device for unidirectional solidification of silicon
JPH06263B2 (en) Continuous casting method
JPH0999344A (en) Mold for vertical semi-continuous casting of non-ferrous metallic slab
WO2008061453A1 (en) A casting ingot of vacuum fine equiaxed grain structure
JPH02311394A (en) W target material
JPS63161161A (en) Target made al-si alloy and its production
JPS641230B2 (en)
JPS60244013A (en) Manufacture of magnetic material
JPS63262460A (en) Target for sputtering
JPS61272371A (en) Sputtering target
OHNO Formation mechanism of the equiaxed chill zone in ingots
JPH09206919A (en) Manufacture of rare earth magnet alloy ingot having big columnar crystal
SU1133028A1 (en) Method of manufacturing cast permanent magnets with directional structure
US3706338A (en) Radiation shield for investment molds
JPS57160567A (en) Purifying method for metal
RU1677929C (en) Apparatus for cooling aluminium alloy before crystallizer
JPS63149056A (en) Continuous casting method for non-ferrous metal
JPH01108367A (en) Production of target for sputtering
SU334752A1 (en) Method of continuous casting of ingots
AU2013203656B2 (en) Method of unidirectionbal solidification of castings and associated apparatus
JPS63262461A (en) Target for sputtering