JPS63263718A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS63263718A
JPS63263718A JP9914787A JP9914787A JPS63263718A JP S63263718 A JPS63263718 A JP S63263718A JP 9914787 A JP9914787 A JP 9914787A JP 9914787 A JP9914787 A JP 9914787A JP S63263718 A JPS63263718 A JP S63263718A
Authority
JP
Japan
Prior art keywords
gas
substrate
vapor
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9914787A
Other languages
Japanese (ja)
Other versions
JPH0727868B2 (en
Inventor
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP62099147A priority Critical patent/JPH0727868B2/en
Publication of JPS63263718A publication Critical patent/JPS63263718A/en
Publication of JPH0727868B2 publication Critical patent/JPH0727868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form grown films uniformly, to reduce the amount of a noxious deposit, and to attain improvement in productivity by a method wherein a parallel flow passage is formed with a partition plate on the stream upper than the substrate surface in the reaction tube on which a vapor growth gas flow passage will be formed, and an interpositioned gas introducing tube and a vapor growth gas introducing tube are provided in an interconnected manner. CONSTITUTION:A growth film is formed on the surface of a substrate by flowing vapor growth gas in parallel with the surface 7 of the substrate placed on the supporting stand 4 provided in a reaction tube 1. A parallel flow passage is formed with a partition plate 1 by partitioning the stream upper than the substrate surface 7 in the reaction tube 1 on which a vapor growth gas flowing passage will be formed, an interposing gas introducing tube 11 is provided in the side flow passage of the substrate surface of the parallel flow passage, and a vapor growth gas introducing tube 12 is formed on the other flow passage. Accordingly, when the thickness of the growth film, to be formed on the substrate 7, is made uniform in the direction of the stream of the vapor growth gas, this operation can be performed with the substrate placed on the susceptor 4 horizontally. As a result, the thickness of the growth film can be made uniform, and the noxious deposition 8 can also be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相成長ガスを基板面と平行に流して成膜基板
を得る気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase growth apparatus for producing a film-formed substrate by flowing a vapor phase growth gas parallel to the substrate surface.

〔従来の技術〕[Conventional technology]

前記成膜基板は気相成長ガス中の原料ガスが熱化学反応
し反応生成物が基板面に堆積し【成長膜を形成すること
によって得られる。この場合、本発明における気相成長
ガスとは少なくとも1種類の原料ガスを1」?(水素)
、He(ヘリウム)。
The film-forming substrate is obtained by thermochemical reaction of raw material gas in a vapor-phase growth gas and reaction products depositing on the substrate surface to form a grown film. In this case, the vapor phase growth gas in the present invention refers to at least one type of raw material gas. (hydrogen)
, He (helium).

Ar(アルゴンリ)、N2(窒素)等の稀釈ガスで稀釈
したガスであり、また、原料ガスとは気相成長反応に寄
与する個々の成分ガスで、たとえばS!t−14(シラ
ン)、ASf−13(アルシン)、TMG(1−リメチ
ルガリウム)蒸気簀である。
It is a gas diluted with a diluent gas such as Ar (argon gas) or N2 (nitrogen), and the raw material gas is an individual component gas that contributes to a vapor phase growth reaction, such as S! t-14 (silane), ASf-13 (arsine), TMG (1-limethylgallium) vapor tank.

原料ガスは目的に応じ単独で、または混合して使1nさ
れ、例えばGaAs (ガリウムヒ素)基板にGaAS
Muを形成するとぎは、ΔSH3とTMG蒸気の両原料
ガスをト12で稀釈した気相成長ガスを用いる。以下、
図面を用いて従来の気相成長装置の一例を説明する。
Raw material gases are used singly or in combination depending on the purpose.
To form Mu, a vapor phase growth gas obtained by diluting both source gases ΔSH3 and TMG vapor with T12 is used. below,
An example of a conventional vapor phase growth apparatus will be explained using the drawings.

第3図は従来の気相成長装置の断面図で、1は筒状の反
応管である。反応管1は、一端に気相成長ガス導入管2
を、他端にガス排出管3を有すると共に、内部に保持台
(サビブタ)4が設【プられ、該保持台4の気相成長ガ
ス導入管2側には気相成長ガスの流れを円滑にするため
のフローチャンネル5が設【ノられている。なお、6は
反応管1の外周に設けたRFコイルである。
FIG. 3 is a sectional view of a conventional vapor phase growth apparatus, in which 1 is a cylindrical reaction tube. The reaction tube 1 has a vapor growth gas introduction tube 2 at one end.
has a gas exhaust pipe 3 at the other end, and a holding stand (sabibuta) 4 is installed inside, and the holding stand 4 has a vapor phase growth gas introduction pipe 2 side that facilitates the flow of the vapor growth gas. A flow channel 5 is provided for this purpose. Note that 6 is an RF coil provided on the outer periphery of the reaction tube 1.

このように構成された従来装置に33いて、未処理の基
板7を保持第4に載せた後、RFコイル6により保持台
4を加熱し、該保持台4を介して基。
In the conventional apparatus 33 configured as described above, after placing the unprocessed substrate 7 on the holder 4, the holder 4 is heated by the RF coil 6, and the substrate is heated through the holder 4.

板7を所定の高温に保持すると共に、気相成長ガス導入
管2から反応管1内に気相成長ガスを導入する。この操
作によって気相成長ガスは反応管1内を基板7面と平行
に流れ、基板7近傍の高温部で熱分解して反応生成物が
基板7面上に堆積し成長膜が形成される。
While the plate 7 is maintained at a predetermined high temperature, a vapor growth gas is introduced into the reaction tube 1 from the vapor growth gas introduction pipe 2. By this operation, the vapor growth gas flows in the reaction tube 1 parallel to the surface of the substrate 7, and is thermally decomposed at a high temperature part near the substrate 7, and reaction products are deposited on the surface of the substrate 7 to form a grown film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来装置では成長膜が均一の+<さになら
ず、良好な成llN基板が得られない欠点があった。こ
れは気相成長ガス中の原料ガスが反応生成物となって基
板7而に次々に堆積し減少してもより上層の気相成長ガ
スからの原料ガスの補給が問に合わず、このため基板7
面上に流れる気相成長ガス中の原料ガスが流れに沿って
減少する濃度分布となり、この結梁、基板7面の成長膜
が上流で厚く、下流で薄く形成されるためである。また
、気相成長ガスは基板7近傍の高温部で熱分解して堆積
するので基板7の上流側にも堆積物8(以下、有害堆積
物8という)がMll?%し、該有害堆積物8はその表
面が剥離して気相成長ガスに同搬して基板7面上の成長
膜に付着し欠陥を生じさゼる。そしてこれは有害堆積物
8の伍が多い程増加する。
However, the conventional apparatus has the disadvantage that the grown film is not uniform and that a good IIN substrate cannot be obtained. This is because the source gas in the vapor phase growth gas becomes a reaction product and is deposited one after another on the substrate 7, and even if it decreases, there is no problem in replenishing the source gas from the vapor phase growth gas in the upper layer. Board 7
This is because the concentration distribution of the raw material gas in the vapor growth gas flowing on the surface decreases along the flow, and the growth film on the bonded beam and the surface of the substrate 7 is formed to be thick on the upstream side and thin on the downstream side. Furthermore, since the vapor growth gas is thermally decomposed and deposited in a high temperature area near the substrate 7, deposits 8 (hereinafter referred to as harmful deposits 8) are also deposited on the upstream side of the substrate 7. %, the surface of the harmful deposits 8 is peeled off, carried along with the vapor growth gas, and attached to the grown film on the surface of the substrate 7, causing defects. And this increases as the number of harmful deposits 8 increases.

そこで通常は気相成長処理をバッチ式で繰り返しながら
成長膜の欠陥率、を調べ、該欠陥率が所定以上の割合に
なったら気相成長処理を中断し反応管1内を清帰し、前
記有害堆積物8を除去しているが、前記従来装置では有
害堆積物の量が多いため頻繁な清掃が不可欠であり生産
性が悪かった。
Therefore, normally, the defect rate of the grown film is checked while repeating the vapor phase growth process in a batch manner, and when the defect rate reaches a predetermined rate or higher, the vapor phase growth process is stopped, the inside of the reaction tube 1 is cleaned, and the Although the deposits 8 are removed, the conventional apparatus has a large amount of harmful deposits, so frequent cleaning is essential, resulting in poor productivity.

そこで、これらの不都合に対して基板を気相成長ガスの
流れ方向に対して傾けた状態で気相成長する方法が提案
されている。この方法によれば、基板面に形成される成
長膜の厚さを気相成長ガスの流れ方向に均一にすること
ができるが気相成長ガスは層流状態で流れるので中心部
の流速が速くなり気相成長ガスの流れと垂直な方向では
中心部が厚く、周辺部が湧くなり均一の厚さにはならな
い。また、前記の如く基板を傾けると、基板を自動的に
保持台上に移載するための基板搬送機構が複雑になる不
都合を新たに生ずる他、本方法によっても前記有毒Mt
積物は減少せず生産性は改善されない。
Therefore, in order to overcome these disadvantages, a method has been proposed in which vapor phase growth is performed with the substrate tilted with respect to the flow direction of the vapor phase growth gas. According to this method, the thickness of the grown film formed on the substrate surface can be made uniform in the flow direction of the vapor growth gas, but since the vapor growth gas flows in a laminar flow state, the flow velocity in the center is faster. In the direction perpendicular to the flow of the vapor growth gas, the center part is thick and the peripheral part is thick and the thickness is not uniform. In addition, when the substrate is tilted as described above, the substrate transport mechanism for automatically transferring the substrate onto the holding table becomes complicated, and this method also causes the above-mentioned toxic Mt.
The amount of cargo is not reduced and productivity is not improved.

また、更に別の方法として、前記第3図の保持台4を水
平方向に回転する方法が提案されている。
Furthermore, as yet another method, a method has been proposed in which the holding table 4 shown in FIG. 3 is rotated in the horizontal direction.

この方法によれば、成長膜は均一の厚さにできるものの
、別途回転機構を要し装置構成が複雑になるだけでなく
、本方法によっても前記有害堆積物は減少せず生産性は
改善されない。
Although this method allows the grown film to have a uniform thickness, it not only requires a separate rotation mechanism and complicates the equipment configuration, but also does not reduce the harmful deposits and does not improve productivity. .

C問題点を解決するための手段〕 本発明は前記不都合に鑑みてなされたもので、均一な成
長膜を形成し得ると共に、基板より上流での前記有害堆
積物の聞を減少して生産性を向上させた気相成長装置を
提供することを目的とし、その特徴とするところは、気
相成長ガス流路を形成する反応管内の基板面より上流を
仕切板により該基板面と平行に区画して平行流路を形成
し、該平行流路の基板面側流路に介在ガス導入管を、他
の流路に気相成長ガス導入管をそれぞれ連設したことに
ある。
Means for Solving Problem C] The present invention was made in view of the above-mentioned disadvantages, and it is possible to form a uniformly grown film and to reduce the amount of harmful deposits upstream of the substrate, thereby improving productivity. The purpose is to provide a vapor phase growth apparatus with improved performance, and its feature is that the upstream side of the substrate surface in the reaction tube forming the vapor phase growth gas flow path is partitioned parallel to the substrate surface by a partition plate. This is because a parallel flow path is formed, and an intervening gas introduction tube is connected to the substrate surface side flow path of the parallel flow path, and a vapor growth gas introduction tube is connected to the other flow path.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明す、る。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る気相成長Vit置の断面図、第2
図1.L第1図のI−4断面図で、図中前記第3図と同
一構成部分には同一記号を付しである。
FIG. 1 is a cross-sectional view of a vapor phase growth Vit apparatus according to the present invention, and FIG.
Figure 1. L This is a sectional view taken along line I-4 in FIG. 1, in which the same components as those in FIG. 3 are given the same symbols.

図にJ3いて、10は反応管1内の基板7より上流を基
板7面と平行に区画する仕切板で、該仕切板7により平
行流路が形成され、該)V行流路の基板側流路には介在
ガス導入管11が、他方の流路には気相成長ガス導入管
12がそれぞれ連設されている。他の構成は前記第3図
と同じである。仕切板10は基板7に達しない艮ざの板
状物T:基板側端部10aは第2図の如く半円状に膨出
しだ形状となっている。
At J3 in the figure, 10 is a partition plate that partitions the upstream side of the substrate 7 in the reaction tube 1 parallel to the surface of the substrate 7, and the partition plate 7 forms a parallel flow path, and the substrate side of the V-line flow path. An intervening gas introduction pipe 11 is connected to one flow path, and a vapor growth gas introduction pipe 12 is connected to the other flow path. The other configurations are the same as in FIG. 3 above. The partition plate 10 is a plate-like object T that does not reach the substrate 7: the substrate side end 10a has a semicircular bulge shape as shown in FIG.

前記の如く構成された本発明装置は、基板7を所定の温
度に保持すると共に、介在ガス導入管11に介在ガスを
、気相成長ガス導入管12に気相成長ガスをそれぞれ導
入して使用する。この場合、介在ガスとしては稀釈ガス
または、これに9邑の揮発抑制ガスを添加したものを用
いる。揮発抑制ガスとは基板7を構成する物質のうち熱
により揮発する成分の揮発を抑制するためのガスであり
、例えばGaAS基板の場合はASの揮発を防止するた
めASH3を抑制ガスとして少吊流す。
The apparatus of the present invention configured as described above is used by holding the substrate 7 at a predetermined temperature and introducing the intervening gas into the intervening gas introduction pipe 11 and the vapor growth gas into the vapor growth gas introduction pipe 12, respectively. do. In this case, the intervening gas is a diluent gas or a diluent gas to which a volatization suppressing gas is added. The volatilization suppressing gas is a gas for suppressing the volatilization of components that evaporate due to heat among the substances constituting the substrate 7. For example, in the case of a GaAS substrate, a small amount of ASH3 is flowed as a suppressing gas in order to prevent the volatilization of AS. .

前記の如く、平行流路を別々に流れる気相成長ガスと介
在ガスは仕切板10の端部10aを過ぎた優は相Uに拡
散しながら基板7に向って流れ、このため介在ガスは原
料ガス濃度を徐々に高めながら基板7面に接近づるが、
基板7面通過時は、前記相互拡散作用により気相成長ガ
ス中の原才31ガスが引き続き介在ガス中に入ってくる
と共に、該介在ガス中の原料ガスは反応生成物となって
次々に基板7面に堆積する。従って介在ガス、気相成長
ガスの流速、気相成長ガス中の原着1ガスfjI度を適
宜調節することにより、気相成長ガスから介在ガスに流
入する原料ガス吊と基板7面への堆積により介在ガスか
ら消失する原料ガス併とを単位時周当りでバランスする
ことができ、これによって基板7面通過時の介在ガス中
の原料ガスを流れ方向に均一なil[f分布として均一
な膜厚の成長膜を形成でき良好な成膜基板を得ることが
できる。
As mentioned above, the vapor growth gas and the intervening gas flowing separately through the parallel flow paths flow toward the substrate 7 while passing through the end 10a of the partition plate 10 and diffusing into the phase U, so that the intervening gas flows toward the substrate 7. It approaches the 7th surface of the substrate while gradually increasing the gas concentration,
When passing through the substrate 7 surface, the original 31 gas in the vapor phase growth gas continues to enter the intervening gas due to the mutual diffusion effect, and the raw material gas in the intervening gas becomes a reaction product and passes through the substrate one after another. Deposits on 7 sides. Therefore, by appropriately adjusting the flow rate of the intervening gas, the vapor growth gas, and the degree of doping 1 gas fjI in the vapor growth gas, the flow of the raw material gas from the vapor growth gas into the intervening gas and the deposition on the substrate 7 surface can be controlled. This makes it possible to balance the amount of raw material gas that disappears from the intervening gas per unit time cycle, and as a result, the raw material gas in the intervening gas when passing through the surface of the substrate 7 can be distributed in a uniform film with a uniform il[f distribution in the flow direction. A thick growth film can be formed and a good film-forming substrate can be obtained.

また、前記介在ガスはその原料ガスm度が気相成長ガス
より薄い状態で基板7の上流部分を流れるので、気相成
長ガスがそのまま接触する従来装δに比べ有害j1を積
物8の聞が減少し、これに伴って清掃回数も減少するの
で生産性が向上する。
In addition, since the intervening gas flows through the upstream portion of the substrate 7 in a state where the raw material gas m is thinner than that of the vapor growth gas, the harmful j1 is reduced compared to the conventional system δ in which the vapor growth gas comes into direct contact with the substrate 8. This reduces the number of times cleaning is required, which improves productivity.

以上の如く、仕切板を設けることにより成長膜の膜厚を
流れ方向に均一化できるが、仕切板10の基板側端部1
0aを第2図の半円形状の如く仕切板10の長手方向に
沿って膨出する形状に形成寸ればより均一な膜厚とする
ことができる。即ち、通常、介在ガスは反応管1内を層
流で流ずので流速分布が中心部で速く、周辺部で遅くな
り、このため成長膜が流速の速い部分では厚く、遅い部
分では薄くなるが、前記端部10aの半円形状により介
在ガスと気相成長ガスの相互拡散の開始を中心部が周辺
部より遅れるよう調整でき、これにより前記基板側端部
10a通過後の介在ガス中の原料ガスの濃度分布を第2
図13a、13b、13Cの如くすると、介在ガスの流
速分布は破線表示した14の如くなるので基板7面上に
おりる介在ガスの流速が速い部分では原料ガスの濃度を
薄く、また、介在ガスの流速が遅い部分で(ユ原料ガス
の濃度を瀧くすることができ、成長膜を介在ガスの流れ
方向に対し垂直な方向で均一なj9さとすることができ
、前記流れ方向の均一化ど(11−t!はぼ全面を均一
にでき極めて良好な成膜基板を得ることができる。なお
、前記実施例では一枚の基板を処理する装置の場合で説
明したが、複数枚の基板を同時に処理1Jる装置にも応
用できることは言う迄もなく、バレル型の気相成長装置
に用いてム好適である。
As described above, by providing the partition plate, the thickness of the grown film can be made uniform in the flow direction.
A more uniform film thickness can be achieved by forming Oa into a shape that bulges along the longitudinal direction of the partition plate 10, such as the semicircular shape shown in FIG. That is, normally, the intervening gas does not flow in the reaction tube 1 in a laminar flow, so the flow velocity distribution is fast in the center and slow in the periphery, so that the grown film is thick in areas where the flow rate is high and thin in areas where it is slow. Due to the semicircular shape of the end portion 10a, the start of interdiffusion between the intervening gas and the vapor growth gas can be adjusted so that the center portion is delayed from the peripheral portion, and as a result, the raw material in the intervening gas after passing through the substrate side end portion 10a can be adjusted. The second gas concentration distribution
13a, 13b, and 13C, the flow velocity distribution of the intervening gas becomes as shown in 14 indicated by a broken line, so the concentration of the raw material gas is reduced in the portion where the intervening gas flowing on the surface of the substrate 7 has a high flow velocity, and the intervening gas In the part where the flow rate is slow, the concentration of the raw material gas can be lowered, and the grown film can be made to have a uniform j9 in the direction perpendicular to the flow direction of the intervening gas. (11-t! It is possible to obtain a very good film-forming substrate by making the entire surface uniform.In addition, in the above embodiment, the explanation was given for the case of an apparatus for processing one substrate, but for processing multiple substrates. Needless to say, the present invention can be applied to a device capable of processing 1J at the same time, and is suitable for use in a barrel-type vapor phase growth device.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明装置は介在ガスを介して気相成長を
行なうよう構成したので、 (1)基板面に形成する成長膜の厚さを気相成長ガスの
流れ方向に対して均一にするに際し基板を保持台上に水
平に載置したまま実施できるので基板を傾ける従来法に
比べ基板搬送機構が簡単になり、また保持台を回転する
従来法に比べても保持台を回転する機構が不要なので装
置構成が簡素になる。
As described above, since the apparatus of the present invention is configured to perform vapor phase growth via an intervening gas, (1) the thickness of the grown film formed on the substrate surface is made uniform in the flow direction of the vapor phase growth gas; Since the substrate can be placed horizontally on the holding table during the process, the substrate transport mechanism is simpler compared to the conventional method of tilting the substrate, and the mechanism for rotating the holding table is simpler than the conventional method of rotating the holding table. Since this is not necessary, the device configuration is simplified.

(2)  また仕切板の基板側端部を適宜膨出して形成
すれば気相成長ガスの流れと垂直な方向にお【ノる成長
膜の厚さを均一化でき、前記(1)の効果と併せほぼ全
面にわたって成長膜の厚さを均一化することができる。
(2) In addition, if the end of the partition plate on the substrate side is formed with an appropriate bulge, the thickness of the grown film can be made uniform in the direction perpendicular to the flow of the vapor growth gas, resulting in the effect of (1) above. In addition, the thickness of the grown film can be made uniform over almost the entire surface.

そしてこれは、保持台を回転させて全面を均一な膜厚と
する従来法に、比べ保持台回転機構を要せずして実現で
きる点が特長的である。
This method is unique in that it can be achieved without requiring a holder rotation mechanism, compared to the conventional method in which the holder is rotated to provide a uniform film thickness over the entire surface.

(3)  更に特に本発明装置では、気相成長時におけ
る基板の上流側での有害堆積を従来より減少することが
できるので清掃回数が減少し生産性が向−ヒするので経
済的である。
(3) Furthermore, in particular, the apparatus of the present invention can reduce harmful deposits on the upstream side of the substrate during vapor phase growth compared to conventional apparatuses, thereby reducing the number of times of cleaning and improving productivity, making it economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の気相成長装置の一実施例を示す断面図
、第2図は第1図のff−II所面図、第3図は従来の
気相成長装dの断面図である。 1・・・反応管  3・・・排出管  4・・・保持台
5・・・フローチャンネル  6・・・FRコイル7・
・・基板  8・・・有害堆積物  10・・・仕切板
11・・・介在ガス導入管  12・・・気相成長ガス
導入管
Fig. 1 is a sectional view showing an embodiment of the vapor phase growth apparatus of the present invention, Fig. 2 is a cross-sectional view of ff-II in Fig. 1, and Fig. 3 is a sectional view of a conventional vapor phase growth apparatus d. be. 1... Reaction tube 3... Discharge pipe 4... Holding stand 5... Flow channel 6... FR coil 7.
... Substrate 8 ... Harmful deposits 10 ... Partition plate 11 ... Intervening gas introduction pipe 12 ... Vapor phase growth gas introduction pipe

Claims (1)

【特許請求の範囲】 1、気相成長ガスを反応管内に設けた保持台上に載置し
た基板面と平行に流して該基板面に成長膜を形成する気
相成長装置において、気相成長ガス流路を形成する反応
管内の基板面より上流を仕切板により該基板面と平行に
区画して平行流路を形成し、該平行流路の基板面側流路
に介在ガス導入管を、他の流路に気相成長ガス導入管を
それぞれ連設したことを特徴とする気相成長装置。 2、前記仕切板が基板側端部で長手方向に沿つて中央部
が膨出する形状に形成されてなることを特徴とする特許
請求の範囲第1項に記載の気相成長装置。
[Claims] 1. In a vapor phase growth apparatus that forms a grown film on a substrate surface by flowing a vapor phase growth gas parallel to the surface of a substrate placed on a holder provided in a reaction tube, The upstream side of the substrate surface in the reaction tube forming the gas flow path is divided parallel to the substrate surface by a partition plate to form a parallel flow path, and an intervening gas introduction pipe is provided in the flow path on the substrate surface side of the parallel flow path. A vapor phase growth apparatus characterized in that vapor phase growth gas introduction pipes are connected to each of the other channels. 2. The vapor phase growth apparatus according to claim 1, wherein the partition plate is formed in such a shape that a central portion thereof bulges along the longitudinal direction at an end portion on the substrate side.
JP62099147A 1987-04-22 1987-04-22 Vapor phase growth equipment Expired - Fee Related JPH0727868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099147A JPH0727868B2 (en) 1987-04-22 1987-04-22 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099147A JPH0727868B2 (en) 1987-04-22 1987-04-22 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS63263718A true JPS63263718A (en) 1988-10-31
JPH0727868B2 JPH0727868B2 (en) 1995-03-29

Family

ID=14239581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099147A Expired - Fee Related JPH0727868B2 (en) 1987-04-22 1987-04-22 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0727868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192768A (en) * 2010-03-15 2011-09-29 Mitsui Eng & Shipbuild Co Ltd Atomic layer deposition device and atomic layer deposition method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100272752B1 (en) * 1996-03-22 2001-05-02 쓰치야 히로오 Vapor phase growth apparatus and vapor phase growth method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143599A (en) * 1976-05-24 1977-11-30 Nippon Eaatetsuku Kk Device for removing chemical dusts for use in wrapping machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143599A (en) * 1976-05-24 1977-11-30 Nippon Eaatetsuku Kk Device for removing chemical dusts for use in wrapping machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192768A (en) * 2010-03-15 2011-09-29 Mitsui Eng & Shipbuild Co Ltd Atomic layer deposition device and atomic layer deposition method

Also Published As

Publication number Publication date
JPH0727868B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US4798165A (en) Apparatus for chemical vapor deposition using an axially symmetric gas flow
DE3722944A1 (en) THICK FILM EVAPORATION DEVICE AND METHOD
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
JPH08181076A (en) Thin film forming method and device
JPH11340145A (en) Substrate processing device
JPH09246192A (en) Thin film gas phase growing device
JPS63186875A (en) Surface reaction film forming device
JPH07100861B2 (en) Method and apparatus for performing chemical vapor deposition using an axisymmetric flow of gas
JPH0322523A (en) Vapor growth device
JPS63263718A (en) Vapor growth apparatus
JPH09148259A (en) Lateral reactor
US6077718A (en) Method for forming deposited film
JPH01137621A (en) Vapor growth apparatus
JP3880096B2 (en) Vapor growth method
US20010002585A1 (en) Apparatus for producing a semiconductor device
JPH07193009A (en) Vapor growth device and vapor growth method using vapor growth device
JPH08104984A (en) Device and method for introducing gas and formation of tungsten thin film
JP2000260712A (en) Apparatus for manufacturing semiconductor
JPH0376112A (en) Vapor deposition device
JPH03151629A (en) Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film
US20080070017A1 (en) Layered Thin Film Structure, Layered Thin Film Forming Method, Film Forming System and Storage Medium
JPH08288225A (en) Gas introduction pipe device
JPS63292620A (en) Apparatus for depositing single atom layer thin film
JP2744746B2 (en) Tungsten silicide film forming method and film forming apparatus
JPS61256640A (en) Plasma chemical vapor deposition apparatus

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees