JPS63161161A - Target made al-si alloy and its production - Google Patents

Target made al-si alloy and its production

Info

Publication number
JPS63161161A
JPS63161161A JP30540886A JP30540886A JPS63161161A JP S63161161 A JPS63161161 A JP S63161161A JP 30540886 A JP30540886 A JP 30540886A JP 30540886 A JP30540886 A JP 30540886A JP S63161161 A JPS63161161 A JP S63161161A
Authority
JP
Japan
Prior art keywords
target
alloy
precipitation
ingot
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30540886A
Other languages
Japanese (ja)
Inventor
Susumu Sawada
沢田 進
Osamu Kanano
治 叶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP30540886A priority Critical patent/JPS63161161A/en
Publication of JPS63161161A publication Critical patent/JPS63161161A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture a target stably forming a thin electrode film having uniform Si concentration, by subjecting a molten Al-Si alloy to rapid solidification so as to restrict the precipitation of primary-crystal silicon practically within the grain boundaries and inhibit the precipitation of the above in the crystalline grains. CONSTITUTION:An Al-Si alloy (Al -0.5-2wt.% Si, Al-Si-Ti, Al-Si-Cu, etc.) is heated and melted in a refractory crucible free from contamination. The resulting molten alloy is poured into a mold 2 placed on the water surface of a water tank 1, on which cooling water is sprayed through a spray nozzle 4 to carry out rapid solidification..As a result, an ingot in which the precipita tion of prymary-crystal silicon is restricted practically within the grain bounda ries and the precipitation of primary-crystal silicon in the crystalline grains is inhibited can be obtained. Moreover, since there are cases where the precipita tion of Si in the crystalline grains occurs in part in the vicinity of the ingot surface, the part is eliminated. By finish-working this ingot into a target, target forming a wiring film in which Si is uniformly distributed can be obtained.

Description

【発明の詳細な説明】 本発明の対象とする合金は、人J−115〜2wt、%
81、Aj−!9l−TI  SAノー81−Cm  
、Aノー8l−All  、Al−81−TI−Cu等
を代表例とするOaは形成された配線部のAn−81コ
ンタクト部でのSiの人/Xo拡散防止のために有用で
あシ、それ故Sio均一分布した配線膜が必要とされる
。こうしたAj−Si配線膜にはその高品質化を図って
少意の添加元素が必要に応じ追加的に含まれている。例
えばエレクトロマイグレーシロン現象と呼ばれる現象防
止の為にTIが添加される0ここで、エレクトロマイグ
レーシ目ンとは、成るm光密度以上になると金属原子と
電子との相互作用によって金mi子が電子の動く方向に
移動し、その跡に原子空孔を発生し、原子空孔が発生す
ると電流密度が更に大きくなシ、温度が上昇しS鳳子空
凡の成長が加速されて最終的に断線に至る現象である。
DETAILED DESCRIPTION OF THE INVENTION The alloy to which the present invention is directed is
81, Aj-! 9l-TI SA No 81-Cm
, A-8l-All, Al-81-TI-Cu, etc. are useful for preventing Si/Xo diffusion at the An-81 contact part of the formed wiring part. Therefore, a wiring film with uniform distribution of SIO is required. In order to improve the quality of the Aj-Si wiring film, small amounts of additive elements are additionally included as necessary. For example, TI is added to prevent a phenomenon called electromigration phenomenon. Here, electromigration is the phenomenon in which gold particles become electronless due to the interaction between metal atoms and electrons when the optical density exceeds m. It moves in the direction of movement and generates atomic vacancies in its wake, and when the atomic vacancies are generated, the current density becomes even larger, the temperature rises, the growth of S Fengzi is accelerated, and eventually the wire breaks. It is a phenomenon that leads to

一方、金属が移動し、蓄積したところにはヒロックが発
生し、近接配線間の短絡をもたらす。このエレクトロマ
イクレーシミン対策として、001重飯博以上のT1の
添加が提案されている。この他、様々の理由のために、
AJ−81合金に追加元素を含有させることが行われて
おシ、本発明ではこうしたAJ−81系合金において鋳
造時にSIの析出が起こる合金系すべてを対象とする。
On the other hand, hillocks occur where metal moves and accumulates, resulting in short circuits between adjacent wires. As a countermeasure against electromicresimin, it has been proposed to add T1 of 001 Hiroshi Shigei or higher. In addition, for various reasons,
Additional elements have been incorporated into AJ-81 alloys, and the present invention is directed to all alloy systems in which SI precipitation occurs during casting in such AJ-81 alloys.

本発明に従えば、ζうしたAn −Sl糸金合金、溶解
後急速凝固せしめられる〇 合金原料は、例えは高純度アルミナルツぎのような非汚
染性耐火ルツボ内に泗入され、抵抗加熱、−周波加熱等
によシ加熱溶融される。加熱温度は、合金融点以上とす
れば充分であるが、難溶解性添加元素例えはTlヲ含有
する場合には高温とする程その溶解性を増すので好まし
い。成分の指発伽失、ルツボ材質、電力費等の点から1
500℃程度が現状では限度である。難溶解性元素を添
加する場合は、高温になる程溶質原子の分布状態は−N
均一化し、その状態から急速凝固することによって鋳造
ターゲット中の溶Jj!ti子の均一性も向上するので
、本発明においては加熱温度を1200℃以上、好まし
くは1500℃以上に加熱保持して均質な溶体を形成す
る。
According to the present invention, the An-Sl thread alloy, which has been melted and rapidly solidified, is poured into a non-fouling refractory crucible, such as a high-purity aluminum crucible, and subjected to resistance heating, - It is heated and melted by frequency heating or the like. It is sufficient to set the heating temperature to a temperature equal to or higher than the alloying point; however, when a poorly soluble additive element such as Tl is contained, the higher the temperature, the more the solubility thereof increases, which is preferable. 1 from the points of failure of ingredients, crucible material, electricity cost, etc.
The current limit is about 500°C. When adding a hardly soluble element, the distribution state of solute atoms becomes -N as the temperature increases.
The molten Jj in the casting target is homogenized and rapidly solidified from that state. Since the uniformity of Ti particles is also improved, in the present invention, the heating temperature is maintained at 1200° C. or higher, preferably 1500° C. or higher to form a homogeneous solution.

踵溶解性元素管含まない場合は、Siを含めて溶湯中で
は均一溶体が得られるので溶体の保持温度は特に問題と
ならない@ 合金原料としては、ターゲットという製品の性格上、な
るたけ為純度のものの使用が好ましい。
If the heel-soluble element is not contained, a homogeneous solution is obtained in the molten metal including Si, so the holding temperature of the solution is not a particular problem. Use is preferred.

M原料としては例えば5NAl地金が使用される。For example, 5NAl ingot is used as the M raw material.

stm料としては、単結晶破材或いは単結晶鳳料多結晶
材の使用が筒便である。′n原料としては、エレクトロ
ンビームインゴットからの切粉が好適である。その他の
添加剤もこれらに準する。
As the STM material, it is convenient to use single crystal broken material, single crystal porcelain, or polycrystalline material. As the raw material, chips from an electron beam ingot are suitable. Other additives also apply.

溶体は、81の初晶の結晶粒内への析出を実質上防止す
るに充分の速度で急速凝固せしめられる。
The solution is allowed to rapidly solidify at a rate sufficient to substantially prevent precipitation of primary crystals of 81 into the grains.

急速凝固法のもつとも一般的方法は水冷鋳型に鋳造する
ことである。第1図は、本発明に訃すて使用しうる鋳造
装置の一例を示す。
The most common method of rapid solidification is casting into water-cooled molds. FIG. 1 shows an example of a casting apparatus that can be used in conjunction with the present invention.

水槽1内にターゲット鋳造用鋳型2が支持台5に載って
水面上に置かれている。鋳型2の底面はターゲット5の
形成される部分全体にわたって水と接触状態にある。鋳
型2の底面を冷却する冷却手段の一例として噴射ノズル
4が水槽1の底部に設けられ、鋳型底板に向は冷却水を
吹きつけている。水槽内の水はドレンへと流される。な
お、水の有効利用の為、水を適宜の冷却装伽、を介して
循回させることもできる。
In a water tank 1, a target casting mold 2 is placed on a support stand 5 on the water surface. The bottom surface of the mold 2 is in contact with water over the entire portion where the target 5 is to be formed. As an example of cooling means for cooling the bottom surface of the mold 2, a spray nozzle 4 is provided at the bottom of the water tank 1, and sprays cooling water onto the mold bottom plate. The water in the tank is drained into the drain. In addition, in order to use water effectively, water can also be circulated through an appropriate cooling device.

鋳型2はその側壁まで部分的に水に浸るよう部分的に水
没して配置してもよい。噴射ノズルは水槽底に1つ示し
たが水槽底に複数個設電してもよい。
The mold 2 may be placed partially submerged in water so that its side walls are partially submerged in water. Although one spray nozzle is shown at the bottom of the tank, a plurality of spray nozzles may be installed at the bottom of the tank.

鋳型2は、耐熱性、耐熱応力性及びMとの非反応性を具
備する材質のものならいずれも使用しうるが、Mo又は
TZMの使用が好ましい。
The mold 2 may be made of any material that has heat resistance, heat stress resistance, and non-reactivity with M, but Mo or TZM is preferably used.

鋳造されたインゴットは上面近傍では凝固速度が遅いた
め一部SIの結晶粒内への析出が生じ、81分布が不均
一化することがあるが、その場合は該当部分を機械加工
によシ削除する。いずれにせよ、生成インゴットはター
ゲットへと仕上加工される。
Since the solidification rate of the cast ingot is slow near the top surface, some SI may precipitate into the crystal grains, making the 81 distribution uneven, but in that case, the corresponding part can be removed by machining. do. In any case, the resulting ingot is finished into a target.

急冷凝固法は、上記のような水冷に限られるものでなく
、冷媒の使用、冷風な用いての強制冷却、噴霧滴冷却等
を採用しうる。要は、金型への鋳造後大気放冷するよシ
も充分速く、Stの粒内析出上実質阻止するに充分の1
#固速度を実現しうる冷却方法ならいずれも使用しうる
The rapid solidification method is not limited to water cooling as described above, and may employ methods such as the use of a refrigerant, forced cooling using cold air, spray droplet cooling, and the like. In short, cooling in the atmosphere after casting into a mold is fast enough, and the temperature is sufficiently low to substantially prevent intragranular precipitation of St.
# Any cooling method that can achieve solid velocity can be used.

こうして、生成されるターゲットは、後に実施例で示す
ように、 (1)  従来品では、初晶シリコンの析出が結晶粒界
はもちろん結晶粒内でも見られるのに対し、結晶粒内へ
の初晶シリコンの析出が抑制され、辺晶シリコンの析出
部品が実質粒界のみであること、及び (0)  ターゲットの部品によるS「濃度のはらつき
が少ない、即ち81分布が均一であることの点で従来品
ターゲットと顕著な組輪上の差異上水す。
As will be shown later in the examples, the target thus generated has the following characteristics: (1) In the conventional product, the precipitation of primary silicon can be seen not only at the grain boundaries but also within the grains; The precipitation of crystalline silicon is suppressed, and the precipitated parts of side crystalline silicon are only the substantial grain boundaries, and (0) there is little variation in S concentration due to target parts, that is, the 81 distribution is uniform. There is a noticeable difference between the target and the conventional product.

初晶Siの析出を結晶粒界にのみとどめることにようタ
ーゲット全体としての3分布の均一性は格段に向上する
のである〇 本発明ターゲットの使用によ、981濃度の均一な電極
薄膜が安定して製造でき、LSIデバイスの高品質化、
信頼性向上、歩留りの向上等に寄与する。
Since the precipitation of primary Si is confined to the grain boundaries, the uniformity of the 3 distribution throughout the target is greatly improved. By using the target of the present invention, an electrode thin film with a uniform 981 concentration is stabilized. high quality LSI devices,
Contributes to improved reliability and yield, etc.

本方法はこうしたターゲラ)1−安価に且つ簡易に製造
することを可能ならしめる。
The present method makes it possible to manufacture such target rays at low cost and simply.

実施例1及び比較例1 本発明方法及び従来方法に従いA7− t O重量%S
I−α05重量%TI合金製ターゲットを作製した。
Example 1 and Comparative Example 1 A7-t O weight %S according to the method of the present invention and the conventional method
A target made of I-α05% by weight TI alloy was produced.

本方法は合金をアルミナルツボ中で1300℃において
溶解後第1図に示したような水冷鋳型に急速凝固せしめ
た。従来方法は金型へ鋳込み後大気放冷するものとした
In this method, the alloy was melted in an aluminum crucible at 1300 DEG C. and then rapidly solidified into a water-cooled mold as shown in FIG. The conventional method was to cool the material in the atmosphere after casting it into a mold.

こうして得られたターゲットの凝固組織を第2及び第3
図に示す。第2図の写真(従来方法)は、100 mm
〆X200mmの大きさのインゴットを唐竹割に2分割
し、エメリー紙で#1200まで研磨し、更にダイヤモ
ンドペーストで研磨した後、電解エツチングを行ったも
のである。第3図の写真(本発明による急速冷却法)は
、厚さ約30mmに急速凝固させたインゴットを厚さ半
分のところで切断し、以後は上記と同じ手順で最終的に
電解エツチングしたものである。
The solidified structure of the target obtained in this way was
As shown in the figure. The photo in Figure 2 (conventional method) is 100 mm
An ingot with a size of 200 mm was divided into two pieces, polished with emery paper to #1200, further polished with diamond paste, and then electrolytically etched. The photograph in Figure 3 (rapid cooling method according to the present invention) shows an ingot that was rapidly solidified to a thickness of about 30 mm, cut at half the thickness, and then finally electrolytically etched using the same procedure as above. .

2つの写真を比較すると差異は歴然としている。If you compare the two photos, the differences are obvious.

第2図(従来)では結晶粒が太き(なり且つ粒界への8
1 (Si化合物)の析出が著しい。細かい粒粒が結晶
粒内にも多数析出している。他方、第3図C本発明)で
はSiの結晶粒内への析出が認められない(第5図の写
真において結晶粒内に黒い点状のものが見えるが、これ
は析出S1ではなく、エツチング及び写真撮影上のもの
である)。
In Figure 2 (conventional), the crystal grains are thick (and the grain boundaries are
1 (Si compound) was significantly precipitated. Many fine grains are also precipitated within the crystal grains. On the other hand, in Fig. 3C (invention), no precipitation of Si within the crystal grains is observed (in the photograph of Fig. 5, black dots are visible within the crystal grains, but this is not precipitation S1, but etching). and photography).

実施例2及び比較例2 ここでは、S1分分布度の実測を目的として、本発明の
急速凝固法で製造したAI −1wt%St −0、5
wt%Cuターゲット(本発明品)と市販のA7−1 
vt%Siターゲット(市販品)につい℃ターゲット各
部位での81含有量を測定した。結果を第4及び5図に
それぞれ示す。
Example 2 and Comparative Example 2 Here, for the purpose of actual measurement of S1 distribution degree, AI-1wt%St-0,5 produced by the rapid solidification method of the present invention
wt% Cu target (product of the present invention) and commercially available A7-1
Regarding the vt%Si target (commercially available product), the 81 content at each part of the target was measured. The results are shown in Figures 4 and 5, respectively.

第4(a)図はアウター横断面において外周からの距離
として表わした各部位で81及びCo含有量を示すもの
であ番)、第4(b)図はアウター縦断面において底面
からの距離と1、て表わした各部位でのSt及びCu含
有量を示しそして第4(C)図はインナー横断面におい
て中心からの距離として示した各部位でのSl及びCu
含有量を示す。
Figure 4(a) shows the 81 and Co content at each location expressed as the distance from the outer periphery in the outer cross section, and Figure 4(b) shows the distance from the bottom surface in the outer longitudinal cross section. 1. Figure 4(C) shows the St and Cu contents at each location expressed as
Indicates the content.

第5(a)図は、市販品の一つの直径に沿って一端から
中心を通って他端までの各部位でのSi含有量を示す。
FIG. 5(a) shows the Si content at each location along one diameter of a commercial product from one end through the center to the other end.

第5(b)図は、上記と直交する半径線に沿って中心か
ら外周端までの各部位でのSi含有量を示す。
FIG. 5(b) shows the Si content at each location from the center to the outer peripheral edge along the radial line perpendicular to the above.

第4図(本発明品)と第5図(市販品)との比較から、
本発明のターゲットがSi濃度分布の均一性において市
販品より格段に優れていることが明白である。これは、
市販品ではSlの偏析を避けることができないためであ
I】、粗大なStが結晶粒内にかたまって局所的に存在
するためである。本発明においては、そうした粗大なS
iの析出物は粒内には存在しない。
From the comparison between Figure 4 (product of the present invention) and Figure 5 (commercial product),
It is clear that the target of the present invention is significantly superior to commercial products in terms of uniformity of Si concentration distribution. this is,
This is because segregation of Sl cannot be avoided in commercially available products, and coarse St is locally present in clusters within crystal grains. In the present invention, such coarse S
The precipitates of i do not exist within the grains.

次は、上記ターゲットについて、全Si濃度とそのうち
の固溶St濃度とを極端な2つの部位で測定した結果を
示す。
Next, the results of measuring the total Si concentration and the solid solution St concentration of the target at two extreme locations will be shown.

本発明ターゲットは、全5ifi度及び固溶St濃度と
も市販品に較べてはるかに一様であり、これは析出Sl
の均一分布性が良好であることを意味する。
The target of the present invention has a much more uniform total 5ifi degree and solid solution St concentration than commercially available products, which indicates that the precipitated Sl
This means that the uniformity of distribution is good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明において使用しつる急速凝固装置の一
例を示す断面図、@2図は従来方法によ1)通常凝固し
たl −Si系ターゲットの金属組織を示す200倍顕
微鏡写真であり、$3図は本発明方法により急速凝固し
た第2図と同じ合金ターゲットの金属組織を示す200
倍顕微鏡写真であり、第4(a)、4(b)及び4(c
)図は本発明ターゲットの各部位でのSl及びCuの含
有量を示す濃度分布グラフであり、セしてIJ5 (a
t及び5(b)図は市販品ターゲラFの81含有量分布
を示すグラフである。 1:水槽 2:鋳型 3:支持台 4:噴射ノズル 5:ターゲット 5.τ−・ 第1図 ζX 2 Q l’i ) 【)、ン1「]〕 第4(o)図 0102o 30 リ 父 1 タト周かうの距離 )
Fig. 1 is a cross-sectional view showing an example of the rapid solidification device used in the present invention, and Fig. 2 is a 200x microscopic photograph showing the metal structure of the l -Si-based target normally solidified by the conventional method. , $3 shows the metallographic structure of the same alloy target as in FIG. 2 which was rapidly solidified by the method of the present invention.
Magnification micrographs, 4(a), 4(b) and 4(c)
) is a concentration distribution graph showing the content of Sl and Cu in each part of the target of the present invention.
Figures t and 5(b) are graphs showing the 81 content distribution of commercially available Targera F. 1: Water tank 2: Mold 3: Support stand 4: Spray nozzle 5: Target 5. τ-・ Fig. 1 ζ

Claims (1)

【特許請求の範囲】 1)初晶シリコンの析出を実質上結晶粒界のみとし、結
晶粒内への初晶シリコンの析出を抑制したことを特徴と
するAl−Si系合金製ターゲット。 2)AL−Si系合金溶湯を急速凝固させることを特徴
とするAl−Si系合金製ターゲットの製造方法。
[Scope of Claims] 1) An Al-Si alloy target characterized in that primary silicon is precipitated substantially only at grain boundaries, and precipitation of primary silicon within crystal grains is suppressed. 2) A method for producing an Al-Si alloy target, which comprises rapidly solidifying a molten AL-Si alloy.
JP30540886A 1986-12-23 1986-12-23 Target made al-si alloy and its production Pending JPS63161161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30540886A JPS63161161A (en) 1986-12-23 1986-12-23 Target made al-si alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30540886A JPS63161161A (en) 1986-12-23 1986-12-23 Target made al-si alloy and its production

Publications (1)

Publication Number Publication Date
JPS63161161A true JPS63161161A (en) 1988-07-04

Family

ID=17944768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30540886A Pending JPS63161161A (en) 1986-12-23 1986-12-23 Target made al-si alloy and its production

Country Status (1)

Country Link
JP (1) JPS63161161A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262461A (en) * 1987-04-21 1988-10-28 Mitsubishi Kasei Corp Target for sputtering
JPH03129727A (en) * 1989-10-16 1991-06-03 Hitachi Ltd Method and apparatus for formation of thin film
FR2664618A1 (en) * 1990-07-10 1992-01-17 Pechiney Aluminium PROCESS FOR MANUFACTURING CATHODES FOR HIGHLY PURITY ALUMINUM CATHODIC SPRAY
JPH0451409A (en) * 1990-06-19 1992-02-19 Sumitomo Metal Mining Co Ltd Ito sintered body
DE19537765B4 (en) * 1995-10-11 2007-09-06 W.C. Heraeus Gmbh Fine-grained sputtering target with a predetermined width-to-thickness ratio and method for producing sputtering target plates
CN107779829A (en) * 2016-08-26 2018-03-09 辽宁省轻工科学研究院 The preparation method of MULTILAYER COMPOSITE high-temperature corrosion resistance coating based on high-temperature nickel-base alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262461A (en) * 1987-04-21 1988-10-28 Mitsubishi Kasei Corp Target for sputtering
JPH03129727A (en) * 1989-10-16 1991-06-03 Hitachi Ltd Method and apparatus for formation of thin film
JPH0451409A (en) * 1990-06-19 1992-02-19 Sumitomo Metal Mining Co Ltd Ito sintered body
FR2664618A1 (en) * 1990-07-10 1992-01-17 Pechiney Aluminium PROCESS FOR MANUFACTURING CATHODES FOR HIGHLY PURITY ALUMINUM CATHODIC SPRAY
DE19537765B4 (en) * 1995-10-11 2007-09-06 W.C. Heraeus Gmbh Fine-grained sputtering target with a predetermined width-to-thickness ratio and method for producing sputtering target plates
CN107779829A (en) * 2016-08-26 2018-03-09 辽宁省轻工科学研究院 The preparation method of MULTILAYER COMPOSITE high-temperature corrosion resistance coating based on high-temperature nickel-base alloy

Similar Documents

Publication Publication Date Title
US9388507B2 (en) Method for manufacturing polycrystalline silicon ingot, and polycrystalline silicon ingot
US5400851A (en) Process of producing monotectic alloys
JPS63161161A (en) Target made al-si alloy and its production
JPH05254817A (en) Production of polycrystal silicon ingot
JPH06280005A (en) Sputtering target and its production
US7267734B2 (en) Aluminum alloy sheet
US3360366A (en) Method of grain refining zinc
JP3208941B2 (en) Continuous casting method of high purity aluminum alloy
JP3053063B2 (en) Manufacturing method of aluminum alloy casting material suitable for semi-solid molding
JPH1112727A (en) Aluminum alloy single crystal target
JPS641230B2 (en)
JP3801427B2 (en) Method for preventing coarse primary crystal Si defects in aluminum alloy castings
TWI606512B (en) Silicon part for plasma etching apparatus and method of producing the same
US3125788A (en) Etching plate and method
JP2003071546A (en) Aluminum ingot, and continuous casting method therefor, and manufacturing method for aluminum foil for electrode of electrolytic capacitor using the aluminum ingot
WO2023084867A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
WO2023084864A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
JP2005028452A (en) CONTINUOUS CASTING METHOD OF Al-Mg-Si ALLOY AND Al-Mg-Si ALLOY INGOT, MANUFACTURING METHOD OF Al-Mg-Si ALLOY SHEET AND Al-Mg-Si ALLOY SHEET, AND MANUFACTURING METHOD OF HEAT RADIATION MATERIAL AND HEAT RADIATION MATERIAL
JPS6376832A (en) Production of aluminum alloy containing hardly soluble additive element and casting device therefor
KR100274737B1 (en) Manufacturing method of sputtering target
JP2866510B2 (en) Melting casting method of copper alloy containing iron
SU900951A1 (en) Method of cooling ingot at continuous casting into electromagnetic mould
JPS62137147A (en) Apparatus for producing bar-shaped ingot
JPH06206798A (en) Production of silicon particle
JPS63123550A (en) Continuous cast block for berylium-copper alloy and its continuous casting method