JP3880096B2 - Vapor growth method - Google Patents

Vapor growth method Download PDF

Info

Publication number
JP3880096B2
JP3880096B2 JP06639696A JP6639696A JP3880096B2 JP 3880096 B2 JP3880096 B2 JP 3880096B2 JP 06639696 A JP06639696 A JP 06639696A JP 6639696 A JP6639696 A JP 6639696A JP 3880096 B2 JP3880096 B2 JP 3880096B2
Authority
JP
Japan
Prior art keywords
gas
substrate
flow path
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06639696A
Other languages
Japanese (ja)
Other versions
JPH09260291A (en
Inventor
孝幸 新井
淳一 日高
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06639696A priority Critical patent/JP3880096B2/en
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to EP97907358A priority patent/EP0837495B1/en
Priority to KR1019970708329A priority patent/KR100272752B1/en
Priority to EP02004974A priority patent/EP1220305B1/en
Priority to US08/952,517 priority patent/US6190457B1/en
Priority to PCT/JP1997/000867 priority patent/WO1997036320A1/en
Priority to DE69732722T priority patent/DE69732722T2/en
Priority to TW086103492A priority patent/TW320754B/zh
Publication of JPH09260291A publication Critical patent/JPH09260291A/en
Application granted granted Critical
Publication of JP3880096B2 publication Critical patent/JP3880096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、気相成長方法に関し、詳しくは、加熱した基板面と平行に気相成長ガスを流し、基板面に二成分系以上の化合物半導体薄膜を形成した成膜基板を得る横型の気相成長方法に関する。
【0002】
【従来の技術】
基板を設置した反応管内に原料ガスを導入して基板面に化合物半導体薄膜を形成する横型の気相成長装置として、例えば、特公平7−27868号公報に記載された装置が知られている。
【0003】
上記公報に記載された気相成長装置は、図4に示すように、軸線を水平方向にして設置した円筒状の反応管1の内部に基板2を保持する保持台(サセプタ)3を設け、一端にガス導入部4を、他端にガス排出管5をそれぞれ設けるとともに、基板2より上流側に基板面と平行な仕切板6を設置し、その上下に2つの平行な流路、即ち基板側の下部流路7と反基板側の上部流路8とを区画形成し、さらに、サセプタ3の上流側にガスの流れを円滑にするためのフローチャンネル9を設け、基板部分の反応管外周に加熱用のRFコイル10を配置したものである。
【0004】
上記気相成長装置は、サセプタ3上に基板2を載置してRFコイル10で加熱した状態で、前記上部流路8に原料ガスを希釈ガスで希釈した気相成長ガスを導入するとともに、下部流路7に原料ガスを含まない介在ガスを導入して気相成長を行う。この介在ガスとしては、気相成長ガス中の希釈ガスと同じガス又はこれに少量の揮発抑制ガスを添加したものを使用している。
【0005】
前記気相成長ガスと介在ガスとは、上部流路8と下部流路7とを別々に相互に平行に流れ、仕切板6の基板側端部を過ぎた後に基板2に向かって流れ、ガスの相互拡散作用によって気相成長ガス中の原料ガスが介在ガス中に拡散し、介在ガス中の原料ガス濃度が徐々に高まりながら基板2面に接近する。そして、介在ガス中の原料ガスが基板2の近傍の高温部で熱分解し、基板面上に堆積して成長膜が形成される。
【0006】
このとき、介在ガス及び気相成長ガスの各流速や気相成長ガス中の原料ガス濃度を適宜に調節することにより、気相成長ガスから介在ガス中に拡散する原料ガス量と基板面への堆積により介在ガスから消失する原料ガス量とを単位時間当たりでバランスさせることができ、基板面通過時の介在ガス中の原料ガス濃度を流れ方向に均一な濃度分布として均一な膜厚の成長膜を形成することができる。
【0007】
このように、上記横型気相成長装置は、仕切板6を設けて気相成長ガスと介在ガスを2層流として別々に導入し、気相成長ガス中の原料ガスを介在ガス中に拡散させて基板面に到達させることにより、均一な膜厚の成膜基板が得られるとともに、介在ガスの存在によって原料ガス濃度が薄い状態で基板面上を流れるので、基板以外への有害堆積物量を減少させることができる。
【0008】
【発明が解決しようとする課題】
しかし、上記従来の横型気相成長装置で二成分系以上の成長膜を形成すると、複数種類の成分元素の内、揮発性の高い元素が成長膜から蒸発して成長膜に欠陥を生じることがある。この欠陥の発生を防止するために、従来は、揮発性の高い元素を含む原料ガス(揮発性ガス)を、該揮発性ガスの平衡分圧以上に多く供給するなどの対策を講じていたが、原料の利用効率の低下等によりコストの上昇を招いていた。
【0009】
また、基板面上に所望の反応生成物を堆積させるためには、ガスの流速を最適な状態に調節する必要があるが、ガスの流速調節は、原料の利用効率やデバイス作成工程に必要な不純物ドーピング等の点も含めて微妙な調整が必要であり、従来の横型気相成長装置では、複雑な構造のデバイス用薄膜を、膜厚と組成、ドーピングの均一性を同時に満足させて製作することは困難であった。
【0010】
すなわち、従来は、原料ガス濃度を調整して揮発成分の揮発防止を図ったり、ガス流速を調整して反応生成物の堆積ゾーンを基板面上に合致させたりしていたが、均一な膜厚を得るための条件と原料ガス濃度の最適条件とが、必ずしも良好な成膜特性を得る条件とは一致しない場合がある。また、膜厚均一性とドーピングの均一性とが得られるガス流速の最適条件が一致しないことがあるため、ガス流速を調節する方法では、デバイス用等の複雑な多層構造の薄膜成長には適していなかった。
【0011】
さらに、従来の装置では、熱分解生成物等が基板の周辺に堆積するため、頻繁に反応管を清掃する必要があった。
【0012】
そこで本発明は、欠陥の少ない良好な二成分系以上の化合物半導体多層薄膜を形成することができ、原料ガスの利用効率が高く、生産性も高めることができる気相成長方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明の気相成長方法は、基板を設置した反応管内に、前記基板より上流側に基板面と平行に2枚の仕切板を配設して、ガス導入部から基板の近くまでの反応管内の上流部分を、基板側から第一流路,第二流路及び第三流路の平行な3層の流路に区画するとともに、前記第一流路に第一気相成長ガス導入管を、第二流路に第二気相成長ガス導入管を、第三流路に成長促進ガス導入管をそれぞれ連設し、少なくとも2種類の原料ガスを前記ガス導入部から基板面に対して平行な方向に導入し前記基板面上で前記原料ガスを加熱反応させて反応生成物を前記基板面に堆積させ、該基板面上に二成分系以上の化合物半導体薄膜を形成する気相成長装置を使用した気相成長方法において、前記基板より上流側に区画形成した基板面と平行3層の流路のうち、基板側の第一流路に揮発性原料ガスを希釈ガスによって希釈した第一気相成長ガスを、次の第二流路に難揮発性原料ガスを希釈ガスによって希釈した第二気相成長ガスを、基板から最も離れた第三流路に原料ガスを含有していない成長促進ガスを、それぞれ導入するに際し、前記希釈ガスの全体流量を一定にして、前記第一気相成長ガス中の希釈ガスと、前記第二気相成長ガス中の希釈ガスとの流量割合を調整することを特徴としている。
【0014】
また、本発明の気相成長方法は、前記成長促進ガスには、原料ガスに対する拡散係数が希釈ガスより小さいガスを用いてもよい
【0015】
本発明における二成分系以上の化合物半導体薄膜とは、 III−V族化合物半導体や、II−VI族化合物半導体薄膜等であり、例えば、GaAs(ガリウム砒素)等の二成分系成膜や、Gaの一部をIn(インジウム)に置換したGaInAs等の三成分系成膜であり、その他、P(リン)等を含む多成分系成膜を挙げることができる。
【0016】
また、前記気相成長ガスは、原料ガスを水素,ヘリウム,アルゴン,窒素等の不活性ガスからなる希釈ガスで希釈したガスであり、原料ガスは、気相成長反応に寄与する個々の成分ガスであって、例えば、シラン,アルシン,ホスフィン,トリメチルガリウム(TMG)の蒸気等の一種又はこれらの混合物である。例えば、GaAs基板に前記GaAs膜を形成するときは、ガリウムの原料ガスとしてTMGの蒸気を、Asの原料としてアルシンを使用し、これらの原料を水素で希釈した気相成長ガスを用いる。
【0017】
また、原料ガスは、熱により揮発し易い揮発性原料ガスと、熱により揮発し難い難揮発性原料ガスとに分類でき、上記アルシンとTMGの蒸気とでは、アルシンが揮発性原料ガス、TMGの蒸気が難揮発性原料ガスとなる。
【0018】
一方、前記成長促進ガスは、気相成長反応には寄与しない不活性ガスであって、例えば、水素,ヘリウム,アルゴン,窒素等を使用することができ、前記希釈ガスと同一のガスを用いることもできるが、原料ガスに対する拡散係数が前記希釈ガスより小さなガスを用いたり、あるいは、流量等を調節して拡散し難い状態で供給したりすることが好ましく、水素,アルゴン,窒素等を必要に応じて2種以上混合して用いることもできる。
【0019】
【発明の実施の形態】
以下、本発明を、図面を参照してさらに詳細に説明する。図1及び図2は、本発明の方法に用いる気相成長装置の一例を示すもので、一端にガス導入部11を、他端にガス排出管12をそれぞれ有し、軸線を水平方向にして設置した円筒状の反応管13の内部に、基板14を保持するサセプタ15と、該サセプタ15の上流側のフローチャンネル16と、サセプタ15より上流のガス導入部11側の2枚の仕切板17,18と、サセプタ15に対向する成長促進台19とをそれぞれ設けたものである。なお、反応管13のの外周には、サセプタ15を介して基板14を加熱するためのRFコイル20が設けられている。
【0020】
上記2枚の仕切板17,18は、基板面と平行に設置された薄板状のものであって、ガス導入部11から基板14の近くまでの反応管13内の上流部分を、基板側の第一流路21と、中間の第二流路22と、基板14の反対側の第三流路23とに区画し、反応管13内に互いに平行な3層の流路を区画形成している。
【0021】
前記各流路は、ガス導入部11において、第一流路21に第一気相成長ガス導入管24が、第二流路22に第二気相成長ガス導入管25が、第三流路23に成長促進ガス導入管26がそれぞれ連設されており、第一流路21には第一気相成長ガスが、第二流路22には第二気相成長ガスが、第三流路23には成長促進ガスが、それぞれ導入される。
【0022】
また、成長促進台19は、基板14部分の反応管13内のガス流路の断面積を小さくするために設けられるものであって、反応管13内の基板14と対向する部分に設けられ、上流側は徐々に高さが高くなる傾斜面に形成され、基板14と対向する面は、基板面と平行に形成されている。
【0023】
このように形成した気相成長装置で二成分系以上の化合物半導体薄膜を形成するには、まず、サセプタ15で基板14を保持してRFコイル20で所定温度に加熱した状態で、第一流路21に第一気相成長ガスを、第二流路22に第二気相成長ガスを、第三流路23に成長促進ガスを、それぞれ導入する。
【0024】
反応管13内に導入された第一気相成長ガス,第二気相成長ガス,成長促進ガスは、それぞれの流路を別々に独立した状態で流れ、仕切板17,18の端部を過ぎた後,第一気相成長ガス及び第二気相成長ガス内の原料ガスは、相互に拡散しながら基板14に向かって流れていく。
【0025】
このとき、基板面に近い第一流路21を流れる第一気相成長ガス中の原料ガスを揮発性原料ガスとし、第二流路22の第二気相成長ガス中の原料ガスを難揮発性原料ガスとすることにより、基板近傍のガス中の揮発性原料ガスの濃度を高めることができるので、該原料ガスを基板面に効率よく分解堆積させることができ、その利用効率を大幅に高めることができるとともに、成長膜からの揮発性元素の揮発を防止できるので、欠陥率の低い成長膜を得ることができる。さらに、反応管全体に揮発性原料ガスを導入する場合に比べて、少ない量で基板近傍における濃度を同程度以上にすることが可能なので、原料ガスの使用量を大幅に低減させることができる。
【0026】
また、第二流路22を流れる第二気相成長ガス中の難揮発性原料ガスは、第一気相成長ガス中に徐々に拡散しながら基板面に接近し、基板面を通過するときには、相互拡散作用により第二気相成長ガス中の難揮発性原料ガスが引き続いて第一気相成長ガス中に拡散侵入するとともに、第一気相成長ガス中の難揮発性原料ガスが反応生成物となって次々に基板面に堆積する状態になる。
【0027】
そして、第一気相成長ガス中への難揮発性原料ガスの拡散量と、反応生成物となって第一気相成長ガス中から失われる量とを最適な状態でバランスさせることにより、基板面通過時おける原料ガス濃度を流れ方向に均一な濃度分布として均一な厚さの良好な成膜基板を得ることができるだけでなく、難揮発性原料ガスが徐々に第一気相成長ガス中に拡散して分解,堆積できるように完全に混合する領域(拡散混合領域)の距離を調節できるため、反応生成物の堆積位置をコントロールでき、基板以外への有害堆積物を大幅に減少させることが可能となる。
【0028】
この難揮発性原料ガスの拡散混合領域の調整は、第一気相成長ガス中の希釈ガスと第二気相成長ガス中の希釈ガスとの流量バランスを調節することにより行うことができる。例えば、後述の実験結果を示す図3から明らかなように、反応管13に流す希釈ガスの全体量を一定にして、第二気相成長ガス中の希釈ガス流量に対する第一気相成長ガス中の希釈ガスの流量を変化させると、膜厚均一性(図中白丸で表示)やドーピング均一性(図中黒丸で表示)が変化する。すなわち、この場合、希釈ガスの流量バランスを特定の範囲から小さくしても大きくしても膜厚均一性が低下し、最適な流量バランスが存在することがわかる。
【0029】
さらに、上記流量バランスを調節するにあたり、一方の希釈ガスの流量を一定にして他方の希釈ガスの流量を変化させることも可能であるが、この場合は、反応管内の基板部分の全体のガス流量(流速)が変化するため、複雑な調節操作が必要になる。したがって、希釈ガスの全体量を変えることなく、すなわち、反応管内における全体のガス流量を変化させることなく、両方の希釈ガスの流量比を調節する。例えば、希釈ガス全体流量を20とした場合、第一気相成長ガス中の希釈ガスの流量(A)と第二気相成長ガス中の希釈ガス流量(B)との比を、A:B=9:11(流量バランス=0.82)や10:10(等量)あるいは11:9と変化させるようにすればよい。
【0030】
なお、最適な流量バランスは、第二気相成長ガス中の難揮発性原料ガスの濃度や流速に関係する各流路の断面積、各仕切板端部と基板との距離、反応管の大きさ、全体のガス量等に応じて適宜に設定すればよい。
【0031】
さらに、基板面の膜厚均一性及びドーピング均一性が得られるガス流速の最適条件が異なる場合も、希釈ガスの流量バランスを調節することにより、一定の最適なガス流速において、基板面上に反応生成物を均一に堆積でき、複雑な構造の多層構造を有するデバイス用薄膜の最適化も容易となる。
【0032】
一方、前記第三流路23に導入する成長促進ガスとして、両気相成長ガスに使用した希釈ガスに比べて原料ガスに対する拡散係数が小さなガスを用いることにより、気相成長ガス中の原料ガスが成長促進ガス中に拡散して気相成長ガス中の原料ガス濃度が低下することを抑えることができ、成長促進ガスと共に排出される原料ガス量を低減でき、原料の利用効率を大幅に高めることができる。
【0033】
また、第三流路23の成長促進ガス中に、第二流路22の難揮発性原料ガスが拡散する場合でも、成長促進ガスを混合ガスとして拡散係数を調節したり、成長促進ガスの流量を調節したりすることにより、成長促進ガス中への原料ガスの拡散を抑え、難揮発性原料ガスの堆積ゾーンをコントロールすることが可能となる。
【0034】
さらに、反応管13内に成長促進台19を設けて基板面近傍のガス流路断面積を減少させることにより、反応管13内を流れるガスを基板面に押しつけるとともに、この部分でのガス流速を増大させることができるので、該成長促進台19の形状を適宜に設定することにより、基板面を流れるガスにおける速度境界層や、基板近傍で大きな温度勾配を持つ温度境界層の層厚さを薄くすることができ、結晶化し難かった揮発性原料ガスを効率的に分解して結晶化させるための最適な状態になるように制御することが可能になり、基板近傍の実効的な原料濃度を増大させ、より良好な状態で効率よく成膜を行うことができる。なお、成長促進台19を設ける代わりに、反応管13自体の形状を成長促進台19を設けたのと同じような形状に形成するようにしてもよい。また、本例では、基板14を反応管13の上方に成膜面をしたに向けて保持する構造の装置を例示したが、従来と同様の反応管の下方に基板を設置するようにしてもよい。
【0035】
【実施例】
次に、本発明の実施例を説明する。
図1,図2に示す構造の装置を用いて、GaAs基板上にGaAs膜を成膜する実験を下記の条件で行った。第一流路には、揮発性原料ガスであるアルシンとドーピングガスであるシランとを水素で希釈したガスを導入し、第二流路には、難揮発性ガスであるトリメチルガリウム(TMG)を水素で希釈したガスを導入し、第三流路には、成長促進ガスとして水素を導入した。なお、ドーピングガスのシランの濃度は10ppmとした。
【0036】
図3は、3インチGaAs基板上にGaAsを成膜したときの希釈ガス流量バランスと基板面内の膜厚均一性及びSiドーピング均一性との関係を示すもので、横軸が希釈ガス流量バランス[−]、縦軸が膜厚均一性[%]及びSiドーピング均一性[%]を表している。なお、膜厚は分光エリプソメトリで、Siドーピング量はプロファイルプロッターでキャリア濃度を測定した結果である。
【0037】
この結果から、希釈ガスの流量バランスを大きくする、つまり第一流路の第一気相成長ガス中の希釈ガス流量を増大させるに従って膜厚均一性が小さくなり、ある点を境に膜厚均一性が再び大きくなることがわかる。また、ドーピング均一性については、膜厚均一性が得られる最適な希釈ガス流量バランスの条件と一致していることがわかる。このことから、以下に示す条件で成膜を行ったところ、均一で良好なGaAs膜を得ることができた。
【0038】

Figure 0003880096
なお、希釈ガスの流量バランスは、8000sccm/12000sccm=0.67である。また、sccmは、「Standard Cubic Centimeter/min」の略記である。
【0039】
【発明の効果】
以上説明したように、本発明によれば、二成分系以上の化合物半導体薄膜を効率よく生産することができ、複雑な多層構造のデバイス用薄膜の最適化も容易となる。また、有害堆積物の減少により反応管の清掃頻度が減少して生産性が向上する。
【図面の簡単な説明】
【図1】 本発明の方法に用いる気相成長装置の一例を示す正面断面図である。
【図2】 同じく側面断面図である。
【図3】 希釈ガス流量バランスと、縦軸が膜厚均一性及びドーピング均一性を示す図である。
【図4】 従来の気相成長装置の一例を示す正面断面図である。
【符号の説明】
11…ガス導入部、12…ガス排出管、13…反応管、14…基板、15…サセプタ、16…フローチャンネル、17,18…仕切板、19…成長促進台、20…RFコイル、21…第一流路、22…第二流路、23…第三流路、24…第一気相成長ガス導入管、25…第二気相成長ガス導入管、26…成長促進ガス導入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor phase rectangular method, particularly, in parallel with the heated substrate surface flowed vapor phase growth gas, the horizontal to obtain a deposition substrate formed with the compound semiconductor thin film of two or more component to the substrate surface vapor-phase rectangular Law on.
[0002]
[Prior art]
For example, an apparatus described in Japanese Patent Publication No. 7-27868 is known as a horizontal vapor phase growth apparatus that introduces a source gas into a reaction tube provided with a substrate to form a compound semiconductor thin film on the substrate surface.
[0003]
As shown in FIG. 4, the vapor phase growth apparatus described in the above publication is provided with a holding table (susceptor) 3 that holds a substrate 2 inside a cylindrical reaction tube 1 installed with an axis line in a horizontal direction. A gas introduction part 4 is provided at one end, and a gas discharge pipe 5 is provided at the other end, and a partition plate 6 parallel to the substrate surface is installed upstream from the substrate 2, and two parallel flow paths, that is, substrates, are provided above and below the partition plate 6. The lower flow path 7 on the side and the upper flow path 8 on the side opposite to the substrate are partitioned, and a flow channel 9 is provided on the upstream side of the susceptor 3 for smooth gas flow. An RF coil 10 for heating is arranged in the above.
[0004]
The vapor phase growth apparatus introduces a vapor phase growth gas obtained by diluting a raw material gas with a dilution gas into the upper flow path 8 while the substrate 2 is placed on the susceptor 3 and heated by the RF coil 10. Vapor growth is performed by introducing an intervening gas that does not contain source gas into the lower flow path 7. As the intervening gas, the same gas as the dilution gas in the vapor phase growth gas or a gas in which a small amount of volatilization suppression gas is added is used.
[0005]
The vapor phase growth gas and the intervening gas separately flow in the upper flow path 8 and the lower flow path 7 in parallel with each other, flow toward the substrate 2 after passing the substrate side end of the partition plate 6, and gas Due to the mutual diffusion action, the source gas in the vapor phase growth gas diffuses into the intervening gas, and approaches the surface of the substrate 2 while gradually increasing the concentration of the source gas in the intervening gas. The source gas in the intervening gas is thermally decomposed at a high temperature portion near the substrate 2 and deposited on the substrate surface to form a growth film.
[0006]
At this time, by appropriately adjusting the flow rates of the intervening gas and the vapor phase growth gas and the source gas concentration in the vapor phase growth gas, the amount of the source gas diffused from the vapor phase growth gas into the intervening gas and the substrate surface The amount of source gas that disappears from the intervening gas due to the deposition can be balanced per unit time, and the concentration of the source gas in the intervening gas when passing through the substrate surface is a uniform growth distribution with a uniform thickness distribution in the flow direction. Can be formed.
[0007]
In this way, the horizontal vapor phase growth apparatus is provided with the partition plate 6 and separately introduces the vapor growth gas and the intervening gas as a two-layer flow, and diffuses the source gas in the vapor growth gas into the intervening gas. By reaching the substrate surface, a film-formed substrate with a uniform film thickness can be obtained, and the presence of the intervening gas reduces the amount of harmful deposits on the substrate other than the substrate because it flows over the substrate surface with a low source gas concentration. Can be made.
[0008]
[Problems to be solved by the invention]
However, when a growth film of two or more components is formed by the conventional horizontal vapor phase growth apparatus, a highly volatile element out of a plurality of types of component elements may evaporate from the growth film and cause a defect in the growth film. is there. In order to prevent the occurrence of this defect, conventionally, measures have been taken such as supplying a source gas (volatile gas) containing a highly volatile element in excess of the equilibrium partial pressure of the volatile gas. The cost has increased due to a decrease in the utilization efficiency of raw materials.
[0009]
In addition, in order to deposit a desired reaction product on the substrate surface, it is necessary to adjust the gas flow rate to an optimum state. However, the gas flow rate adjustment is necessary for the raw material utilization efficiency and the device manufacturing process. Subtle adjustments including the point of impurity doping etc. are necessary, and the conventional horizontal type vapor phase growth apparatus manufactures a thin film for a device having a complicated structure while simultaneously satisfying the film thickness, composition and uniformity of doping. It was difficult.
[0010]
In other words, conventionally, the raw material gas concentration was adjusted to prevent volatilization of volatile components, or the gas flow rate was adjusted to match the reaction product deposition zone on the substrate surface. There are cases where the conditions for obtaining the optimum conditions for the source gas concentration do not necessarily match the conditions for obtaining good film forming characteristics. In addition, since the optimum conditions for the gas flow rate at which film thickness uniformity and doping uniformity are obtained may not match, the method of adjusting the gas flow rate is suitable for thin film growth of complex multilayer structures such as for devices. It wasn't.
[0011]
Furthermore, in the conventional apparatus, since the thermal decomposition products and the like are deposited around the substrate, it is necessary to frequently clean the reaction tube.
[0012]
The present invention can form a less favorable two-component systems or more of the compound semiconductor multilayer film defects, the utilization efficiency of the raw material gas is high, provides a rectangular method Phase Ingredients feel can enhance productivity The purpose is that.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the vapor phase growth method of the present invention includes two partition plates arranged in parallel to the substrate surface upstream of the substrate in a reaction tube in which the substrate is installed. The upstream portion in the reaction tube up to the vicinity of the substrate is partitioned from the substrate side into three layers of parallel flow channels, a first flow channel, a second flow channel, and a third flow channel, and the first gas phase is formed in the first flow channel. A growth gas introduction pipe, a second vapor phase growth gas introduction pipe in the second flow path, and a growth promoting gas introduction pipe in the third flow path are connected to each other, and at least two kinds of source gases are supplied from the gas introduction portion to the substrate. forming said raw material gas is heated reaction the reaction product is deposited on the substrate surface, the compound semiconductor thin film of two or more component on the substrate surface on introducing the substrate surface in a direction parallel to the plane in the vapor phase growth method using a vapor deposition apparatus for the compartment formed on the upstream side of the substrate Of the flow path of the substrate surface and parallel to three layers, the first vapor deposition gas diluted by the dilution gas volatile material gas to the first channels of the substrate, sparingly volatile material gas follows the second flow path When introducing the second vapor phase growth gas diluted with the dilution gas and the growth promoting gas not containing the source gas into the third flow path farthest from the substrate, the entire flow rate of the dilution gas is kept constant. The flow rate ratio between the dilution gas in the first vapor phase growth gas and the dilution gas in the second vapor phase growth gas is adjusted.
[0014]
Further, vapor deposition method of the present invention, before Symbol growth promoting gas, the diffusion coefficient for the raw material gas may be used less gas than diluent gas.
[0015]
The compound semiconductor thin film of two or more components in the present invention is a III-V group compound semiconductor, a II-VI group compound semiconductor thin film, etc., for example, a two-component film formation such as GaAs (gallium arsenide), Ga In addition, a ternary film formation of GaInAs or the like in which a part of is replaced with In (indium), and a multicomponent film formation including P (phosphorus) or the like can be given.
[0016]
The vapor phase growth gas is a gas obtained by diluting a source gas with a diluent gas composed of an inert gas such as hydrogen, helium, argon, nitrogen, etc., and the source gas is an individual component gas that contributes to the vapor phase growth reaction. For example, it is a kind of silane, arsine, phosphine, trimethylgallium (TMG) vapor, or a mixture thereof. For example, when the GaAs film is formed on a GaAs substrate, vapor phase growth gas is used in which TMG vapor is used as the gallium source gas, arsine is used as the As source material, and these source materials are diluted with hydrogen.
[0017]
In addition, the source gas can be classified into a volatile source gas that is easily volatilized by heat and a hardly volatile source gas that is less likely to volatilize by heat. Steam becomes a hardly volatile source gas.
[0018]
On the other hand, the growth promoting gas is an inert gas that does not contribute to the vapor phase growth reaction. For example, hydrogen, helium, argon, nitrogen, or the like can be used, and the same gas as the dilution gas is used. However, it is preferable to use a gas whose diffusion coefficient with respect to the source gas is smaller than that of the dilution gas, or to supply in a state in which it is difficult to diffuse by adjusting the flow rate, etc., and requires hydrogen, argon, nitrogen, etc. Depending on the situation, a mixture of two or more may be used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. 1 and 2 show an example of a vapor phase growth apparatus used in the method of the present invention, which has a gas introduction part 11 at one end and a gas discharge pipe 12 at the other end, and the axis is in a horizontal direction. Inside the installed cylindrical reaction tube 13, a susceptor 15 that holds the substrate 14, a flow channel 16 on the upstream side of the susceptor 15, and two partition plates 17 on the gas introduction section 11 side upstream of the susceptor 15. , 18 and a growth promoting table 19 facing the susceptor 15. An RF coil 20 for heating the substrate 14 via a susceptor 15 is provided on the outer periphery of the reaction tube 13.
[0020]
The two partition plates 17 and 18 are in the form of a thin plate installed in parallel with the substrate surface, and the upstream portion in the reaction tube 13 from the gas introduction part 11 to the vicinity of the substrate 14 is disposed on the substrate side. The first flow path 21, the intermediate second flow path 22, and the third flow path 23 on the opposite side of the substrate 14 are partitioned, and three parallel flow paths are defined in the reaction tube 13. .
[0021]
In the gas introduction part 11, each of the flow paths has a first vapor phase growth gas introduction pipe 24 in the first flow path 21, a second vapor growth gas introduction pipe 25 in the second flow path 22, and a third flow path 23. A growth promoting gas introduction pipe 26 is connected to each of the first flow path 21, the first vapor growth gas in the first flow path 21, the second vapor growth gas in the second flow path 22, and the third flow path 23. The growth promoting gas is introduced respectively.
[0022]
The growth promoting base 19 is provided to reduce the cross-sectional area of the gas flow path in the reaction tube 13 in the substrate 14 portion, and is provided in a portion facing the substrate 14 in the reaction tube 13. The upstream side is formed as an inclined surface that gradually increases in height, and the surface facing the substrate 14 is formed in parallel with the substrate surface.
[0023]
In order to form a compound semiconductor thin film of two or more components with the vapor phase growth apparatus formed in this way, first, the substrate 14 is held by the susceptor 15 and heated to a predetermined temperature by the RF coil 20, and then the first flow path is formed. A first vapor growth gas is introduced into 21, a second vapor growth gas is introduced into the second flow path 22, and a growth promoting gas is introduced into the third flow path 23.
[0024]
The first vapor phase growth gas, the second vapor phase growth gas, and the growth promoting gas introduced into the reaction tube 13 separately flow through the respective flow paths, past the end portions of the partition plates 17 and 18. Thereafter, the source gases in the first vapor phase growth gas and the second vapor phase growth gas flow toward the substrate 14 while diffusing each other.
[0025]
At this time, the raw material gas in the first vapor phase growth gas flowing through the first flow path 21 close to the substrate surface is used as a volatile raw material gas, and the raw material gas in the second vapor phase growth gas in the second flow path 22 is hardly volatile. By using the source gas, the concentration of the volatile source gas in the gas in the vicinity of the substrate can be increased, so that the source gas can be efficiently decomposed and deposited on the substrate surface, and its utilization efficiency is greatly increased. In addition, it is possible to prevent volatilization of volatile elements from the growth film, so that a growth film with a low defect rate can be obtained. Furthermore, compared with the case where volatile source gas is introduced into the entire reaction tube, the concentration in the vicinity of the substrate can be made the same or higher with a small amount, so that the amount of source gas used can be greatly reduced.
[0026]
In addition, the hardly volatile source gas in the second vapor growth gas flowing through the second flow path 22 approaches the substrate surface while gradually diffusing into the first vapor growth gas, and passes through the substrate surface. Due to the interdiffusion action, the hardly volatile source gas in the second vapor phase growth gas subsequently diffuses and penetrates into the first vapor phase growth gas, and the hardly volatile source gas in the first vapor phase growth gas becomes the reaction product. Then, one after another is deposited on the substrate surface.
[0027]
Then, by optimally balancing the amount of diffusion of the hardly volatile source gas into the first vapor phase growth gas and the amount lost from the first vapor phase growth gas as a reaction product, Not only can the source gas concentration when passing through the surface be a uniform concentration distribution in the flow direction to obtain a good deposition substrate with a uniform thickness, but also the hardly volatile source gas gradually enters the first vapor phase growth gas. The distance of the complete mixing area (diffusion mixing area) so that it can be diffused and decomposed and deposited can be adjusted, so the deposition position of the reaction product can be controlled, and harmful deposits other than the substrate can be greatly reduced. It becomes possible.
[0028]
The adjustment of the diffusion and mixing region of the hardly volatile source gas can be performed by adjusting the flow rate balance between the dilution gas in the first vapor phase growth gas and the dilution gas in the second vapor phase growth gas. For example, as is apparent from FIG. 3 showing the experimental results described later, in the first vapor phase growth gas with respect to the flow rate of the dilution gas in the second vapor phase growth gas, the entire amount of the dilution gas flowing through the reaction tube 13 is made constant. When the flow rate of the dilution gas is changed, film thickness uniformity (indicated by white circles in the figure) and doping uniformity (indicated by black circles in the figure) change. That is, in this case, it can be understood that the film thickness uniformity is lowered even if the flow rate balance of the dilution gas is reduced or increased from a specific range, and an optimum flow rate balance exists.
[0029]
Furthermore, in adjusting the flow rate balance, it is possible to change the flow rate of one dilution gas while changing the flow rate of the other dilution gas, but in this case, the total gas flow rate of the substrate portion in the reaction tube Since the (flow velocity) changes, complicated adjustment operations are required. Thus, without changing the total amount of the dilution gas, i.e., without changing the overall gas flow in the reaction tube, adjust the flow rate of both the diluent gas. For example, the ratio of the case where the entire diluted gas flow rate is 20, the flow rate of the dilution gas in the first vapor deposition in a gas (A) and the dilution gas flow rate of the second vapor deposition gas (B), A: B = 9: 11 (flow rate balance = 0.82), 10:10 (equal amount), or 11: 9 may be changed.
[0030]
Note that the optimum flow rate balance is the cross-sectional area of each flow path, the distance between each partition plate end and the substrate, the size of the reaction tube, which is related to the concentration and flow rate of the hardly volatile source gas in the second vapor phase growth gas. What is necessary is just to set suitably according to the whole gas amount.
[0031]
Furthermore, even when the optimum conditions for the gas flow rate at which the film thickness uniformity and doping uniformity on the substrate surface are obtained are different, the reaction on the substrate surface can be achieved at a constant optimum gas flow rate by adjusting the flow rate balance of the dilution gas. The product can be deposited uniformly, and optimization of a thin film for a device having a multilayer structure having a complicated structure is facilitated.
[0032]
On the other hand, as the growth promoting gas introduced into the third flow path 23, a gas having a smaller diffusion coefficient with respect to the source gas than the dilution gas used for both vapor phase growth gases is used. Can be prevented from diffusing into the growth promoting gas and reducing the concentration of the raw material gas in the vapor phase growth gas, the amount of the raw material gas discharged together with the growth promoting gas can be reduced, and the utilization efficiency of the raw material is greatly increased. be able to.
[0033]
Further, even when the hardly volatile source gas in the second flow path 22 diffuses into the growth promoting gas in the third flow path 23, the diffusion coefficient is adjusted using the growth promoting gas as a mixed gas, or the flow rate of the growth promoting gas It is possible to suppress the diffusion of the raw material gas into the growth promoting gas and to control the deposition zone of the hardly volatile raw material gas.
[0034]
Further, by providing a growth promoting base 19 in the reaction tube 13 to reduce the gas flow path cross-sectional area in the vicinity of the substrate surface, the gas flowing in the reaction tube 13 is pressed against the substrate surface, and the gas flow rate in this portion is increased. Therefore, the thickness of the velocity boundary layer in the gas flowing on the substrate surface and the temperature boundary layer having a large temperature gradient in the vicinity of the substrate can be reduced by appropriately setting the shape of the growth promotion table 19. It is possible to control the volatile source gas, which was difficult to crystallize, to be optimally decomposed and crystallized, and to increase the effective source concentration in the vicinity of the substrate. Therefore, the film can be efficiently formed in a better state. Instead of providing the growth promotion table 19, the shape of the reaction tube 13 itself may be formed in the same shape as the growth promotion table 19 is provided. Further, in this example, the apparatus having a structure for holding the substrate 14 toward the film formation surface above the reaction tube 13 is illustrated, but the substrate may be installed below the reaction tube as in the conventional case. Good.
[0035]
【Example】
Next, examples of the present invention will be described.
An experiment for forming a GaAs film on a GaAs substrate using the apparatus having the structure shown in FIGS. 1 and 2 was performed under the following conditions. A gas obtained by diluting arsine as a volatile source gas and silane as a doping gas with hydrogen is introduced into the first channel, and trimethylgallium (TMG) as a hardly volatile gas is hydrogenated into the second channel. The gas diluted with 1 was introduced, and hydrogen was introduced into the third channel as a growth promoting gas. The concentration of silane in the doping gas was 10 ppm.
[0036]
FIG. 3 shows the relationship between the dilution gas flow rate balance when the GaAs film is formed on the 3-inch GaAs substrate, the film thickness uniformity within the substrate surface, and the Si doping uniformity, and the horizontal axis represents the dilution gas flow rate balance. [-], The vertical axis represents film thickness uniformity [%] and Si doping uniformity [%]. The film thickness is a result of spectroscopic ellipsometry, and the Si doping amount is a result of measuring the carrier concentration with a profile plotter.
[0037]
From this result, the film thickness uniformity decreases as the dilution gas flow rate balance is increased, that is, the dilution gas flow rate in the first vapor phase growth gas of the first flow path is increased. Can be seen to grow again. In addition, it can be seen that the doping uniformity is consistent with the optimal dilution gas flow rate balance condition that provides film thickness uniformity. Therefore, when film formation was performed under the following conditions, a uniform and good GaAs film could be obtained.
[0038]
Figure 0003880096
The flow rate balance of the dilution gas is 8000 sccm / 12000 sccm = 0.67. Also, sccm is an abbreviation for “Standard Cubic Centimeter / min”.
[0039]
【The invention's effect】
As described above, according to the present invention, a compound semiconductor thin film having two or more components can be efficiently produced, and optimization of a thin film for a device having a complex multilayer structure is facilitated. In addition, the frequency of cleaning the reaction tube is reduced due to the reduction of harmful deposits, thereby improving productivity.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an example of a vapor phase growth apparatus used in a method of the present invention.
FIG. 2 is a side sectional view of the same.
FIG. 3 is a diagram showing a dilution gas flow rate balance and a vertical axis showing film thickness uniformity and doping uniformity.
FIG. 4 is a front sectional view showing an example of a conventional vapor phase growth apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Gas introduction part, 12 ... Gas exhaust pipe, 13 ... Reaction tube, 14 ... Substrate, 15 ... Susceptor, 16 ... Flow channel, 17, 18 ... Partition plate, 19 ... Growth promotion stand, 20 ... RF coil, 21 ... 1st flow path, 22 ... 2nd flow path, 23 ... 3rd flow path, 24 ... 1st vapor phase growth gas introduction pipe, 25 ... 2nd vapor growth gas introduction pipe, 26 ... growth promotion gas introduction pipe

Claims (2)

基板を設置した反応管内に、前記基板より上流側に基板面と平行に2枚の仕切板を配設して、ガス導入部から基板の近くまでの反応管内の上流部分を、基板側から第一流路,第二流路及び第三流路の平行な3層の流路に区画するとともに、前記第一流路に第一気相成長ガス導入管を、第二流路に第二気相成長ガス導入管を、第三流路に成長促進ガス導入管をそれぞれ連設し、少なくとも2種類の原料ガスを前記ガス導入部から基板面に対して平行な方向に導入し前記基板面上で前記原料ガスを加熱反応させて反応生成物を前記基板面に堆積させ、該基板面上に二成分系以上の化合物半導体薄膜を形成する気相成長装置を使用した気相成長方法において、前記基板より上流側に区画形成した基板面と平行3層の流路のうち、基板側の第一流路に揮発性原料ガスを希釈ガスによって希釈した第一気相成長ガスを、次の第二流路に難揮発性原料ガスを希釈ガスによって希釈した第二気相成長ガスを、基板から最も離れた第三流路に原料ガスを含有していない成長促進ガスを、それぞれ導入するに際し、前記希釈ガスの全体流量を一定にして、前記第一気相成長ガス中の希釈ガスと、前記第二気相成長ガス中の希釈ガスとの流量割合を調整することを特徴とする気相成長方法。In the reaction tube in which the substrate is installed , two partition plates are arranged upstream of the substrate in parallel with the substrate surface, and the upstream portion in the reaction tube from the gas introduction part to the vicinity of the substrate is arranged from the substrate side. The flow path is divided into three parallel flow paths, one flow path, a second flow path, and a third flow path, and the first vapor growth gas introduction pipe is provided in the first flow path, and the second vapor growth is performed in the second flow path. the gas inlet tube, respectively continuously arranged a growth promoting gas introduction pipe to the third flow path, at least two kinds of the raw material gas on the substrate surface is introduced into a direction parallel to the substrate surface from the gas inlet portion In the vapor phase growth method using the vapor phase growth apparatus, wherein the source gas is heated and reacted to deposit a reaction product on the substrate surface, and a compound semiconductor thin film of two or more components is formed on the substrate surface. of the more upstream parallel to the substrate surface 3 layer was partitioned and formed on the side of the flow channel, first flow on the substrate side The first vapor phase growth gas obtained by diluting the volatile source gas with the dilution gas is separated from the substrate by the second vapor phase growth gas obtained by diluting the non-volatile source gas with the dilution gas in the next second flow path. When introducing the growth promoting gas that does not contain the source gas into the third flow path, the entire flow rate of the dilution gas is kept constant, the dilution gas in the first vapor phase growth gas, and the second gas A vapor phase growth method characterized by adjusting a flow rate ratio with a dilution gas in a phase growth gas. 前記成長促進ガスは、原料ガスに対する拡散係数が前記希釈ガスより小さいガスであることを特徴とする請求項1記載の気相成長方法 2. The vapor phase growth method according to claim 1 , wherein the growth promoting gas is a gas having a diffusion coefficient smaller than that of the dilution gas with respect to the source gas .
JP06639696A 1996-03-22 1996-03-22 Vapor growth method Expired - Lifetime JP3880096B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP06639696A JP3880096B2 (en) 1996-03-22 1996-03-22 Vapor growth method
KR1019970708329A KR100272752B1 (en) 1996-03-22 1997-03-18 Vapor phase growth apparatus and vapor phase growth method
EP02004974A EP1220305B1 (en) 1996-03-22 1997-03-18 CVD process
US08/952,517 US6190457B1 (en) 1996-03-22 1997-03-18 CVD system and CVD process
EP97907358A EP0837495B1 (en) 1996-03-22 1997-03-18 Vapor phase growth apparatus
PCT/JP1997/000867 WO1997036320A1 (en) 1996-03-22 1997-03-18 Vapor phase growth apparatus and vapor phase growth method
DE69732722T DE69732722T2 (en) 1996-03-22 1997-03-18 CVD method
TW086103492A TW320754B (en) 1996-03-22 1997-03-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06639696A JP3880096B2 (en) 1996-03-22 1996-03-22 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH09260291A JPH09260291A (en) 1997-10-03
JP3880096B2 true JP3880096B2 (en) 2007-02-14

Family

ID=13314618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06639696A Expired - Lifetime JP3880096B2 (en) 1996-03-22 1996-03-22 Vapor growth method

Country Status (1)

Country Link
JP (1) JP3880096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123634A (en) * 2017-05-09 2018-11-19 도쿄엘렉트론가부시키가이샤 Film forming apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034780A (en) * 2006-07-07 2008-02-14 Fuji Electric Holdings Co Ltd METHOD FOR MANUFACTURING SEMICONDUCTOR SiC SUBSTRATE WITH EPITAXIAL SiC FILM, AND ITS EPITAXIAL SiC FILM-FORMING DEVICE
JP6030907B2 (en) * 2012-09-28 2016-11-24 国立大学法人東京農工大学 Method for producing group III nitride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180123634A (en) * 2017-05-09 2018-11-19 도쿄엘렉트론가부시키가이샤 Film forming apparatus
KR102225930B1 (en) * 2017-05-09 2021-03-09 도쿄엘렉트론가부시키가이샤 Film forming apparatus
US11208724B2 (en) 2017-05-09 2021-12-28 Tokyo Electron Limited Film forming apparatus

Also Published As

Publication number Publication date
JPH09260291A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
KR100272752B1 (en) Vapor phase growth apparatus and vapor phase growth method
US10364509B2 (en) Alkyl push flow for vertical flow rotating disk reactors
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
US20030015137A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JPH07201762A (en) Gas feeder for manufacturing semiconductor element
JPH04287312A (en) Device and method for vapor phase epitaxial growth
US6592674B2 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US20040013801A1 (en) Method for depositing in particular crystalline layers, and device for carrying out the method
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
JP3231996B2 (en) Vapor phase growth equipment
JP3880096B2 (en) Vapor growth method
JP3702403B2 (en) Vapor growth method
JPH11102871A (en) Manufacture of semiconductor single-crystal thin film
JPH0677136A (en) Method and device for vapor growing compound semiconductor thin film crystal
JP2002261021A (en) Apparatus and method for vapor-phase growth
JPH0480366A (en) Vapor growth device
JPS6353160B2 (en)
JPH10242062A (en) Method of growing semiconductor thin film
JPH0727868B2 (en) Vapor phase growth equipment
JPH04221820A (en) Vapor growth method for organic metal
JPH01313945A (en) Manufacture of compound semiconductor
JPS5930799A (en) Apparatus for growing crystal of compound semiconductor
JP2002299243A (en) Vapor growth equipment and vapor growth method
JPS63202909A (en) Vapor growth method
JPH0616495B2 (en) Silicon vapor phase epitaxial growth method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term