JPH0999344A - Mold for vertical semi-continuous casting of non-ferrous metallic slab - Google Patents

Mold for vertical semi-continuous casting of non-ferrous metallic slab

Info

Publication number
JPH0999344A
JPH0999344A JP7258723A JP25872395A JPH0999344A JP H0999344 A JPH0999344 A JP H0999344A JP 7258723 A JP7258723 A JP 7258723A JP 25872395 A JP25872395 A JP 25872395A JP H0999344 A JPH0999344 A JP H0999344A
Authority
JP
Japan
Prior art keywords
mold
metal
cooling water
continuous casting
solidified metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7258723A
Other languages
Japanese (ja)
Inventor
Nobuhito Ishikawa
宣仁 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7258723A priority Critical patent/JPH0999344A/en
Publication of JPH0999344A publication Critical patent/JPH0999344A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a metallic slab at a low cost, facilitating the control and thinning the thickness of surface skin structure by sufficiently thinning the wall thickness of a lower step mold at solidified metal side, flowing secondary cooling water in the lower step mold from a short wall side of the mold and radiant-cooling into the solidified metal from the inner part in the lower part of the mold. SOLUTION: The water-cooling mold 30 is made tow-step structure of the upper step mold 31 and the lower step mold 32, and the upper step mold 31 is made a slow cooling mold and the lower step mold 32 is made a rapid cooling mold. Then, a heat insulating material 33 is interposed between the upper step mold 31 and the lower step mold 32. The upper step mold 31 sufficiently thickness the wall thickness 31a at the molten metal side and cooling water is flowed from the short wall side of the rectangular mold and discharged to the outer part from many flow-out holes 31d on the whole periphery of the rectangular mold through a primary cooling chamber 31b. Further, the lower step mold 32 sufficiently thins the wall thickness 32a at the solidified metal side, and secondary cooling water is flower from the short wall side of the rectangular mold and radiated 32d from secondary cooling water discharging nozzle 32c at the whole periphery of the inner part in the lower part of the mold through a secondary cooling chamber 32b to cool the solidified metal 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非鉄金属特にアル
ミニウム及びアルミニウム合金の圧延用スラブ(角型鋳
塊)の縦型半連続鋳造において、その圧延用スラブの断
面外周部に発生する額縁組織(チル層と粗大セル層を合
わせた組織で、後述されている)の厚さを低減する鋳型
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical semi-continuous casting of a non-ferrous metal, in particular aluminum and an aluminum alloy, for rolling slabs (square ingots). The present invention relates to a mold having a structure in which a chill layer and a coarse cell layer are combined and which has a reduced thickness (described later).

【0002】[0002]

【従来の技術】従来、非鉄金属例えばアルミニウム及び
アルミニウム合金の圧延用スラブの連続鋳造方式として
は、DC鋳造(ダイレクトチルキャステイング)が広く
行われている。このDC鋳造は、図3に示す如く、底部
が開放された矩形状の銅系、アルミ系等の金属製水冷鋳
に、上方より溶融金属を注入し、前記鋳型底部よ
り凝固金属を連続的に取り出し、所定の長さの鋳塊を
得るもので半連続鋳造として知られている。このDC鋳
造によって製造された圧延用の断面矩形状スラブは、上
下面を面削し熱間圧延に供される。
2. Description of the Related Art Conventionally, DC casting (direct chill casting) has been widely used as a continuous casting method for rolling slabs of nonferrous metals such as aluminum and aluminum alloys. In this DC casting, as shown in FIG. 3, a molten metal 1 is poured from above into a water-cooled mold 3 made of metal such as a rectangular copper-based or aluminum-based mold having an open bottom, and a solidified metal 2 is poured from the bottom of the mold. It is known as semi-continuous casting because it is continuously taken out to obtain an ingot of a predetermined length. The rectangular cross-section slab for rolling produced by this DC casting is subjected to hot rolling after chamfering the upper and lower surfaces.

【0003】しかして、DC鋳造によって製造された断
面矩形状スラブの断面組織は、図4に示す如く、最外周
はチル層211で、次に粗大セル層(柱状晶)212が
あり、内部は均一で微細なセル層(粒状晶)22となっ
ている。この最外周のチル層211と粗大セル層212
は、内部の組織と非常に異なり、板の表面欠陥、内部欠
陥となるため、圧延に供する前にスカルピングされる。
この最外周のチル層211と粗大セル層212を合わせ
た組織は、スラブの断面をエッチングしたとき、ちょう
ど額縁のようにみえるため、本明細書においては便宜的
に額縁組織21という。前記DC鋳造方法の条件によっ
ては、この額縁組織21の厚さは15〜20mmに成長
する。
As shown in FIG. 4, the cross-sectional structure of the rectangular slab manufactured by DC casting has a chill layer 211 at the outermost periphery, a coarse cell layer (columnar crystal) 212 next, and an internal portion. It is a uniform and fine cell layer (granular crystal) 22. The outermost chill layer 211 and the coarse cell layer 212
Is very different from the internal structure and causes surface defects and internal defects of the plate, and is thus scalped before being subjected to rolling.
The structure in which the outermost chill layer 211 and the coarse cell layer 212 are combined looks like a frame when the cross section of the slab is etched, and is therefore referred to as a frame structure 21 for convenience in this specification. Depending on the conditions of the DC casting method, the frame structure 21 grows to a thickness of 15 to 20 mm.

【0004】前述の如く、額縁組織21は熱間圧延前に
面削除去されるが、この面削除去は造塊の歩留りを大き
く低下させる要因になっている。特に大型圧延用スラブ
(例えば厚さ500mm×幅1800mm×長さ100
00mm)の場合はこの影響が大きい。従って、この額
縁組織21の厚さをいかに薄くするかが、課題となって
いる。一方、図3の従来のDC鋳造の改良として、ホッ
トトップ鋳造法(例えば特公昭54ー42847号公
報)、気体加圧鋳造法(例えば特開昭54ー13243
0号公報、特開昭61ー37352号公報)、電磁鋳造
法等があり、これらはいずれも前記額縁組織の厚さは比
較的薄くなるが、設備が複雑で管理が難しいという問題
がある。また電磁鋳造法は当初の設備費、ランニングコ
ストが高いという問題がある。
As described above, the frame structure 21 is surface-removed before hot rolling, but this surface-removal is a factor that greatly reduces the yield of ingots. Especially for large rolling slabs (eg thickness 500 mm x width 1800 mm x length 100
In the case of (00 mm), this effect is large. Therefore, how to reduce the thickness of the frame structure 21 is an issue. On the other hand, as an improvement of the conventional DC casting shown in FIG. 3, hot top casting method (for example, Japanese Patent Publication No. 54-42847) and gas pressure casting method (for example, Japanese Patent Laid-Open Publication No. 54-13243).
No. 0, Japanese Patent Laid-Open No. 61-37352), electromagnetic casting method, and the like, all of which have a problem that the frame structure is relatively thin, but the equipment is complicated and management is difficult. Further, the electromagnetic casting method has a problem that the initial equipment cost and running cost are high.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、コス
トが安く、管理が容易であり、かつ前記額縁組織の厚さ
を薄くできる非鉄金属の圧延スラブ製造用の鋳造鋳型を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a casting mold for manufacturing a non-ferrous metal rolling slab which is low in cost, easy to manage, and capable of reducing the thickness of the frame structure. is there.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の請求項1の発明は、底部が解放された矩形状水冷鋳型
に上方より溶融金属を注入し、前記鋳型底部より凝固金
属を連続的に取り出す半連続鋳造用金属製水冷鋳型にお
いて、前記水冷鋳型を上段鋳型と下段鋳型の2段構造と
し、前記上段鋳型は溶融金属側の壁厚を充分に厚くする
と共に上段鋳型内の一次冷却水は鋳型短辺側から流入し
て鋳型全周の多数の流出口から外方に排出し、前記下段
鋳型は凝固金属側の壁厚を充分に薄くすると共に下段鋳
型内の二次冷却水は鋳型短辺側から流入して鋳型下部内
方全周から凝固金属に放射冷却することを特徴とする非
鉄金属スラブの縦型半連続鋳造用鋳型であり、請求項2
の発明は、前記金属がアルミニウム及びアルミニウム合
金であることを特徴とする請求項1に記載の非鉄金属ス
ラブの縦型半連続鋳造用鋳型であり、請求項3の発明
は、前記上段鋳型は溶融金属側の壁厚を40〜60mm
とし、下段鋳型は凝固金属側の壁厚を5〜10mmとし
たことを特徴とする請求項1及び請求項2に記載の非鉄
金属スラブの縦型半連続鋳造用鋳型であり、請求項4の
発明は、前記二次冷却水を凝固金属に放射冷却する角度
を凝固金属面に対し、20〜30°とすることを特徴と
する請求項1、請求項2及び請求項3のいずれかに記載
の非鉄金属スラブの縦型半連続鋳造用鋳型である。
According to the invention of claim 1 for solving the above-mentioned problems, molten metal is poured from above into a rectangular water-cooled mold having an open bottom, and solidified metal is continuously supplied from the bottom of the mold. In the semi-continuous casting metal water-cooled mold to be taken out to, the water-cooled mold has a two-stage structure of an upper mold and a lower mold, and the upper mold has a sufficiently thick wall thickness on the molten metal side and primary cooling water in the upper mold. Is introduced from the short side of the mold and discharged outward from a large number of outlets around the entire circumference of the mold.The lower mold has a sufficiently thin wall on the solidified metal side, and the secondary cooling water in the lower mold is the mold. A vertical semi-continuous casting mold for a non-ferrous metal slab, characterized in that it flows in from the shorter side and is radiatively cooled to the solidified metal from the entire inner circumference of the lower part of the mold.
The invention according to claim 1 is a mold for vertical semi-continuous casting of a non-ferrous metal slab according to claim 1, wherein the metal is aluminum and an aluminum alloy, and the invention according to claim 3 is that the upper mold is molten. The wall thickness on the metal side is 40-60 mm
The lower mold is a vertical semi-continuous casting mold for a non-ferrous metal slab according to claim 1 or 2, wherein the wall thickness on the solidified metal side is 5 to 10 mm. The invention is characterized in that the angle for radiatively cooling the secondary cooling water to the solidified metal is 20 to 30 ° with respect to the surface of the solidified metal. Is a mold for vertical semi-continuous casting of non-ferrous metal slabs.

【0007】[0007]

【発明の実施の形態】本発明に係る鋳型を図1、図2、
図4にもとずいて説明する。本発明は、図1、図2に示
すように、水冷鋳型30を上段鋳型31と下段鋳型32
の2段構造とし、上段鋳型31は徐冷鋳型であり下段鋳
型32は急冷鋳型とするものである。なお、上段鋳型3
1と下段鋳型32の間には、断熱材33が介在されてい
る。上段鋳型31は溶融金属側の壁厚31aを充分に厚
くし、冷却水は矩形状鋳型の短辺側31cから流入し一
次冷却室31bを通って矩形状鋳型の全周の多数の流出
口31dから外方に排出する。また、下段鋳型32は、
凝固金属側の壁厚32aを充分に薄くし、二次冷却水は
矩形状鋳型の短辺側(図示しない)から流入し二次冷却
室32bを通って、鋳型下部内方全周の二次冷却水放射
ノズル32cから放射32dして凝固金属を冷却す
る。
DETAILED DESCRIPTION OF THE INVENTION A mold according to the present invention is shown in FIGS.
This will be described with reference to FIG. In the present invention, as shown in FIGS. 1 and 2, the water-cooled mold 30 is replaced by an upper mold 31 and a lower mold 32.
The upper mold 31 is a slow cooling mold and the lower mold 32 is a quenching mold. The upper mold 3
A heat insulating material 33 is interposed between 1 and the lower mold 32. The upper mold 31 has a sufficiently thick wall 31a on the molten metal side, and cooling water flows in from the short side 31c of the rectangular mold, passes through the primary cooling chamber 31b, and has a large number of outlets 31d around the entire circumference of the rectangular mold. To the outside. Further, the lower mold 32 is
The wall thickness 32a on the solidified metal side is made sufficiently thin, and the secondary cooling water flows in from the short side (not shown) of the rectangular mold, passes through the secondary cooling chamber 32b, and the secondary cooling water around the inner circumference of the lower part of the mold. Radiation 32d is emitted from the radiation nozzle 32c to cool the solidified metal 2 .

【0008】上段鋳型31の溶融金属側の壁厚31aを
充分に厚くするのは、溶融金属を徐冷するためであ
り、また下段鋳型32の凝固金属側の壁厚32aを充分
に薄くするのは凝固金属を急冷してチル層211と粗
大セル層212からなる額縁組織21、特に粗大セル層
(柱状晶)212の成長を抑えてその厚さを薄くするた
めである。本発明を、前記の如く構成とすることによ
り、エヤギャップ7の縦方向の長さを短くすることがで
き、額縁組織の厚さを薄くすることができる。
The reason why the wall thickness 31a of the upper mold 31 on the molten metal side is made sufficiently thick is to gradually cool the molten metal 1 , and the wall thickness 32a of the lower mold 32 on the solidified metal side is made sufficiently thin. This is because the solidified metal 2 is rapidly cooled to suppress the growth of the frame structure 21 composed of the chill layer 211 and the coarse cell layer 212, particularly the coarse cell layer (columnar crystal) 212, and reduce the thickness thereof. By configuring the present invention as described above, the length of the air gap 7 in the vertical direction can be shortened, and the thickness of the frame structure can be reduced.

【0009】本発明の鋳型30は、非鉄金属に好適であ
るが、特にアルミニウム及びアルミニウム合金の鋳造に
適している。また、本発明の鋳型30において、アルミ
ニウム及びアルミニウム合金の場合、前記上段鋳型31
は溶融金属側の壁厚を40〜60mmとし、下段鋳型は
凝固金属側の壁厚を5〜10mmとするのが好ましい。
前記の下限未満でも上限を越えても徐冷若しくは急冷の
効果が適当でないからである。
The mold 30 of the present invention is suitable for non-ferrous metals, but is particularly suitable for casting aluminum and aluminum alloys. Further, in the mold 30 of the present invention, in the case of aluminum and aluminum alloy, the upper mold 31
It is preferable that the wall thickness on the molten metal side is 40 to 60 mm, and the wall thickness on the solidified metal side of the lower mold is 5 to 10 mm.
This is because the effect of gradual cooling or rapid cooling is not appropriate when the amount is less than the lower limit or exceeds the upper limit.

【0010】更に、本発明の鋳型30においては、下段
鋳型32の二次冷却水を凝固金属に放射冷却32dする
角度は凝固金属面2aに対し、20〜30°とするのが
好ましい。この角度は、従来の図3の鋳型では15°程
度であるが、これを20〜30°とすることにより、エ
ヤギャップ7の縦方向の長さを短くすることができ、額
縁組織の厚さを薄くすることができるためである。
Further, in the mold 30 of the present invention, the angle for radiatively cooling the secondary cooling water of the lower mold 32 to the solidified metal 32d is preferably 20 to 30 ° with respect to the solidified metal surface 2a. This angle is about 15 ° in the conventional mold of FIG. 3, but by setting it to 20 to 30 °, the length of the air gap 7 in the longitudinal direction can be shortened, and the thickness of the frame structure can be reduced. This is because it can be made thinner.

【0011】[0011]

【実施例】以下本発明を、実施例にもとづいて説明す
る。図1に示す本発明に係る2段水冷鋳型30を用い
て、Al合金5182(Alー4.5wt%Mgー0.
3wt%Mn合金)の溶湯を鋳型上部から供給し、厚さ
500mm×幅1820mm×長さ10000mmの圧
延用スラブを鋳造した。この鋳型30(全体の高さ17
0mm、上段鋳型31の高さ約120mm、下段鋳型の
高さ約50mm)はアルミニウム合金製であり、上段鋳
型31の溶湯金属側厚さ31aは75mmであり、一次
冷却水の水温は50℃であった。また下段鋳型32の凝
固金属側厚さ32aの厚さは8mm、二次冷却水の水温
は30℃でり、二次冷却水の放射ノズル32cの角度は
スラブの凝固外面2aに対し25°で、スラブの凝固外
面2aを二次冷却水放射32dで冷却した。なお、鋳型
に注湯する溶湯温度は、690℃で鋳造速度は50mm
/minであった。この場合のヘッドの高さ(溶湯面か
ら鋳型最下部までの高さ)は70mmであった。前記の
如く鋳造して得た圧延用スラブの額縁組織(図4、2
1)の厚さは、12mmであった。
EXAMPLES The present invention will be described below based on examples. Using the two-stage water-cooled mold 30 according to the present invention shown in FIG. 1, Al alloy 5182 (Al-4.5 wt% Mg-0.
A molten metal (3 wt% Mn alloy) was supplied from the upper part of the mold to cast a rolling slab having a thickness of 500 mm × a width of 1820 mm × a length of 10000 mm. This mold 30 (total height 17
0 mm, the height of the upper mold 31 is about 120 mm, the height of the lower mold is about 50 mm) is made of an aluminum alloy, the molten metal side thickness 31a of the upper mold 31 is 75 mm, and the water temperature of the primary cooling water is 50 ° C. there were. The thickness 32a of the lower mold 32 on the solidified metal side is 8 mm, the temperature of the secondary cooling water is 30 ° C., and the angle of the secondary cooling water radiating nozzle 32c is 25 ° with respect to the solidified outer surface 2a of the slab. The solidified outer surface 2a of the slab was cooled with the secondary cooling water radiation 32d. The temperature of the molten metal poured into the mold was 690 ° C and the casting speed was 50 mm.
It was / min. In this case, the height of the head (height from the molten metal surface to the bottom of the mold) was 70 mm. Frame structure of the rolling slab obtained by casting as described above (Figs. 4 and 2).
The thickness of 1) was 12 mm.

【0012】[0012]

【比較例】図3に示す従来の水冷鋳型(全体の高さ1
70mm)を用いて、前記実施例と同様にAl合金51
82の溶湯を鋳型上部から供給し、厚さ500mm×幅
1820mm×長さ10000mmの圧延用スラブを鋳
造した。この鋳型(全体の高さ170mm)はアルミ
ニウム合金製であり、鋳型の溶湯金属側厚さ3aは2
0mmであり、冷却水の水温は30℃であった。また冷
却水の放射ノズル3cの角度はスラブの凝固外面2aに
対し15°で、スラブの凝固外面2aを冷却水放射3d
で冷却した。なお、鋳型に注湯する溶湯温度は、690
℃で鋳造速度は50mm/minであった。この場合の
ヘッドの高さ(溶湯面から鋳型最下部までの高さ)は7
0mmであった。前記の如く鋳造して得た圧延用スラブ
の額縁組織(図4、21)の厚さは、15mmであっ
た。
Comparative Example Conventional water-cooled mold 3 shown in FIG. 3 (total height 1
70 mm) and Al alloy 51
82 molten metal was supplied from the upper part of the mold to cast a rolling slab having a thickness of 500 mm × a width of 1820 mm × a length of 10000 mm. The mold 3 (total height 170 mm) is made of an aluminum alloy, and the thickness 3a of the mold 3 on the molten metal side is 2 mm.
It was 0 mm, and the water temperature of the cooling water was 30 ° C. Further, the angle of the cooling water radiating nozzle 3c is 15 ° with respect to the solidified outer surface 2a of the slab, and the cooling water radiation 3d is applied to the solidified outer surface 2a of the slab.
Cooled in. The temperature of the molten metal poured into the mold is 690
The casting speed at 50 ° C was 50 mm / min. The height of the head in this case (height from the molten metal surface to the bottom of the mold) is 7
It was 0 mm. The thickness of the frame structure (FIG. 4, 21) of the rolling slab obtained by casting as described above was 15 mm.

【0013】前記本発明の実施例及び比較例から明らか
な如く、本発明の鋳型を用いて製造した圧延用スラブの
額縁組織の厚さは12mmであり、従来の鋳型で製造し
たスラブの額縁組織の厚さより3mm薄くなっているこ
とがわかる。即ちスラブの面削深さが従来の15mmか
ら12mmとなり、スラブの面積(幅1820mm×長
さ10000mmの両面)から、使用出来るスラブの歩
留りの向上に大きく寄与するものである。
As is clear from the examples and comparative examples of the present invention, the thickness of the frame structure of the rolling slab manufactured using the mold of the present invention is 12 mm, and the frame structure of the slab manufactured by the conventional mold is It can be seen that the thickness is 3 mm thinner than the thickness. That is, the slab surface cutting depth is changed from the conventional 15 mm to 12 mm, which greatly contributes to the improvement of the yield of usable slabs from the area of the slab (both sides of width 1820 mm × length 10000 mm).

【0014】[0014]

【発明の効果】以上詳述した如く、本発明に係る非鉄金
属の圧延スラブの縦型半連続鋳造用鋳型は、そのコスト
が安く、管理が容易であり、かつ前記額縁組織の厚さを
薄くできるため圧延スラブの製造歩留りを著しく向上す
ることができ、工業的に顕著な効果を奏するものであ
る。
As described in detail above, the mold for vertical semi-continuous casting of a non-ferrous metal rolling slab according to the present invention is low in cost, easy to manage, and has a thin frame structure. As a result, the production yield of the rolled slab can be remarkably improved, and industrially remarkable effects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る鋳型の概略説明図で、図2の矢印
AーAに沿う半裁断面図である。
1 is a schematic explanatory view of a mold according to the present invention, and is a half sectional view taken along an arrow AA in FIG.

【図2】本発明に係る鋳型の平面図である。FIG. 2 is a plan view of a mold according to the present invention.

【図3】従来のDC鋳造での鋳型、鋳造スラブの関係を
示す概略説明図(断面図)である。
FIG. 3 is a schematic explanatory view (cross-sectional view) showing a relationship between a mold and a casting slab in conventional DC casting.

【図4】圧延用スラブとその内部組織の関係を示す説明
図である。
FIG. 4 is an explanatory diagram showing a relationship between a rolling slab and its internal structure.

【符号の説明】 溶湯金属 凝固金属 21 額縁組織 211 チル層 212 粗大セル層(柱状晶) 22 微細セル層(粒状晶) 2a スラブの凝固外面 水冷鋳型 3a 溶湯金属側厚さ 3b 水室 3c 水放射ノズル 3d 放射冷却水 7 エヤギャップ30 2段水冷鋳型 31 上段鋳型 31a 溶湯金属側厚さ 31b 一次冷却水室 31c 一次冷却水流入口 31d 一次冷却水流出口 32 下段鋳型 32a 凝固金属側厚さ 32b 二次冷却水室 32c 二次冷却水放射ノズル 32d 二次冷却水放射 33 断熱材[Explanation of symbols] 1 molten metal 2 solidified metal 21 frame structure 211 chill layer 212 coarse cell layer (columnar crystal) 22 fine cell layer (granular crystal) 2a solidified outer surface of slab 3 water-cooled mold 3a molten metal side thickness 3b water chamber 3c Water radiating nozzle 3d Radiant cooling water 7 Air gap 30 Two-stage water cooling mold 31 Upper mold 31a Molten metal side thickness 31b Primary cooling water chamber 31c Primary cooling water inlet 31d Primary cooling water outlet 32 Lower mold 32a Solidified metal side thickness 32b Two Secondary cooling water chamber 32c Secondary cooling water radiation nozzle 32d Secondary cooling water radiation 33 Insulation material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】底部が開放された矩形状水冷鋳型に上方よ
り溶融金属を注入し、前記鋳型底部より凝固金属を連続
的に取り出す半連続鋳造用金属製水冷鋳型において、前
記水冷鋳型を上段鋳型と下段鋳型の2段構造とし、前記
上段鋳型は溶融金属側の壁厚を充分に厚くすると共に上
段鋳型内の一次冷却水は鋳型短辺側から流入して鋳型全
周の多数の流出口から外方に排出し、前記下段鋳型は凝
固金属側の壁厚を充分に薄くすると共に下段鋳型内の二
次冷却水は鋳型短辺側から流入して鋳型下部内方全周か
ら凝固金属に放射冷却することを特徴とする非鉄金属ス
ラブの縦型半連続鋳造用鋳型。
1. A metal water-cooled mold for semi-continuous casting, in which molten metal is injected from above into a rectangular water-cooled mold having an open bottom, and solidified metal is continuously taken out from the bottom of the mold, wherein the water-cooled mold is an upper mold. The lower mold has a two-stage structure. The upper mold has a sufficiently thick wall on the molten metal side, and the primary cooling water in the upper mold flows from the short side of the mold and flows out from a large number of outlets all around the mold. Discharge to the outside, the lower mold has a sufficiently thin wall thickness on the solidified metal side, and the secondary cooling water in the lower mold flows in from the shorter side of the mold to radiatively cool the solidified metal from the entire inner circumference of the lower part of the mold. A mold for vertical semi-continuous casting of a non-ferrous metal slab, which is characterized in that
【請求項2】前記金属がアルミニウム及びアルミニウム
合金であることを特徴とする請求項1に記載の非鉄金属
スラブの縦型半連続鋳造用鋳型。
2. The vertical semi-continuous casting mold for a non-ferrous metal slab according to claim 1, wherein the metal is aluminum or an aluminum alloy.
【請求項3】前記上段鋳型は溶融金属側の壁厚を40〜
60mmとし、下段鋳型は凝固金属側の壁厚を5〜10
mmとしたことを特徴とする請求項1及び請求項2に記
載の非鉄金属スラブの縦型半連続鋳造用鋳型。
3. The wall thickness of the upper mold is 40 to 40 on the molten metal side.
60 mm, the lower mold has a wall thickness on the solidified metal side of 5 to 10
mm, The mold for vertical semi-continuous casting of a non-ferrous metal slab according to claim 1 or 2, wherein
【請求項4】前記二次冷却水を凝固金属に放射冷却する
角度を凝固金属面に対し、20〜30°とすることを特
徴とする請求項1、請求項2及び請求項3のいずれかに
記載の非鉄金属スラブの縦型半連続鋳造用鋳型。
4. The angle of radiatively cooling the secondary cooling water to the solidified metal is 20 to 30 ° with respect to the surface of the solidified metal, according to any one of claims 1, 2 and 3. A mold for vertical semi-continuous casting of a non-ferrous metal slab described in.
JP7258723A 1995-10-05 1995-10-05 Mold for vertical semi-continuous casting of non-ferrous metallic slab Pending JPH0999344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7258723A JPH0999344A (en) 1995-10-05 1995-10-05 Mold for vertical semi-continuous casting of non-ferrous metallic slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7258723A JPH0999344A (en) 1995-10-05 1995-10-05 Mold for vertical semi-continuous casting of non-ferrous metallic slab

Publications (1)

Publication Number Publication Date
JPH0999344A true JPH0999344A (en) 1997-04-15

Family

ID=17324199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7258723A Pending JPH0999344A (en) 1995-10-05 1995-10-05 Mold for vertical semi-continuous casting of non-ferrous metallic slab

Country Status (1)

Country Link
JP (1) JPH0999344A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226470A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Manufacturing method for aluminum ingot or aluminum alloy ingot
WO2012008574A1 (en) 2010-07-16 2012-01-19 Takahashi Kenzo Molding device for continuous casting equipped with stirring device
WO2012115272A1 (en) * 2011-02-25 2012-08-30 東邦チタニウム株式会社 Melting furnace for smelting metal
JP2012228722A (en) * 2011-04-27 2012-11-22 Toho Titanium Co Ltd Melting furnace for smelting metal
WO2013069314A1 (en) 2011-11-10 2013-05-16 Takahashi Kenzo Mold device for continuous casting having stirring device
CN103658579A (en) * 2012-09-06 2014-03-26 北京有色金属研究总院 Device and method for continuously manufacturing high-quality alloy cast ingots
WO2015019517A1 (en) 2013-08-08 2015-02-12 Takahashi Kenzo Continuous casting molding device with stirring device
CN110340329A (en) * 2019-08-28 2019-10-18 江苏亚太航空科技有限公司 A kind of aluminium and aluminium alloy low pressure Semi-continuous casting crystallizer cooling system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226470A (en) * 2008-03-25 2009-10-08 Kobe Steel Ltd Manufacturing method for aluminum ingot or aluminum alloy ingot
WO2012008574A1 (en) 2010-07-16 2012-01-19 Takahashi Kenzo Molding device for continuous casting equipped with stirring device
CN103402671B (en) * 2011-02-25 2016-09-14 东邦钛株式会社 Metal Melting smelting furnace
WO2012115272A1 (en) * 2011-02-25 2012-08-30 東邦チタニウム株式会社 Melting furnace for smelting metal
EA029080B1 (en) * 2011-02-25 2018-02-28 Тохо Титаниум Ко., Лтд. Melting furnace for producing metal
CN103402671A (en) * 2011-02-25 2013-11-20 东邦钛株式会社 Melting furnace for smelting metal
US9744588B2 (en) 2011-02-25 2017-08-29 Toho Titanium Co., Ltd. Melting furnace for producing metal
JP2012228722A (en) * 2011-04-27 2012-11-22 Toho Titanium Co Ltd Melting furnace for smelting metal
WO2013069314A1 (en) 2011-11-10 2013-05-16 Takahashi Kenzo Mold device for continuous casting having stirring device
CN103658579A (en) * 2012-09-06 2014-03-26 北京有色金属研究总院 Device and method for continuously manufacturing high-quality alloy cast ingots
US9364891B2 (en) 2013-08-08 2016-06-14 Kenzo Takahashi Molding device for continuous casting with stirring unit
WO2015019517A1 (en) 2013-08-08 2015-02-12 Takahashi Kenzo Continuous casting molding device with stirring device
CN110340329A (en) * 2019-08-28 2019-10-18 江苏亚太航空科技有限公司 A kind of aluminium and aluminium alloy low pressure Semi-continuous casting crystallizer cooling system

Similar Documents

Publication Publication Date Title
RU2460607C2 (en) Device and method for subsequent casting of metals having equal or similar shrinkage factors
JP4907248B2 (en) Continuous casting method of Al-Si aluminum alloy
JP2011115812A (en) Method for producing light alloy vehicle wheel
EP1715067A1 (en) METHOD FOR PRODUCING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN BAKE-HARDENABILITY
CN108067596B (en) Method for preparing TiAl alloy uniform structure slab by casting and rolling thin strip
JPH0999344A (en) Mold for vertical semi-continuous casting of non-ferrous metallic slab
CN1994623B (en) Semi-continuous casting device and method for 7xxx aluminium
CN112139466B (en) Method for fractional intermittent stop type casting of 7000 series aluminum alloy direct-cooling semi-continuous ingot
JP3657217B2 (en) Method for producing magnesium alloy slab for hot rolling and method for hot rolling magnesium alloy
WO2021035604A1 (en) Low-cold electromagnetic semi-continuous casting device and method
EP0533133A1 (en) Cooling method of continuous casting and its mold
KR101170453B1 (en) The method for preparing of Al-Mg-Mn alloy strip using twin roll cast and Al-Mg-Mn alloy strip
JP2008246560A (en) Method of casting aluminum ingot
JPH08279B2 (en) Manufacturing method of steel forgings
JPH11170014A (en) Horizontal continuous casting machine
EP0498808A1 (en) Method of controlling the rate of heat extraction in mould casting
JPS5847255B2 (en) Steel ingot making method
WO2008061453A1 (en) A casting ingot of vacuum fine equiaxed grain structure
JP2003340553A (en) Continuous casting method for magnesium alloy sheet
SU806236A1 (en) Method of continuous ingot casting
KR100721924B1 (en) Cooling apparatus for Wheel mold continuous casting of aluminum alloy
Finn et al. Systems And Methods For Ingot Head Shaping
CN118699304A (en) Instantaneous strong peak magnetic pulse auxiliary plate and strip horizontal continuous casting crystallizer, application and method
JP3575600B2 (en) Method and apparatus for manufacturing thin metal products
SU1011329A1 (en) Method of continuous horizontal casting of metal and alloys