JPH11199216A - Device for unidirectional solidification of silicon - Google Patents

Device for unidirectional solidification of silicon

Info

Publication number
JPH11199216A
JPH11199216A JP10003816A JP381698A JPH11199216A JP H11199216 A JPH11199216 A JP H11199216A JP 10003816 A JP10003816 A JP 10003816A JP 381698 A JP381698 A JP 381698A JP H11199216 A JPH11199216 A JP H11199216A
Authority
JP
Japan
Prior art keywords
mold
silicon
heat insulating
solidification
unidirectional solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10003816A
Other languages
Japanese (ja)
Other versions
JP4003271B2 (en
Inventor
Shunji Hamada
俊二 濱田
Yoshihide Kato
嘉英 加藤
Masamichi Abe
正道 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP00381698A priority Critical patent/JP4003271B2/en
Publication of JPH11199216A publication Critical patent/JPH11199216A/en
Application granted granted Critical
Publication of JP4003271B2 publication Critical patent/JP4003271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject device capable of maintaining the solidification rate to be constant as compared with any conventional device for the same purpose. SOLUTION: This device is provided with: a casting mold 3 disposed on a support base that is placed inside a casting chamber 15; a melt supply means 2 for pouring a silicon melt 4 to be cast, into the casting mold 3; a heating means 10 for heating the upper side of the melt 4 in the casting mold 3; a water-cooled copper plate 12 for cooling the bottom of the casting mold 3; and an insulating material 9 placed between the water-cooled copper plate 12 and the bottom of the casting mold 3; wherein the melt supply means 2 and the heating means 10 are placed apart from each other in the upper part of the casting chamber 15, at positions which are the same distance apart from the central axis of the casting chamber 15 in the radial direction. Further, the device is provided with two disks, i.e., an upper disk 5 and a lower disk 6, which overlap each other and are rotatable independently from each other with their center shafts as the rotary shafts, respectively, and also, function as the support base for the casting mold 3 and the support base for the insulating material 9, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンの一方向
凝固装置に係わり、詳しくは、太陽電池用に粗精製され
たシリコンを鋳造し、一方向凝固させることで金属不純
物元素を除去すると共に、インゴットに形成させるため
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a unidirectional solidification apparatus for silicon, and more specifically, to cast a coarsely purified silicon for a solar cell and unidirectionally solidify to remove metal impurity elements. The present invention relates to a device for forming an ingot.

【0002】[0002]

【従来の技術】太陽電池に使用するシリコン基板は、所
要の半導体特性を発揮するには、多くの不純物元素をp
pmオーダまで低減させる必要がある。そのため、本出
願人は、金属シリコン(純度、99.3重量%)を出発
原料として、それからボロン、炭素を酸化精錬で、燐を
揮発精錬で除去する技術を研究開発している。しかし、
そのように粗精製されたシリコンでも、まだ金属不純物
元素のチタニウム、鉄、アルミニウム、カルシウムが太
陽電池用としての仕様を満足しない量含まれている。そ
こで、これら元素が固液分配係数の小さいことに着眼
し、所謂一方向凝固法を用いて除去精製すると共に、シ
リコンのインゴットを形成するようにしている。
2. Description of the Related Art A silicon substrate used for a solar cell must contain many impurity elements in order to exhibit required semiconductor characteristics.
It needs to be reduced to the order of pm. Therefore, the present applicant has researched and developed a technique for removing metallic silicon (purity: 99.3% by weight) as a starting material, and then removing boron and carbon by oxidative refining and removing phosphorus by volatile refining. But,
Even in such a roughly refined silicon, the metal impurity elements titanium, iron, aluminum and calcium are still contained in an amount that does not satisfy the specifications for solar cells. Therefore, attention has been paid to the fact that these elements have a small solid-liquid partition coefficient, and so-called one-way solidification method is used to remove and purify them, and to form a silicon ingot.

【0003】ところで、一方向凝固を行わせるには、鋳
型に注入したシリコン溶湯を底部から上方に向けて一定
速度(理想的には、凝固界面が一面となって進行するこ
とが望ましい)で凝固させることが必要である。そのた
め、従来は、溶湯の上方より黒鉛ヒータ等で加熱すると
共に、鋳型の底面に水冷された銅板をあてて冷却するよ
うにしていた。
By the way, in order to perform unidirectional solidification, the silicon melt poured into the mold is solidified at a constant speed (ideally, it is desirable that the solidification interface is formed as one surface) upward from the bottom. It is necessary to let For this reason, conventionally, the molten metal is heated from above by a graphite heater or the like, and is cooled by applying a water-cooled copper plate to the bottom surface of the mold.

【0004】この方法を用いると、凝固の開始当初は、
底部での抜熱が良く、シリコン溶湯の下方から比較的速
い凝固速度で安定して界面が進行するが、凝固が進んで
行くと、溶融状態にあるシリコンの下部からの抜熱が悪
くなって、凝固速度はしだいに遅くなって行く。凝固速
度がこのように変動すると、凝固部分から溶融シリコン
への不純物元素の移動が不安定になり、高さ方向で均一
な品質を有するインゴットが得難くなる。そのため、こ
の凝固速度を一定に制御することは、太陽電池用シリコ
ンの製造にとって重要なことであった。
Using this method, at the beginning of solidification,
The heat removal at the bottom is good, and the interface proceeds stably at a relatively high solidification rate from below the silicon melt, but as the solidification progresses, the heat removal from the lower part of the molten silicon deteriorates. However, the solidification rate gradually decreases. When the solidification rate fluctuates in this manner, the movement of the impurity element from the solidified portion to the molten silicon becomes unstable, and it becomes difficult to obtain an ingot having uniform quality in the height direction. Therefore, controlling the solidification rate to be constant has been important for the production of silicon for solar cells.

【0005】また、従来は、鋳型底部からの抜熱速度を
十分に制御できなかったために、上部ヒータの出力を調
整して、すなわち、凝固初期にはヒータの出力を強め、
凝固末期にはヒータの出力を弱める制御を行っていた。
しかし、底部からの抜熱の方が凝固速度に対し支配的で
あり、上部の加熱と底部の冷却を十分にバランスさせて
の制御は難しかった。さらに、ヒータの出力を高い方で
制御する頻度が多いために、電力原単位が高くなるとい
った傾向があった。
Conventionally, since the heat removal rate from the bottom of the mold could not be sufficiently controlled, the output of the upper heater was adjusted, that is, the output of the heater was increased in the early stage of solidification.
At the end of solidification, the output of the heater was weakened.
However, the heat removal from the bottom is more dominant to the solidification rate, and it has been difficult to control the heating of the top and the cooling of the bottom sufficiently. Furthermore, since the frequency of controlling the output of the heater at a higher frequency is higher, the unit power consumption tends to be higher.

【0006】そこで、特開昭62−260710号公報
は、鋳型底面と水冷銅板との間に、一種類の断熱材を介
在させる技術を提案し、該断熱材の厚みを変更すること
で、冷却速度を調整する旨言及している。
Therefore, Japanese Patent Application Laid-Open No. 62-260710 proposes a technique in which one kind of heat insulating material is interposed between the bottom surface of a mold and a water-cooled copper plate, and the cooling is performed by changing the thickness of the heat insulating material. It mentions adjusting the speed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開昭
62−260710号公報には、断熱材の具体的な変更
方法、つまり、どのように制御するのかが記載されてい
ない。該公報に記載された凝固装置の図を参照すれば、
該装置は、鋳造室内への鋳型交換の便は図られている
が、断熱材の交換が簡単、しかも短時間に可能なものに
はなっていない。これでは、上方の加熱、底部の冷却を
バランス良く制御することはできない。
However, Japanese Patent Application Laid-Open No. 62-260710 does not describe a specific method of changing the heat insulating material, that is, how to control the heat insulating material. Referring to the figure of the coagulation apparatus described in the publication,
Although the apparatus can easily replace the mold in the casting chamber, it is not possible to easily replace the heat insulating material in a short time. In this case, the heating of the upper part and the cooling of the bottom part cannot be controlled in a well-balanced manner.

【0008】本発明は、かかる事情に鑑み、従来よりも
凝固速度を一定に維持可能なシリコンの一方向凝固装置
を提供することを目的としている。
[0008] In view of such circumstances, an object of the present invention is to provide a unidirectional solidification apparatus for silicon capable of maintaining a solidification rate more constant than before.

【0009】[0009]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究し、シリコンの凝固進行中に、鋳型
底面と水冷銅板との間に挟む断熱材の熱伝導率を変更す
ることを着想し、この着想を本発明に具現化した。すな
わち、本発明は、鋳造室内に設けた支持台上に配置され
る鋳型と、該鋳型に鋳造されるシリコン溶湯を注ぐ給湯
手段と、鋳型内溶湯の上方を加熱する加熱手段と、鋳型
の底部を冷却する水冷銅板と、該水冷銅板−鋳型底部間
に配置する断熱材とを備えたシリコンの一方向凝固装置
において、前記鋳造室の上方に前記給湯手段及び加熱手
段を、該鋳造室の中心から同一半径位置にそれぞれ離隔
して設けると共に、前記中心を軸として互いに独立に回
動する上下に重なった2枚の円盤を備え、その上方の円
盤を鋳型の支持台とし、下方の円盤を断熱材の支持台と
したことを特徴とするシリコンの一方向凝固装置であ
る。
Means for Solving the Problems The inventor of the present invention has made intensive studies to achieve the above-mentioned object, and changed the thermal conductivity of a heat insulating material sandwiched between a bottom surface of a mold and a water-cooled copper plate during solidification of silicon. And embodied this idea in the present invention. That is, the present invention provides a mold disposed on a support provided in a casting chamber, hot water supply means for pouring molten silicon cast into the mold, heating means for heating the molten metal in the mold, and a bottom portion of the mold. In a one-way solidification apparatus for silicon, comprising a water-cooled copper plate for cooling the water and a heat insulating material disposed between the water-cooled copper plate and the bottom of the mold, the hot water supply means and the heating means are provided above the casting chamber, Are provided at the same radial position apart from each other, and are provided with two vertically overlapping disks that rotate independently of each other about the center, the upper disk is used as a support for the mold, and the lower disk is thermally insulated. This is a unidirectional solidification apparatus for silicon, which is used as a support for a material.

【0010】また、本発明は、前記下方の円盤を複数領
域に分け、各領域に熱伝導率の異なる断熱板を配置する
ことを特徴とするシリコンの一方向凝固装置である。さ
らに、本発明は、前記複数領域にある断熱板を、凝固中
の前記水冷銅板からの温度情報に応じて鋳型底面にそれ
ぞれ移動自在とする下方円盤の回動手段を備えたことを
特徴とするシリコンの一方向凝固装置である。
Further, the present invention is the unidirectional solidification apparatus for silicon, wherein the lower disk is divided into a plurality of regions, and heat insulating plates having different thermal conductivity are arranged in each region. Furthermore, the present invention is characterized in that the heat insulating plate in the plurality of regions is provided with a rotating means of a lower disk which can be freely moved to the bottom of the mold according to temperature information from the water-cooled copper plate during solidification. This is a unidirectional solidification device for silicon.

【0011】加えて、本発明は、前記断熱板の厚み及び
物性を変更自在としたり、あるいは前記加熱手段を黒鉛
ヒータとしたことを特徴とするシリコンの一方向凝固装
置である。さらに加えて、本発明は、前記給湯手段を、
スライディング・ゲートを有する耐火物製漏斗としたこ
とを特徴とするシリコンの一方向凝固装置でもある。
In addition, the present invention is a unidirectional solidification apparatus for silicon, characterized in that the thickness and physical properties of the heat insulating plate can be freely changed, or that the heating means is a graphite heater. In addition, the present invention provides the hot water supply means,
The present invention is also a unidirectional solidification apparatus for silicon, which is a refractory funnel having a sliding gate.

【0012】本発明によれば、凝固初期では底面からの
抜熱が多すぎるために、熱伝導率の低い断熱材を配置
し、凝固が進んで、シリコンの溶融部と鋳型底部との間
にシリコン凝固部ができると、この凝固部が伝熱律速に
なり、シリコン溶融部からの抜熱が悪くなるので、適宜
凝固の進行に合わせて熱伝導率の高い断熱材に取り替え
れるようになる。その結果、凝固速度は、その期間中ほ
ぼ一定に維持できるようになり、品質に優れたシリコン
のインゴットが得られるようになる。なお、凝固部の高
さによっては、直接鋳型底面と水冷銅板とを接触させた
方が良い場合もあり、その場合には、前記下方の円盤か
ら予め断熱板を取り外しておくことで対処できる。
According to the present invention, a heat insulating material having a low thermal conductivity is arranged in the early stage of solidification because heat is excessively removed from the bottom surface, solidification proceeds, and a space between the silicon melted portion and the mold bottom is formed. When the silicon solidified portion is formed, the solidified portion is subjected to heat transfer rate-determining, and the heat removal from the silicon melted portion is deteriorated. Therefore, the silicon solidified portion can be replaced with a heat insulating material having a high thermal conductivity as the solidification progresses. As a result, the solidification rate can be maintained substantially constant during the period, and a high quality silicon ingot can be obtained. In some cases, depending on the height of the solidified portion, it is better to directly contact the bottom surface of the mold with the water-cooled copper plate. In such a case, it can be dealt with by previously removing the heat insulating plate from the lower disk.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を説明する。まず、シリコン溶湯を本発明に
係る一方向凝固装置へ受入れる時の状況を図1に示す。
鋳造室15の雰囲気をアルゴンで置換してから、給湯手
段のスライディング・ゲート1を開き、耐火物製の漏斗
2を介してシリコン溶湯4が鋳型3中に注入される。注
入が終了したら、前記スライディング・ゲート1を閉じ
て、鋳造室15内の雰囲気を再度アルゴンで置換する。
引き続き、該鋳型3を支持している上方の円盤5(通
称、ターン・テーブルという)を後述の回動手段7で回
転し、鋳型3を凝固作業位置に移動させる。鋳型3が凝
固作業位置に到達したら、図2に示すように、鋳型3の
上方に加熱手段10及びフード11をセットする。その
後、断熱板9を支持している下方の円盤6を、前記同様
に、後述の回動手段8で回転させ、予め定めてある種類
の断熱板9を鋳型3の下方に配置する。最後に、鋳型3
の底部を冷却する水冷銅板12を上昇させて、該断熱板
9の下方にセットし、凝固作業が開始される。
Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 shows the situation when the molten silicon is received in the unidirectional solidification apparatus according to the present invention.
After replacing the atmosphere in the casting chamber 15 with argon, the sliding gate 1 of the hot water supply means is opened, and the molten silicon 4 is injected into the mold 3 through the funnel 2 made of refractory. When the injection is completed, the sliding gate 1 is closed and the atmosphere in the casting chamber 15 is replaced with argon again.
Subsequently, the upper disk 5 (commonly referred to as a turntable) supporting the mold 3 is rotated by a rotating means 7 described later to move the mold 3 to a solidification work position. When the mold 3 reaches the solidification work position, the heating means 10 and the hood 11 are set above the mold 3 as shown in FIG. After that, the lower disk 6 supporting the heat insulating plate 9 is rotated by the rotating means 8 described below in the same manner as described above, and a predetermined type of heat insulating plate 9 is arranged below the mold 3. Finally, mold 3
The water-cooled copper plate 12 for cooling the bottom of the plate is raised and set below the heat insulating plate 9, and the solidification operation is started.

【0014】ここで、前記上方の円盤5は、図3(a)
に示すように、鋳型3を載せる位置に貫通孔16が設け
てあり、冷却による抜熱の便を図ってある。また、下方
の円盤6は、図3(b)に示すように、複数の領域(こ
こでは、4つ)に区分され、各領域に貫通孔16を設
け、異なった種類の断熱板9が嵌め込まれている。勿
論、凝固中に断熱板9が不要の時もあるので、断熱板9
を嵌めてない貫通孔16があっても良い。さらに、これ
ら上方及び下方の円盤5、6は、それぞれ分離してお
り、円盤の軸を中心にして可逆的に回転、あるいは上下
に昇降できるように、回動手段7、8が設けてある。こ
の回動手段7、8としては、ギア、モータ、シリンダー
等を組み合わせた公知のものが利用できる。
Here, the upper disk 5 is shown in FIG.
As shown in FIG. 7, a through hole 16 is provided at a position where the mold 3 is placed, so that heat can be easily removed by cooling. As shown in FIG. 3B, the lower disk 6 is divided into a plurality of regions (four in this case), provided with through holes 16 in each region, and fitted with different types of heat insulating plates 9. Have been. Of course, there is a case where the heat insulating plate 9 is not necessary during the solidification.
There may be a through-hole 16 into which is not fitted. Further, the upper and lower disks 5, 6 are separated from each other, and rotating means 7, 8 are provided so that the disks 5 and 6 can be reversibly rotated about the axis of the disk, or can move up and down. As the rotating means 7 and 8, a known means combining a gear, a motor, a cylinder and the like can be used.

【0015】次に、鋳型3内に注入されたシリコン溶湯
4の凝固速度の制御を説明する。凝固開始当初は、予め
定めた凝固速度になるような前記加熱手段10の出力、
断熱板9と水冷銅板12に流す冷却水量で凝固を進行さ
せる。その後は、凝固がある程度進み、鋳型3の壁に設
けた温度計(図示せず)の情報で凝固速度の異常を確認
したら、前記凝固速度を維持するように、その都度、断
熱板9の種類を変更する。つまり、水冷銅板12を降下
させると共に、下方の円盤6を回転させ、適切な断熱板
9を鋳型3底部に配置し、再び水冷銅板12を上昇して
から凝固を継続させるのである。通常、高さ25cmの
鋳型3では、凝固に約4時間を要するが、この操作を数
回繰り返すことにより、水冷銅板12からの抜熱量が適
切に制御でき、ほぼ一定の凝固速度が得られるようにな
る。
Next, the control of the solidification rate of the silicon melt 4 injected into the mold 3 will be described. At the beginning of the solidification, the output of the heating means 10 has a predetermined solidification speed,
The solidification is advanced by the amount of cooling water flowing through the heat insulating plate 9 and the water-cooled copper plate 12. After that, solidification proceeds to some extent, and if an abnormality in the solidification rate is confirmed by information of a thermometer (not shown) provided on the wall of the mold 3, the type of the heat insulating plate 9 is set each time so as to maintain the solidification rate. To change. In other words, the water-cooled copper plate 12 is lowered, the lower disk 6 is rotated, an appropriate heat-insulating plate 9 is placed at the bottom of the mold 3, the water-cooled copper plate 12 is raised again, and solidification is continued. Normally, in the case of a mold 3 having a height of 25 cm, solidification takes about 4 hours, but by repeating this operation several times, the amount of heat removed from the water-cooled copper plate 12 can be appropriately controlled, and a substantially constant solidification speed can be obtained. become.

【0016】[0016]

【実施例】図1〜3に示した本発明に係る一方向凝固装
置を用い、太陽電池用に粗精製された50kgのシリコ
ン溶湯を黒鉛製の鋳型3に鋳造し、インゴットを製造し
た。また、凝固の効果を比較するため、凝固中に断熱板
9の種類を変更しない鋳造をも行った。鋳型3のサイズ
は、高さ250mm,幅300mm,長さ300mmの
ものである。使用した断熱板9は、材質が黒鉛で同じで
あるが、熱伝導率及び厚みが表1に示すようなものを使
用した。ここで、表1のNo.1,2,3及び4は、下
方の円盤6の前記した領域を示している。
EXAMPLE Using a directional solidification apparatus according to the present invention shown in FIGS. 1 to 3, 50 kg of a silicon melt roughly purified for a solar cell was cast into a graphite mold 3 to produce an ingot. In order to compare the effect of solidification, casting was performed without changing the type of the heat insulating plate 9 during solidification. The size of the mold 3 is 250 mm in height, 300 mm in width, and 300 mm in length. The used heat insulating plate 9 was made of graphite and had the same thermal conductivity and thickness as those shown in Table 1. Here, No. 1 in Table 1 was used. 1, 2, 3 and 4 show the above-mentioned areas of the lower disk 6.

【0017】凝固速度の制御状況を、図4に示す。図4
より、断熱板9の交換で凝固速度が制御できていること
が明らかである。また、使用したシリコン溶湯4及び得
られたインゴットの不純物濃度を、表2に示す。表2よ
り、本発明に係る一方向凝固装置で鋳造したインゴット
は、太陽電池用シリコンとしての仕様を満足しているこ
とも明らかである。
FIG. 4 shows the control state of the solidification rate. FIG.
It is apparent from the above that the solidification rate can be controlled by replacing the heat insulating plate 9. Table 2 shows the impurity concentrations of the used silicon melt 4 and the obtained ingot. From Table 2, it is also clear that the ingot cast by the unidirectional solidification apparatus according to the present invention satisfies the specifications as silicon for solar cells.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】なお、上記凝固速度の制御では、加熱手段
10の黒鉛ヒータの出力は、同じ断熱材9を使っている
間、凝固速度が一定になるように調整するが、その調整
範囲は、従来の断熱材種類を交換できない装置の場合と
比較して狭くて良く、使用電力量が従来より低下でき
る。また、図1〜2では、鋳型3の上方に配置する加熱
手段10を黒鉛ヒータとした。しかし、鋳造室雰囲気を
アルゴン・ガスではなく、真空とする場合には、電子銃
を利用しても良い。
In the control of the solidification rate, the output of the graphite heater of the heating means 10 is adjusted so that the solidification rate is constant while the same heat insulating material 9 is used. The device may be narrower than in the case of a device in which the type of heat insulating material cannot be replaced, and the power consumption can be reduced as compared with the conventional device. 1 and 2, the heating means 10 arranged above the mold 3 is a graphite heater. However, when the atmosphere in the casting room is not argon gas but vacuum, an electron gun may be used.

【0021】[0021]

【発明の効果】以上述べたように、本発明により、太陽
電池用シリコンを凝固させる過程において、均一な凝固
速度を得ることができ、シリコン・インゴットの品質の
向上と、均一化が達成される。また、抜熱量が低下する
ので、加熱手段の出力も下げることが可能となり、凝固
に要する電力原単位を従来よりも低減することが可能と
なる。
As described above, according to the present invention, in the process of solidifying silicon for a solar cell, a uniform solidification rate can be obtained, and the quality and uniformity of the silicon ingot can be improved. . Further, since the amount of heat removal is reduced, the output of the heating means can be reduced, and the power consumption required for coagulation can be reduced as compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシリコンの一方向凝固装置を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing a unidirectional solidification apparatus for silicon according to the present invention.

【図2】図1の別の状況を示す図である。FIG. 2 is a diagram showing another situation of FIG. 1;

【図3】図1の装置の平面状態を示し、(a)は、A矢
視図、(b)はB矢視図である。
FIGS. 3A and 3B show a plan view of the apparatus of FIG. 1, wherein FIG. 3A is a view as viewed from an arrow A, and FIG.

【図4】凝固速度の制御状況を示す図である。FIG. 4 is a diagram showing a control state of a solidification rate.

【符号の説明】[Explanation of symbols]

1 シリコン給湯手段のスライディング・ゲート 2 シリコン給湯手段の漏斗 3 鋳型 4 シリコンの溶湯(溶湯) 5 上方の円盤 6 下方の円盤 7 上方円盤の回動手段 8 下方円盤の回動手段 9 断熱板 10 加熱手段(黒鉛ヒータ) 11 鋳型のカバー 12 水冷銅板 13 冷却水の給排水ホース 14 冷却板の駆動装置 15 鋳造室 16 貫通孔 DESCRIPTION OF SYMBOLS 1 Sliding gate of silicon hot water supply means 2 Funnel of silicon hot water supply means 3 Mold 4 Melt of silicon (melt) 5 Upper disk 6 Lower disk 7 Upper disk rotating means 8 Lower disk rotating means 9 Heat insulating plate 10 Heating Means (graphite heater) 11 Mold cover 12 Water-cooled copper plate 13 Cooling water supply / drain hose 14 Cooling plate drive device 15 Casting room 16 Through hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋳造室内に設けた支持台上に配置される
鋳型と、該鋳型に鋳造されるシリコン溶湯を注ぐ給湯手
段と、鋳型内溶湯の上方を加熱する加熱手段と、鋳型の
底部を冷却する水冷銅板と、該水冷銅板−鋳型底部間に
配置する断熱材とを備えたシリコンの一方向凝固装置に
おいて、 前記鋳造室の上方に前記給湯手段及び加熱手段を、該鋳
造室の中心から同一半径位置にそれぞれ離隔して設ける
と共に、前記中心を軸として互いに独立に回動する上下
に重なった2枚の円盤を備え、その上方の円盤を鋳型の
支持台とし、下方の円盤を断熱材の支持台としたことを
特徴とするシリコンの一方向凝固装置。
1. A mold disposed on a support table provided in a casting chamber, a hot water supply means for pouring molten silicon cast into the mold, a heating means for heating the molten metal in the mold, and a bottom of the mold. In a unidirectional solidifying apparatus for silicon comprising a water-cooled copper plate to be cooled and a heat insulating material disposed between the water-cooled copper plate and the bottom of the mold, the hot-water supply unit and the heating unit are provided above the casting chamber, from the center of the casting chamber. Two discs are provided at the same radial position and are separated from each other, and are vertically rotatable about the center independently of each other, and the upper disc is used as a support for a mold, and the lower disc is used as a heat insulating material. A unidirectional solidification apparatus for silicon, wherein the apparatus is used as a support.
【請求項2】 前記下方の円盤を複数領域に分け、各領
域に熱伝導率の異なる断熱板を配置することを特徴とす
る請求項1記載のシリコンの一方向凝固装置。
2. The unidirectional solidification apparatus for silicon according to claim 1, wherein the lower disk is divided into a plurality of regions, and heat insulating plates having different thermal conductivity are arranged in each region.
【請求項3】 前記複数領域にある断熱板を、凝固中の
前記水冷銅板からの温度情報に応じて鋳型底面にそれぞ
れ移動自在とする下方円盤の回動手段を備えたことを特
徴とする請求項1又は2記載のシリコンの一方向凝固装
置。
3. The apparatus according to claim 1, further comprising: a lower disk rotating means for moving the heat insulating plates in the plurality of regions to the bottom of the mold in accordance with temperature information from the water-cooled copper plate during solidification. Item 3. The unidirectional solidification device for silicon according to Item 1 or 2.
【請求項4】 前記断熱板の厚み及び物性を変更自在と
したことを特徴とする請求項1〜3いずれかに記載のシ
リコンの一方向凝固装置。
4. The unidirectional solidification apparatus for silicon according to claim 1, wherein the thickness and the physical properties of the heat insulating plate are changeable.
【請求項5】 前記加熱手段を黒鉛ヒータとしたことを
特徴とする請求項1〜4いずれかに記載のシリコンの一
方向凝固装置。
5. The unidirectional solidification apparatus for silicon according to claim 1, wherein said heating means is a graphite heater.
【請求項6】 前記給湯手段を、スライディング・ゲー
トを有する耐火物製漏斗としたことを特徴とする請求項
1〜5いずれかに記載のシリコンの一方向凝固装置。
6. The unidirectional solidification apparatus for silicon according to claim 1, wherein said hot water supply means is a refractory funnel having a sliding gate.
JP00381698A 1998-01-12 1998-01-12 Silicon unidirectional solidification equipment Expired - Fee Related JP4003271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00381698A JP4003271B2 (en) 1998-01-12 1998-01-12 Silicon unidirectional solidification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00381698A JP4003271B2 (en) 1998-01-12 1998-01-12 Silicon unidirectional solidification equipment

Publications (2)

Publication Number Publication Date
JPH11199216A true JPH11199216A (en) 1999-07-27
JP4003271B2 JP4003271B2 (en) 2007-11-07

Family

ID=11567723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00381698A Expired - Fee Related JP4003271B2 (en) 1998-01-12 1998-01-12 Silicon unidirectional solidification equipment

Country Status (1)

Country Link
JP (1) JP4003271B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219313A (en) * 2005-02-08 2006-08-24 Nippon Steel Corp Silicon solidifying and refining apparatus and method
WO2007001093A1 (en) * 2005-06-29 2007-01-04 Sumitomo Chemical Company, Limited Method for producing highly pure silicon
WO2007013644A1 (en) * 2005-07-28 2007-02-01 Sumitomo Chemical Company, Limited Process for producing polycrystalline silicon
JP2007039318A (en) * 2005-06-29 2007-02-15 Sumitomo Chemical Co Ltd Method for producing high purity silicon
WO2007021035A1 (en) * 2005-08-19 2007-02-22 Sumitomo Chemical Company, Limited Process for production of silicon
JP2007077007A (en) * 2005-08-19 2007-03-29 Sumitomo Chemical Co Ltd Process for production of silicon
JPWO2006088037A1 (en) * 2005-02-17 2008-07-03 Sumcoソーラー株式会社 Silicon casting apparatus and silicon substrate manufacturing method
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
DE112011103958T5 (en) 2010-11-29 2013-08-29 Ulvac, Inc. Refining silicon and refining silicon refining apparatus
CN104550789A (en) * 2015-01-22 2015-04-29 江西理工大学 Continuous unidirectional solidification preparation method of high-purity oxygen-free copper rod

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219313A (en) * 2005-02-08 2006-08-24 Nippon Steel Corp Silicon solidifying and refining apparatus and method
JPWO2006088037A1 (en) * 2005-02-17 2008-07-03 Sumcoソーラー株式会社 Silicon casting apparatus and silicon substrate manufacturing method
JP4664967B2 (en) * 2005-02-17 2011-04-06 Sumcoソーラー株式会社 Silicon casting apparatus and silicon substrate manufacturing method
WO2007001093A1 (en) * 2005-06-29 2007-01-04 Sumitomo Chemical Company, Limited Method for producing highly pure silicon
JP2007039318A (en) * 2005-06-29 2007-02-15 Sumitomo Chemical Co Ltd Method for producing high purity silicon
WO2007013644A1 (en) * 2005-07-28 2007-02-01 Sumitomo Chemical Company, Limited Process for producing polycrystalline silicon
WO2007021035A1 (en) * 2005-08-19 2007-02-22 Sumitomo Chemical Company, Limited Process for production of silicon
JP2007077007A (en) * 2005-08-19 2007-03-29 Sumitomo Chemical Co Ltd Process for production of silicon
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
DE112011103958T5 (en) 2010-11-29 2013-08-29 Ulvac, Inc. Refining silicon and refining silicon refining apparatus
CN104550789A (en) * 2015-01-22 2015-04-29 江西理工大学 Continuous unidirectional solidification preparation method of high-purity oxygen-free copper rod

Also Published As

Publication number Publication date
JP4003271B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3520957B2 (en) Method and apparatus for manufacturing polycrystalline semiconductor ingot
JPH11310496A (en) Production of silicon ingot having unidirectionally solidified texture and apparatus therefor
JP2007332022A (en) Apparatus for producing polycrystalline silicon ingot
JP5315345B2 (en) Silicon purification method
JP4003271B2 (en) Silicon unidirectional solidification equipment
JP4426471B2 (en) Rare earth metal-containing alloy casting equipment
CN102888650A (en) Polycrystalline silicon ingot furnace crucible attemperator for maintaining solid-liquid interface to be horizontal
JPS646130B2 (en)
JPH10139580A (en) Production of unidirectionally solidified material and unidirectional solidifying device
US9410266B2 (en) Process for producing multicrystalline silicon ingots by the induction method, and apparatus for carrying out the same
KR101275218B1 (en) Method for refining metal
CN108067596A (en) A kind of method that thin-belt casting rolling prepares TiAl alloy uniform formation slab
JP2002144019A (en) Unidirectional solidified casting method and apparatus therefor
JP4157616B2 (en) Casting equipment
JP3935747B2 (en) Method for producing silicon ingot
JP2001278613A (en) Apparatus for unidirectional congelation of silicon
JP4726385B2 (en) Rapid casting equipment
JP2002273561A (en) Method and apparatus for producing cast body having unidirectional solidified structure
SU1034833A1 (en) Method of producing casting by radial-direction solidification
JPH09301709A (en) Method for casting silicon
JP2000105083A (en) Melting system
JP2004160465A (en) Integrated mold closely sticking cooling plate on bottom surface of mold and its manufacturing method
JP2001096342A (en) Rotary quickly quenching casting device
JPH05148559A (en) Refining device for molten aluminum
CN115519102A (en) Casting method of low segregation fine crystal ingot of high melting point metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees