JPS63263365A - Reversible expansion valve - Google Patents
Reversible expansion valveInfo
- Publication number
- JPS63263365A JPS63263365A JP62095316A JP9531687A JPS63263365A JP S63263365 A JPS63263365 A JP S63263365A JP 62095316 A JP62095316 A JP 62095316A JP 9531687 A JP9531687 A JP 9531687A JP S63263365 A JPS63263365 A JP S63263365A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- valve body
- chamber
- valve chamber
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002441 reversible effect Effects 0.000 title claims description 18
- 239000012530 fluid Substances 0.000 claims description 27
- 238000005192 partition Methods 0.000 claims description 11
- 239000003507 refrigerant Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000004378 air conditioning Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/38—Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Temperature-Responsive Valves (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Multiple-Way Valves (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
童栗上皇肌■光互
本発明は、ヒートポンプ式冷暖房装置等において用いら
れる膨張弁に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to an expansion valve used in a heat pump air-conditioning device or the like.
l米互技街
ヒートポンプ式冷暖房装置においては、冷媒の流通方向
を逆転することによって冷暖房の切換えを行なうように
なっているが、暖房時において室外気温が低いと室外熱
交換器に着霜することがある。かかる場合の除霜方法と
して、従来は冷媒の流通方向を四方弁によって切換え、
室外熱交換器に高圧高温の冷媒を供給する方法を用いる
ことが多かった。しかし、この方法では室内熱交換器が
蒸発器となり不都合であるから、除霜時にも冷媒の流通
方向を転換せずに室内熱交換器に高温冷媒を供給したま
まで室外熱交換器に高温冷媒を供給する方法が提案され
ている。In the heat pump type air-conditioning system in the United States, heating and cooling are switched by reversing the flow direction of the refrigerant, but if the outdoor temperature is low during heating, frost may form on the outdoor heat exchanger. There is. Conventionally, the defrosting method in such cases is to switch the flow direction of the refrigerant using a four-way valve.
A method of supplying high-pressure, high-temperature refrigerant to an outdoor heat exchanger was often used. However, with this method, the indoor heat exchanger becomes an evaporator, which is inconvenient, so even during defrosting, the high-temperature refrigerant is supplied to the indoor heat exchanger without changing the flow direction of the refrigerant, and the high-temperature refrigerant is supplied to the outdoor heat exchanger. A method has been proposed to supply
かかる方法に関しては、第8図のように圧縮機Cの吐出
側の高温高圧冷媒の一部を電磁弁S3等が付いたバイパ
ス管を介して直接に室外熱交換器Aの前に導入するか、
または第9図のように膨張弁Eに併設した電磁弁St等
を介して室内熱−交換器B内の不完全凝縮のままの温い
冷媒を室外熱交換器Aへ導入するなどの手段があった。Regarding such a method, as shown in FIG. 8, a part of the high-temperature, high-pressure refrigerant on the discharge side of the compressor C is introduced directly into front of the outdoor heat exchanger A via a bypass pipe equipped with a solenoid valve S3, etc. ,
Alternatively, as shown in Fig. 9, there is a method such as introducing the incompletely condensed warm refrigerant in the indoor heat exchanger B into the outdoor heat exchanger A via a solenoid valve St attached to the expansion valve E. Ta.
しかし、これらの手段はいづれも配管や電磁弁等を増設
しなければならず、制御回路も複雑となって設備コスト
の上昇を免れることができなかった。However, all of these methods require additional piping, electromagnetic valves, etc., and the control circuit becomes complicated, resulting in an increase in equipment costs.
ゞ しよ°と る口 占
そこで本発明は従来の膨張弁と電磁弁の両方の機能を兼
ね備え、しかも正逆いづれの方向の冷媒の流れも同様に
制御できる制御弁を提供することを目的としたものであ
る。Therefore, it is an object of the present invention to provide a control valve that has both the functions of a conventional expansion valve and a solenoid valve, and can also control the flow of refrigerant in both the forward and reverse directions. This is what I did.
〔発明の構成〕
。 占を”ン るための
上述の目的を達成できる本発明の可逆膨張弁は、上部弁
室と下部弁室とを区画する隔壁に設けた弁座に対して該
上部弁室側から無段階に進退するニードル弁体を備えた
膨張弁において、主流体通路が開口する1対の弁シート
を該下部弁室の対向側壁に対称的に設け、該下部弁室内
には該弁シート間を遊動可能で且該開口の任意の一方を
閉止できる対称形状の弁体と、該弁体が該弁シートに対
し平行方向に遊動することを規制するピストン状の弁体
保持体であって該下部弁室内に上下摺動可能であるよう
に嵌合されたものと、該弁体保持体と該隔壁との間に形
成された背圧空間を拡大する方向に該弁体保持体を付勢
する手段とを設けると共に該付勢手段の作動終端におい
て該弁体の中心が該開口の共通軸線上に位置するよう構
成し、該下部弁室と該背圧空間とを連絡する漏洩通路で
あってその流通抵抗がニードル弁の全開時における流通
抵抗より大であるものおよび該上部弁室から主流体通路
のそれぞれへ向う流れのみを許容する副通路をそれぞれ
設けて構成されたものである。[Structure of the invention]. The reversible expansion valve of the present invention, which can achieve the above-mentioned purpose of controlling the valve, is capable of continuously expanding the valve seat from the upper valve chamber side to the valve seat provided on the partition wall that partitions the upper valve chamber and the lower valve chamber. In an expansion valve equipped with a needle valve body that moves forward and backward, a pair of valve seats into which a main fluid passage opens are provided symmetrically on opposite side walls of the lower valve chamber, and are movable between the valve seats within the lower valve chamber. and a symmetrical valve body that can close any one of the openings, and a piston-shaped valve body holder that restricts the valve body from floating in a direction parallel to the valve seat, and the valve body is located in the lower valve chamber. means for urging the valve body holder in a direction to expand a back pressure space formed between the valve body holder and the partition wall; and a leakage passage connecting the lower valve chamber and the back pressure space, configured such that the center of the valve body is located on the common axis of the opening at the end of operation of the biasing means, The flow resistance is greater than the flow resistance when the needle valve is fully open, and the flow resistance is greater than the flow resistance when the needle valve is fully opened.The flow resistance is greater than the flow resistance when the needle valve is fully opened, and the flow resistance is greater than the flow resistance when the needle valve is fully opened.The flow resistance is greater than the flow resistance when the needle valve is fully opened.The flow resistance is greater than the flow resistance when the needle valve is fully opened.The flow resistance is greater than the flow resistance when the needle valve is fully opened.
なお、本発明の弁におけるニードル弁体の進退はパルス
モータなどを組込むことによって無段階的に行なうこと
が好ましい。In addition, it is preferable that the needle valve body in the valve of the present invention be moved back and forth in a stepless manner by incorporating a pulse motor or the like.
このような本発明の可逆膨張弁においてピストン状の弁
体保持体によって区画された下部弁室内の弁シート側空
間と背圧空間とは、たとえば弁体保持体自身に設けた漏
洩通路や弁本体側に設けた漏洩通路、あるいは弁体保持
体と下部弁室側壁との隙間などの通路によって連絡され
ていて、弁体保持体が下部弁室内で上下に移動するとき
流体の圧縮が起らないことが必要である。そして更に、
この漏洩通路の流通抵抗は、ニードル弁の全開時の流通
抵抗よりも大きく、そしてこの漏洩通路を通って弁シー
ト側空間から背圧空間へ流体が流入するときの圧力差が
、背圧空間を拡大するように弁体保持体を付勢する手段
、たとえばスプリングの力に勝るように設定されること
が必要である。In such a reversible expansion valve of the present invention, the valve seat side space and back pressure space in the lower valve chamber partitioned by the piston-shaped valve body holder are, for example, leakage passages provided in the valve body holder itself or the valve body. They are connected by a leakage passage provided on the side or a passage such as a gap between the valve body holder and the side wall of the lower valve chamber, so that fluid compression does not occur when the valve body holder moves up and down within the lower valve chamber. It is necessary. And furthermore,
The flow resistance of this leak passage is greater than the flow resistance when the needle valve is fully open, and the pressure difference when fluid flows from the valve seat side space to the back pressure space through this leak passage causes the back pressure space to It is necessary that the force of a means for urging the valve body holder to expand, such as a spring, be set so as to overcome the force.
また、上部弁室と主流体通路のそれぞれとを連絡する副
通路には逆止弁が設けられてあって、主流体通路からの
流体は直接に上部弁室に流入することができないように
構成されている。Additionally, check valves are provided in the sub passages that communicate the upper valve chamber and each of the main fluid passages, and the configuration is such that fluid from the main fluid passage cannot directly flow into the upper valve chamber. has been done.
作二」且
このように構成された本発明の可逆膨張弁において、主
流体通路のいづれか一方より流体が流入するとき、ニー
ドル弁が閉止されていると下部弁室内は均等に加圧され
、弁体は流出側の弁シートに圧着されるから流体は流出
することができない。In the reversible expansion valve of the present invention configured as described above, when fluid flows in from either one of the main fluid passages and the needle valve is closed, the pressure inside the lower valve chamber is uniformly increased, and the valve chamber is evenly pressurized. Since the body is pressed against the valve seat on the outflow side, fluid cannot escape.
そこでニードル弁が少し開くと、流体は背圧空間を経て
上部弁室に入り、流出側の副通路を経て流出側の主流体
通路へ向う。更にニードル弁が開くと流量が増加するが
、ニードル弁が全開に近くなると背圧空間の圧力が大き
く低下し、それによって背圧空間が縮小する方向に弁体
保持体が移動する。このとき流出側弁シートに圧着され
ていた弁体は弁体保持体によって主流体通路開口からず
らされることとなり、主流体通路が開放される。Then, when the needle valve opens slightly, the fluid passes through the back pressure space, enters the upper valve chamber, passes through the secondary passage on the outflow side, and heads to the main fluid passage on the outflow side. Furthermore, when the needle valve opens, the flow rate increases, but when the needle valve approaches full opening, the pressure in the back pressure space decreases significantly, and as a result, the valve body holder moves in a direction that reduces the back pressure space. At this time, the valve element that has been press-fitted to the outflow side valve seat is displaced from the main fluid passage opening by the valve element holder, and the main fluid passage is opened.
このように本発明の可逆膨張弁はニードル弁がパイロ7
ト弁として作動をし、また構造が対称的となっていて、
流れの方向が逆であっても全く同じように作動する。In this way, the reversible expansion valve of the present invention has a needle valve with Pyro 7.
It operates as a gate valve and has a symmetrical structure.
It works exactly the same even if the direction of flow is reversed.
尖立拠 本発明の可逆膨張弁の例を第1図に示す。cusp stand An example of the reversible expansion valve of the present invention is shown in FIG.
1は弁本体であり、その上部には上蓋11が取付けられ
、内部に取り付けられた隔壁2と上M11との間には上
部弁室21が形成されている。隔壁2には弁座22が設
けてあり、モータ9によって駆動されるニードル弁体3
で開閉するようになっている。Reference numeral 1 denotes a valve body, an upper lid 11 is attached to the upper part of the valve body, and an upper valve chamber 21 is formed between a partition wall 2 attached inside and an upper M11. A valve seat 22 is provided on the partition wall 2, and a needle valve body 3 is driven by a motor 9.
It is designed to open and close with.
9は弁本体1の上部に取付けられた電動式アクチュエー
タである。91はニードル弁体3が貫通できるように上
蓋11に植立された雄ねじ筒であり、92は雄ねじ筒9
1に回動自在に螺着されたロータである。94はシール
ドチューブ93の外側に取付けられたステータコイルで
ある。ロータ92とニードル弁体3の上端部31とは回
転自在に結合されていて、ロータ92は回転するに伴っ
て雄ねじ筒91に添った軸方向移動を起すが、この軸方
向移動はばね95によって遊びがないようにニードル弁
体3に伝えられ、ニードル弁体3はロータ92の回転量
に比例して進退する。9 is an electric actuator attached to the upper part of the valve body 1. Reference numeral 91 denotes a male threaded cylinder installed in the upper lid 11 so that the needle valve body 3 can pass therethrough, and 92 denotes a male threaded cylinder 9.
A rotor is rotatably screwed onto the rotor. 94 is a stator coil attached to the outside of the shield tube 93. The rotor 92 and the upper end 31 of the needle valve body 3 are rotatably connected, and as the rotor 92 rotates, it moves in the axial direction along the male threaded cylinder 91. This axial movement is caused by the spring 95. This is transmitted to the needle valve body 3 without play, and the needle valve body 3 advances and retreats in proportion to the amount of rotation of the rotor 92.
弁本体1の下部には主流体通路a、bが開口する弁シー
ト4a 、4bが弁室側壁面に対向して設けられている
。5は球形の弁体であって、弁シート4a、4bの任意
の一方の開口を閉止することができる。6は弁室内を上
下に摺動することができるピストン状の弁体保持体であ
り、その下部には弁体5の弁シー)4a 、4bの間の
遊動のみが自由であるガイド枠61が形成されている。Valve seats 4a and 4b are provided in the lower part of the valve body 1, facing the valve chamber side wall surface, through which the main fluid passages a and b open. Reference numeral 5 denotes a spherical valve body, which can close any one opening of the valve seats 4a, 4b. Reference numeral 6 denotes a piston-shaped valve body holder that can slide up and down within the valve chamber, and a guide frame 61 is provided at the bottom of the body, which allows the valve body 5 to freely move only between the valve seats 4a and 4b. It is formed.
従って弁体5はガイド枠61の中で遊動範囲が規制され
ていて、弁シート面と平行方向には遊動できない、弁体
保持体6には、隔壁2との間に形成された背圧室13と
下部弁室12とを連絡するための細い漏洩通路62が設
けられている。7は背圧室13内に設けられたスプリン
グであり、スプリングの作動終端において弁体保持体6
が押されて弁室底面に当接したとき、弁体5の中心が弁
シート上の開口の共通軸線上に位置するように構成され
ている。Therefore, the movement range of the valve body 5 is restricted within the guide frame 61 and cannot move in the direction parallel to the valve seat surface.The valve body holder 6 has a back pressure chamber formed between it and the partition wall 2. 13 and the lower valve chamber 12 is provided with a narrow leakage passage 62. 7 is a spring provided in the back pressure chamber 13, and the valve body holder 6
When the valve body 5 is pushed and comes into contact with the bottom surface of the valve chamber, the center of the valve body 5 is positioned on the common axis of the opening on the valve seat.
また、1aは上部弁室21と主流体通路aとを連絡する
ように弁本体l内に穿設された副通路であり、8aは副
通路la中に設けられた逆止弁で主流体通路aから上部
弁室21へ向う流れを阻止するものである。■bおよび
8bは、同様に上部弁室21から主流体通路すへ向う流
れのみを許容する、それぞれ副通路および逆止弁である
。Further, 1a is a sub passage bored in the valve main body l so as to communicate the upper valve chamber 21 and the main fluid passage a, and 8a is a check valve provided in the sub passage la, and 8a is a check valve provided in the sub passage la. This prevents the flow from a toward the upper valve chamber 21. (2) b and 8b are a sub passage and a check valve, respectively, which similarly allow only flow from the upper valve chamber 21 toward the main fluid passage.
このように構成された可逆膨張弁を暖冷房用空調回路に
組込んだ例を第2図に示す0図におシ)てAは室外熱交
換器、Bは室内熱交換器、Cは圧縮機、Dは四方切換弁
、EVは本発明の可逆膨張弁である。An example in which the reversible expansion valve configured as described above is incorporated into a heating/cooling air conditioning circuit is shown in Figure 2 (0), where A is an outdoor heat exchanger, B is an indoor heat exchanger, and C is a compressor. , D is a four-way switching valve, and EV is a reversible expansion valve of the present invention.
第2図の空調回路における本発明の可逆膨張弁の作動の
様子を第3〜6図によって説明する。The operation of the reversible expansion valve of the present invention in the air conditioning circuit of FIG. 2 will be explained with reference to FIGS. 3 to 6.
第3図は通常の冷房運転時における状態を示すものであ
る。室外熱交換器Aから主流体通路aを通って流入する
冷媒は一下部弁室12内に入り、漏洩通路62を経て背
圧室13にも入るから、弁体保持体6の上面と下面との
圧力が均衡し、弁体保持体6はスプリング7の力によっ
て押し下げられ、弁体5は弁シー)4bの開口を閉止し
た位置を保つ。従って、背圧室13内の冷媒はニードル
弁体3によって流量を制限されつつ上部弁室21に入り
、逆止弁8bに阻止されることなく副通路1bを経て主
流体通路すへ向うが、副通路la内の冷媒は逆止弁8a
に阻止されて上部弁室21へは入れない。FIG. 3 shows the state during normal cooling operation. The refrigerant flowing from the outdoor heat exchanger A through the main fluid passage a enters the lower valve chamber 12 and also enters the back pressure chamber 13 through the leakage passage 62, so that the upper and lower surfaces of the valve body holder 6 and The pressures are balanced, the valve element holder 6 is pushed down by the force of the spring 7, and the valve element 5 maintains the position where the opening of the valve seat 4b is closed. Therefore, the refrigerant in the back pressure chamber 13 enters the upper valve chamber 21 while its flow rate is restricted by the needle valve body 3, and heads to the main fluid passage via the sub passage 1b without being blocked by the check valve 8b. The refrigerant in the sub passage la is checked by the check valve 8a.
It is prevented from entering the upper valve chamber 21.
第4図は冷房運転開始時などにおいて冷媒の供給を増加
させる必要がある場合の状態を示すものである。室外熱
交換器Aからの冷媒の圧力が下部弁室12と背圧室13
にかかっているときにニードル弁体3の開度をあげてゆ
くと、漏洩通路62の流通抵抗のために背圧室13の圧
力が低下し、背圧室13と下部弁室12の間の差圧がス
プリング7の押圧力に勝るに至ったとき弁体保持体6が
押上げられ、従って弁体5が弁シート4bからずれる。FIG. 4 shows a situation where it is necessary to increase the supply of refrigerant, such as at the start of cooling operation. The pressure of the refrigerant from the outdoor heat exchanger A is applied to the lower valve chamber 12 and the back pressure chamber 13.
When the opening degree of the needle valve body 3 is increased while the valve is in the lower valve chamber, the pressure in the back pressure chamber 13 decreases due to the flow resistance of the leak passage 62, and the pressure between the back pressure chamber 13 and the lower valve chamber 12 decreases. When the differential pressure exceeds the pressing force of the spring 7, the valve element holder 6 is pushed up, and the valve element 5 is therefore displaced from the valve seat 4b.
このとき冷媒は主流体通路aから下部弁室12を経て主
流体通路すに流出することになり、室内熱交換器Bには
大量の冷媒が供給できる。At this time, the refrigerant flows out from the main fluid passage a through the lower valve chamber 12 and into the main fluid passage, and a large amount of refrigerant can be supplied to the indoor heat exchanger B.
第5図は通常の暖房運転時における状態を示すものであ
る。このとき、冷媒は室内熱交換器Bから主流体通路す
を通って流入し、下部弁室12、漏洩通路62、背圧室
13、弁座22開口、上部弁室21、副通路1a、主流
体通路aを順に経て室外熱交換器Aに向う。この流れの
状態は第3図における通常の冷房運転時と全く対称的で
ある。FIG. 5 shows the state during normal heating operation. At this time, the refrigerant flows from the indoor heat exchanger B through the main fluid passage, and flows through the lower valve chamber 12, the leakage passage 62, the back pressure chamber 13, the opening of the valve seat 22, the upper valve chamber 21, the sub passage 1a, and the main fluid passage. It passes through the body passage a in order and heads for the outdoor heat exchanger A. This flow state is completely symmetrical to that during normal cooling operation in FIG.
第6図は暖房運転中に室外熱交換器の除霜をする場合の
状態を示すものである。このときは、第4図における操
作と同様に、ニードル弁体3の開度をあげることにより
弁体保持体6が押上げられ、弁体5がずれて主流体通路
aが開放される。従って、室内熱交換器B内の不完全凝
縮状態の高温冷媒がそのまま室外熱交換器A内に流入し
、除霜が行われる。FIG. 6 shows a state in which the outdoor heat exchanger is defrosted during heating operation. At this time, similar to the operation in FIG. 4, by increasing the opening degree of the needle valve body 3, the valve body holder 6 is pushed up, the valve body 5 is displaced, and the main fluid passage a is opened. Therefore, the incompletely condensed high-temperature refrigerant in the indoor heat exchanger B flows directly into the outdoor heat exchanger A, and defrosting is performed.
このような本発明の可逆膨張弁の流量特性は第7図に示
す如くであり、流体の方向が順逆いづれでも同様に制御
できるものである。The flow rate characteristics of the reversible expansion valve of the present invention are as shown in FIG. 7, and can be controlled in the same manner whether the direction of the fluid is forward or reverse.
本発明の可逆膨張弁は、低流量における精密な流量制御
ができると共に大流量を開閉する能力をも備えているか
ら、暖房時の室外熱交換器の除霜をするために冷凍回路
を複雑化する不利が避けられるばかりでなく、運転開始
時に大量の冷媒を供給して急速かつ高出力の運転も可能
である。The reversible expansion valve of the present invention is capable of precise flow control at low flow rates and also has the ability to open and close large flow rates, making the refrigeration circuit complicated in order to defrost the outdoor heat exchanger during heating. Not only can such disadvantages be avoided, but also rapid and high-output operation is possible by supplying a large amount of refrigerant at the start of operation.
このような弁特性はいづれの流通方向でも同じであるか
ら装置に組付ける際に方向性を考慮する必要がない上に
、冷房、暖房いづれの場合でも同様な急速運転が可能で
ある利点がある。These valve characteristics are the same regardless of the flow direction, so there is no need to consider the direction when assembling into equipment, and there is an advantage that the same rapid operation is possible for both cooling and heating. .
第1図は本発明の可逆膨張弁の例の断面図、第2図は本
発明の可逆膨張弁を使用した冷暖房用冷凍回路の例、
第3〜6図は本発明の可逆膨張弁の作動状況を説明する
それぞれの断面図、
第7図は本発明の可逆膨張弁の流量特性の例のグラフ、
第8〜9図は従来の冷暖房用冷凍回路の例である。
1・・・弁本体、a、b・・・主流体通路、la、lb
・・・副通路、11・・・上蓋、12・・・下部弁室、
13・・・背圧室、2・・・隔壁、21・・・上部弁室
、22・・・弁座、3・・・ニードル弁体、4a 、4
b・・・弁シート、5・・・弁体、6・・・弁体保持体
、61・・・ガイド枠、62・・・漏洩通路、7・・・
スプリング、8a 、8b・・・逆止弁、9・・・アク
チュエータ、91・・・雄ねじ筒、92・・・ロータ、
95・:・ばね。
特許出願人 株式会社鷺宮製作所
第1因
第2図
第4図 第3図
第6図 第5図
第8図Fig. 1 is a sectional view of an example of the reversible expansion valve of the present invention, Fig. 2 is an example of a cooling/heating refrigeration circuit using the reversible expansion valve of the present invention, and Figs. 3 to 6 are operations of the reversible expansion valve of the present invention. 7 is a graph showing an example of the flow rate characteristics of the reversible expansion valve of the present invention, and FIGS. 8 and 9 are examples of a conventional cooling/heating refrigeration circuit. 1... Valve body, a, b... Main fluid passage, la, lb
...Sub-passage, 11...Upper lid, 12...Lower valve chamber,
13... Back pressure chamber, 2... Partition wall, 21... Upper valve chamber, 22... Valve seat, 3... Needle valve body, 4a, 4
b... Valve seat, 5... Valve body, 6... Valve body holder, 61... Guide frame, 62... Leak passage, 7...
Spring, 8a, 8b... Check valve, 9... Actuator, 91... Male thread cylinder, 92... Rotor,
95: Spring. Patent Applicant: Saginomiya Seisakusho Co., Ltd. No. 1, Figure 2, Figure 4, Figure 3, Figure 6, Figure 5, Figure 8
Claims (1)
して該上部弁室側から無段階に進退するニードル弁体を
備えた膨張弁において、主流体通路が開口する1対の弁
シートを該下部弁室の対向側壁に対称的に設け、該下部
弁室内には該弁シート間を遊動可能で且該開口の任意の
一方を閉止できる対称形状の弁体と、該弁体が該弁シー
トに対し平行方向に遊動することを規制するピストン状
の弁体保持体であって該下部弁室内に上下摺動可能であ
るように嵌合されたものと、該弁体保持体と該隔壁との
間に形成された背圧空間を拡大する方向に該弁体保持体
を付勢する手段とを設けると共に該付勢手段の作動終端
において該弁体の中心が該開口の共通軸線上に位置する
よう構成し、該下部弁室と該背圧空間とを連絡する漏洩
通路であってその流通抵抗がニードル弁の全開時におけ
る流通抵抗より大であるものおよび該上部弁室から主流
体通路のそれぞれへ向う流れのみを許容する副通路をそ
れぞれ設けてなる可逆膨張弁。In an expansion valve equipped with a needle valve body that moves steplessly forward and backward from the upper valve chamber side with respect to a valve seat provided in a partition wall that partitions an upper valve chamber and a lower valve chamber, a pair of valve bodies each having a main fluid passage open therein are provided. Valve seats are provided symmetrically on opposite side walls of the lower valve chamber, and a symmetrically shaped valve body that is movable between the valve seats and can close any one of the openings is provided in the lower valve chamber, and the valve body. a piston-shaped valve body holder that restricts free movement in a direction parallel to the valve seat, and is fitted so as to be vertically slidable within the lower valve chamber, and the valve body holder and a means for biasing the valve body holder in a direction to expand the back pressure space formed between the partition wall and the partition wall, and at the end of the operation of the biasing means, the center of the valve body is located in common with the opening. A leakage passage configured to be located on the axis and communicating between the lower valve chamber and the back pressure space, the flow resistance of which is greater than the flow resistance when the needle valve is fully open, and a leakage passage from the upper valve chamber. A reversible expansion valve that is provided with sub passages that allow flow only toward each of the main fluid passages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62095316A JPH07104079B2 (en) | 1987-04-20 | 1987-04-20 | Reversible expansion valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62095316A JPH07104079B2 (en) | 1987-04-20 | 1987-04-20 | Reversible expansion valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63263365A true JPS63263365A (en) | 1988-10-31 |
JPH07104079B2 JPH07104079B2 (en) | 1995-11-13 |
Family
ID=14134347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62095316A Expired - Lifetime JPH07104079B2 (en) | 1987-04-20 | 1987-04-20 | Reversible expansion valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07104079B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11344264A (en) * | 1998-04-03 | 1999-12-14 | Denso Corp | Freezing cycle device |
WO2017145619A1 (en) * | 2016-02-26 | 2017-08-31 | 株式会社デンソー | Expansion valve and refrigeration cycle |
-
1987
- 1987-04-20 JP JP62095316A patent/JPH07104079B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11344264A (en) * | 1998-04-03 | 1999-12-14 | Denso Corp | Freezing cycle device |
WO2017145619A1 (en) * | 2016-02-26 | 2017-08-31 | 株式会社デンソー | Expansion valve and refrigeration cycle |
Also Published As
Publication number | Publication date |
---|---|
JPH07104079B2 (en) | 1995-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4644760A (en) | Reversible four-way valve for reversible refrigerating cycle | |
JPH0324595B2 (en) | ||
US6076366A (en) | Refrigerating cycle system with hot-gas bypass passage | |
JP6530991B2 (en) | Direct acting solenoid valve and four-way switching valve equipped with the same as a pilot valve | |
JP4056378B2 (en) | Differential pressure valve | |
JPS63263365A (en) | Reversible expansion valve | |
US5131240A (en) | Air conditioning apparatus | |
JP2645854B2 (en) | Two-stage expansion valve | |
JP2516626B2 (en) | Two-stage pressure reducing valve | |
JP2549086Y2 (en) | Reversible valve | |
JPH0419407Y2 (en) | ||
JPH0424364Y2 (en) | ||
JP3256270B2 (en) | Reversible valve | |
JPS63219973A (en) | Three-way solenoid valve | |
JPH04116360A (en) | Five way reversing valve for reversible refrigeration cycle | |
JP2761414B2 (en) | Reversible valve | |
JPH0250060A (en) | Five-way reversible valve | |
JPH1114164A (en) | Freezing cycle with bypass pipeline | |
JP2580210B2 (en) | Five-way reversing valve | |
JPH0547754B2 (en) | ||
JPS5934907B2 (en) | flow path switching valve | |
JPH0436318B2 (en) | ||
JPH0562275B2 (en) | ||
JPS62141469A (en) | Heat pump type air conditioner | |
JPH0410528Y2 (en) |