JP2516626B2 - Two-stage pressure reducing valve - Google Patents

Two-stage pressure reducing valve

Info

Publication number
JP2516626B2
JP2516626B2 JP62110850A JP11085087A JP2516626B2 JP 2516626 B2 JP2516626 B2 JP 2516626B2 JP 62110850 A JP62110850 A JP 62110850A JP 11085087 A JP11085087 A JP 11085087A JP 2516626 B2 JP2516626 B2 JP 2516626B2
Authority
JP
Japan
Prior art keywords
valve
chamber
valve chamber
passage
fluid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62110850A
Other languages
Japanese (ja)
Other versions
JPS63275865A (en
Inventor
敏博 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP62110850A priority Critical patent/JP2516626B2/en
Publication of JPS63275865A publication Critical patent/JPS63275865A/en
Application granted granted Critical
Publication of JP2516626B2 publication Critical patent/JP2516626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は、ヒートポンプ式冷暖房装置等において用い
られる流量制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a flow control valve used in a heat pump type air conditioner or the like.

従来の技術 ヒートポンプ式冷暖房装置においては、冷媒の流通方
向を逆転することによって冷暖房の切換えを行うように
なっているが、除湿をも行なおうとすると、室内熱交換
器を冷却用と再加熱用の2個に分割して、その間に膨張
器を設けるような冷媒回路を構成する必要がある。かか
る冷媒回路の改良例が特開昭58-106369号に開示されて
いる(第7図)。この回路においては、室外熱交換器c
と室内熱交換器bとの間に可逆流通性を有する膨張弁f
を設け、室内熱交換器a,b間にキャピラリーチューブh
と二方電磁弁gとを並列として設けてある。そして、通
常の冷房または暖房時には電磁弁gを開いて室内熱交換
器a,bを共に冷却または加熱用として用い、除湿時には
電磁弁gを閉じて室内熱交換器bを加熱用にまた室内熱
交換器aを冷却用に用いるものである。dは圧縮機、e
は四方弁である。
2. Description of the Related Art In a heat pump type cooling and heating device, switching between cooling and heating is performed by reversing the flow direction of the refrigerant, but when dehumidification is also attempted, the indoor heat exchanger is cooled and reheated. It is necessary to configure a refrigerant circuit in which the refrigerant circuit is divided into two and an expander is provided therebetween. An improved example of such a refrigerant circuit is disclosed in JP-A-58-106369 (Fig. 7). In this circuit, the outdoor heat exchanger c
Expansion valve f having reversible flow between the indoor heat exchanger b and
Is installed, and the capillary tube h is placed between the indoor heat exchangers a and b.
And a two-way solenoid valve g are provided in parallel. Then, during normal cooling or heating, the electromagnetic valve g is opened to use both the indoor heat exchangers a and b for cooling or heating, and when dehumidifying, the electromagnetic valve g is closed to heat the indoor heat exchanger b to heat the indoor heat exchanger b. The exchanger a is used for cooling. d is a compressor, e
Is a four-way valve.

ところが、このような回路における電磁弁gとして
は、冷房または暖房時の冷媒の流通を妨げないために大
型のものである必要がある。そしてまた、膨張器として
キャピラリーチューブhを用いているから除湿時に室温
の上昇や低下を制御することができず、除湿と同時に室
温の調節をしようとするとキャピラリーチューブの代り
に少流量の多段制御または連続的制御ができる弁、たと
えば電動式膨張弁などを用いる必要がある。
However, the solenoid valve g in such a circuit needs to be large so as not to hinder the flow of the refrigerant during cooling or heating. Further, since the capillary tube h is used as the expander, it is not possible to control the rise and fall of the room temperature during dehumidification, and if it is attempted to adjust the room temperature at the same time as dehumidification, instead of the capillary tube, multi-step control with a small flow rate or It is necessary to use a valve that can be continuously controlled, such as an electric expansion valve.

解決しようとする問題点 上述のように、冷暖房および除湿ができる従来の空調
装置において除湿時にも快適な環境を実現するため多少
の冷却や加温をしようとすると、キャピラリーチューブ
に代えて、大型で高価な制御弁を取付けなければなら
ず、複数の制御弁の作動を同期作動させる必要があるか
ら必然的に制御装置が複雑となり、大型となると共にコ
ストが上昇するという問題がある。
Problems to be Solved As described above, in the conventional air conditioner capable of heating and cooling and dehumidifying, if some cooling or heating is attempted in order to achieve a comfortable environment even during dehumidification, instead of the capillary tube, a large-sized Since an expensive control valve must be attached and the operations of a plurality of control valves must be operated synchronously, the control device inevitably becomes complicated, becomes large in size, and costs increase.

そこで本発明は、このような2個の室内熱交換器の間
に設けられて冷媒の流量制御を行う装置の機能を高める
と共にコンパクト化し、また同時にコスト上昇を防ぐこ
とを目的としたものであり、またかかる目的に合致した
小型の膨張弁兼用の流量制御弁を提供しようとするもの
である。
Therefore, the present invention is intended to improve the function of a device that is provided between two such indoor heat exchangers and that controls the flow rate of the refrigerant, to make the device compact, and at the same time to prevent an increase in cost. Another object of the present invention is to provide a small-sized flow rate control valve that also serves as an expansion valve, which meets such a purpose.

〔発明の構成〕[Structure of Invention]

問題点を解決するための手段 前記のような本発明の目的は、上部弁室と下部弁室と
を区画する隔壁に設けた弁座に対し該上部弁室側から無
段階に進退するニードル弁体を備えた制御弁において、
第1流体通路と連通する該下部弁室には第2流体通路に
通ずる主弁座を設け、該主弁座に向けてばね付勢された
ピストン状の主弁体を該下部弁室内に上下摺動可能に嵌
設して該隔壁と該主弁体との間に背圧空間を形成し、該
下部弁室と該背圧空間とを連絡する漏洩通路であってそ
の流通抵抗がニードル弁の全開時における流通抵抗より
大であるものおよび該上部弁室と該第2流体通路とを連
絡する副通路を設けてなることを特徴とする二段式減圧
弁によって達成される。
Means for Solving the Problems As described above, the object of the present invention is to provide a needle valve that advances and retracts steplessly from the upper valve chamber side with respect to a valve seat provided in a partition that divides the upper valve chamber and the lower valve chamber. In a control valve with a body,
A main valve seat that communicates with the second fluid passage is provided in the lower valve chamber that communicates with the first fluid passage, and a piston-shaped main valve body that is spring-biased toward the main valve seat is vertically moved into the lower valve chamber. A leak passage that is slidably fitted to form a back pressure space between the partition wall and the main valve body, and connects the lower valve chamber and the back pressure space, and the flow resistance is a needle valve. Is greater than the flow resistance at the time of full opening and a sub passage for connecting the upper valve chamber and the second fluid passage is provided.

なお、本発明の弁におけるニードル弁体の進退はパル
スモータなどを組込むことによって無段階的に行うこと
が好ましい。
It is preferable that the needle valve element of the valve of the present invention is advanced and retracted steplessly by incorporating a pulse motor or the like.

また、下部弁室と背圧空間とを連絡する漏洩通路はた
とえば主弁体を貫いて設けてあっても、また弁本体側に
設けてあってもよく、あるいは主弁体と下部弁室側壁と
の隔間などとして設けられたものであってもよい。かか
る漏洩通路の流通抵抗はニードル弁の全開時の流通抵抗
より大きく、従ってニードル弁の全開時には背圧空間内
の圧力が上部弁室、ひいては第2流体通路の圧力と殆ど
等しくなるように構成されていることが望ましい。
The leakage passage connecting the lower valve chamber and the back pressure space may be provided, for example, through the main valve body or on the valve body side, or the main valve body and the lower valve chamber side wall. It may be provided as a gap from the. The flow resistance of the leak passage is larger than the flow resistance of the needle valve when it is fully opened. Therefore, when the needle valve is fully opened, the pressure in the back pressure space is almost equal to the pressure of the upper valve chamber, and thus the pressure of the second fluid passage. Is desirable.

作用 このように構成された本発明の二段式減圧弁は、第1
流体通路から流体が流入するときは下部弁室内が高圧と
なり、ニードル弁が閉止していれば下部弁室と背圧空間
とは漏洩通路によって均圧化しているので、ばねによっ
て閉じられている主弁は流体圧力によって更に強く閉止
される。そして、この状態からニードル弁が少しずつ開
くと、流体は背圧空間を経て上部弁室に入り、副通路を
経て第2流体通路へ向かう。
The two-stage pressure reducing valve of the present invention thus configured has the first
When the fluid flows in from the fluid passage, the pressure in the lower valve chamber becomes high, and when the needle valve is closed, the lower valve chamber and the back pressure space are pressure-equalized by the leakage passage, and therefore are closed by the spring. The valve is closed more strongly by the fluid pressure. Then, when the needle valve is opened little by little from this state, the fluid enters the upper valve chamber through the back pressure space, and proceeds to the second fluid passage through the sub passage.

更にニードル弁が開くと流量が増加するが、ニードル
弁が全開に近くなると背圧空間の圧力が大きく低下し、
主弁体は下部弁室内の流体圧力によってばねを圧縮しな
がら押上げられ、主弁が開かれる。
When the needle valve opens further, the flow rate increases, but when the needle valve approaches full opening, the pressure in the back pressure space drops significantly,
The main valve body is pushed up while compressing the spring by the fluid pressure in the lower valve chamber, and the main valve is opened.

一方、第2流体通路から流体が流入するときはニード
ル弁を閉にすることにより主弁体が押し上げられて、殆
んど制限を受けることなく第1流体通路に流出する。
On the other hand, when the fluid flows from the second fluid passage, the needle valve is closed to push up the main valve body, and the fluid flows out to the first fluid passage with almost no restriction.

実施例 本発明の二段式減圧弁の例を第1図に示す。Example An example of the two-stage pressure reducing valve of the present invention is shown in FIG.

1は弁本体であり、その上部には上蓋11が取付けら
れ、内部に取り付けられた隔壁2と上蓋11との間には上
部弁室21が形成されている。隔壁2には弁座22が設けて
あり、アクチュエータ8によって駆動されるニードル弁
体3で開閉するようになっている。
Reference numeral 1 denotes a valve main body, an upper lid 11 is attached to an upper portion thereof, and an upper valve chamber 21 is formed between the partition 2 and the upper lid 11 attached inside. A valve seat 22 is provided on the partition wall 2 and is opened and closed by a needle valve element 3 driven by an actuator 8.

8は弁本体1の上部に取付けられた電動式アクチュエ
ータである。81はニードル弁体3が貫通できるように上
蓋11に植立された雄ねじ筒であり、82は雄ねじ筒81に回
動自在に螺着されたロータである。83はシールドチュー
ブ84の外側に取付けられたステータコイルである。ロー
タ82とニードル弁体3の上端部31とは回転自在に結合さ
れていて、ロータ82は回転するに従って雄ねじ筒81に添
った軸方向移動を起すが、この軸方向移動はばね85によ
って遊びがないようにニードル弁体3に伝えられ、ニー
ドル弁体3はロータ82の回転量に比例して進退する。
Reference numeral 8 is an electric actuator attached to the upper portion of the valve body 1. Reference numeral 81 is a male screw cylinder erected in the upper lid 11 so that the needle valve body 3 can penetrate therethrough, and 82 is a rotor rotatably screwed to the male screw cylinder 81. Reference numeral 83 is a stator coil attached to the outside of the shield tube 84. The rotor 82 and the upper end portion 31 of the needle valve body 3 are rotatably connected, and the rotor 82 causes axial movement along the male screw cylinder 81 as it rotates, but this axial movement is prevented by the spring 85. It is transmitted to the needle valve body 3 so as not to move, and the needle valve body 3 advances and retreats in proportion to the rotation amount of the rotor 82.

弁本体1内の下部弁室12の側壁には第1流体通路4が
開口しており、また底壁上面には第2流体通路5に通ず
る主弁座13が形成されている。そして、第2流体通路5
との接続部14と上部弁室21とを連絡する副通路15が設け
てある。
A first fluid passage 4 is opened in the side wall of the lower valve chamber 12 in the valve body 1, and a main valve seat 13 communicating with the second fluid passage 5 is formed in the upper surface of the bottom wall. Then, the second fluid passage 5
A sub passage 15 is provided to connect the connection portion 14 with the upper valve chamber 21.

6は下部弁室12内を上下に摺動することができるピス
トン状の主弁体であり、61は上方の背圧室16と下方の下
部弁室12とを連絡する漏洩通路である。また、7は背圧
室16内に設けられた弁ばねであって、主弁体6を主弁座
13に向けて付勢している。
Reference numeral 6 is a piston-shaped main valve body that can slide up and down in the lower valve chamber 12, and 61 is a leak passage that connects the upper back pressure chamber 16 and the lower lower valve chamber 12. Reference numeral 7 is a valve spring provided in the back pressure chamber 16 and is used to connect the main valve body 6 to the main valve seat.
We are pushing toward 13.

このように構成された二段式減圧弁を冷暖房用空調回
路に組込んだ例を第2図に示す。図において、a,bは室
内熱交換器、cは室外熱交換器、dは圧縮機、eは四方
切換弁、fは膨張弁、vは本発明の二段式減圧弁であ
る。
FIG. 2 shows an example in which the two-stage pressure reducing valve configured as described above is incorporated in an air conditioning circuit for cooling and heating. In the figure, a and b are indoor heat exchangers, c is an outdoor heat exchanger, d is a compressor, e is a four-way switching valve, f is an expansion valve, and v is a two-stage pressure reducing valve of the present invention.

第2図の空調回路における本発明の二段式減圧弁vの
作動の様子を第3〜5図によって説明する。
The operation of the two-stage pressure reducing valve v of the present invention in the air conditioning circuit of FIG. 2 will be described with reference to FIGS.

第3図は暖房運転時の状態を示すものであり、圧縮機
dから送られた高温冷媒は室内熱交換器aから第2流体
通路5を通って流入するが、このとき主弁体6を押し上
げて下部弁室12に入り、直ちに第1流体通路4を経て室
内熱交換器bに向う。室内熱交換器aおよびbで放熱凝
縮した冷媒は膨張弁fを通って室外熱交換器cで蒸発
し、圧縮機dへ戻る。この際の二段式減圧弁vの作動は
ニードル弁が閉の状態で、大量の冷媒を流通させること
ができる。
FIG. 3 shows the state during the heating operation, in which the high temperature refrigerant sent from the compressor d flows from the indoor heat exchanger a through the second fluid passage 5, and at this time, the main valve body 6 is It is pushed up and enters the lower valve chamber 12, and immediately goes to the indoor heat exchanger b through the first fluid passage 4. The refrigerant heat-radiated and condensed in the indoor heat exchangers a and b passes through the expansion valve f, evaporates in the outdoor heat exchanger c, and returns to the compressor d. At this time, the operation of the two-stage pressure reducing valve v allows a large amount of refrigerant to flow while the needle valve is closed.

第4図は通常の冷房運転時の状態を示すものである。
膨張弁fから室内熱交換器bに供給された冷媒は第1流
体通路4を通って下部弁室12に流入するが、ニードル弁
体3が弁座22を開放しているので上部弁室21と背圧室16
とは均圧化しており、漏洩通路61を通って背圧室16に流
入した冷媒は背圧室16の内圧を高めることができないま
まに上部弁室21から副通路15を経て第2流体通路5に向
う。従って、主弁体6は下部弁室12内の冷媒の圧力によ
り押上げられ、大部分の冷媒が下部弁室12から直ちに第
2流体通路5へ向い、室内熱交換器aに入る。
FIG. 4 shows a state during normal cooling operation.
The refrigerant supplied from the expansion valve f to the indoor heat exchanger b flows into the lower valve chamber 12 through the first fluid passage 4, but since the needle valve element 3 opens the valve seat 22, the upper valve chamber 21 And back pressure chamber 16
Is equalized, and the refrigerant flowing into the back pressure chamber 16 through the leakage passage 61 cannot increase the internal pressure of the back pressure chamber 16 and passes from the upper valve chamber 21 through the sub passage 15 to the second fluid passage. Go to 5. Therefore, the main valve body 6 is pushed up by the pressure of the refrigerant in the lower valve chamber 12, and most of the refrigerant immediately goes from the lower valve chamber 12 to the second fluid passage 5 and enters the indoor heat exchanger a.

第5図は冷房運転時に除湿をしようとする状態を示す
ものである。第4図の状態からニードル弁を閉じてゆく
と背圧室16から上部弁室21へ流れる冷媒が減少し、背圧
室16内の圧力が上昇する。このとき弁ばね7の主弁体6
を押下げる力が、下部弁室12と背圧室16との冷媒の圧力
差による主弁体6を押上げる力に勝るに到り、主弁体6
は主弁座13を閉止する。その結果、第1流体通路4から
流入した冷媒は、すべてが下部弁室12から漏洩通路61、
背圧室16、弁座22上部弁室21、副通路15を順に経て第2
流体通路5から室内熱交換器aへ向うことになる。
FIG. 5 shows a state in which dehumidification is attempted during the cooling operation. When the needle valve is closed from the state shown in FIG. 4, the refrigerant flowing from the back pressure chamber 16 to the upper valve chamber 21 decreases and the pressure in the back pressure chamber 16 rises. At this time, the main valve body 6 of the valve spring 7
The force for pushing down exceeds the force for pushing up the main valve body 6 due to the pressure difference of the refrigerant between the lower valve chamber 12 and the back pressure chamber 16,
Closes the main valve seat 13. As a result, all the refrigerant flowing from the first fluid passage 4 leaks from the lower valve chamber 12 to the leakage passage 61,
The back pressure chamber 16, the valve seat 22, the upper valve chamber 21, and the auxiliary passage 15 are sequentially passed to the second
It goes from the fluid passage 5 to the indoor heat exchanger a.

これと同時に膨張弁fを開くと、室外熱交換器cで凝
縮し切れなかった温かい冷媒が室内熱交換器bに流入
し、室内熱交換器bは加温に、また室内熱交換器aは冷
却に働いて除湿が行われる。そして更に、ニードル弁の
開度を調節することによって、除湿中の運転状態を冷房
気味あるいは暖房気味に変化させることもできる。
At the same time, when the expansion valve f is opened, warm refrigerant that has not been completely condensed in the outdoor heat exchanger c flows into the indoor heat exchanger b, the indoor heat exchanger b is heated, and the indoor heat exchanger a is Dehumidifying works by cooling. Furthermore, by adjusting the opening of the needle valve, the operating state during dehumidification can be changed to cooling or heating.

このような本発明の二段式減圧弁vの流量特性は第6
図に示す如くであり、また、逆方向の流れは制限されな
いものである。
The flow rate characteristic of the two-stage pressure reducing valve v of the present invention as described above is the sixth.
As shown, the flow in the opposite direction is unrestricted.

〔発明の効果〕〔The invention's effect〕

本発明の二段式減圧弁は低流量では精密な流量制御が
でき、また流量の制御範囲を越えるとパイロット作動に
より高流量に切り換わるように機能する。従って、除湿
機能付きの冷暖房装置において2個の室内熱交換器の中
間に制御弁として設置することにより、高機能で経済的
な装置を構成できるものである。
The two-stage pressure reducing valve of the present invention can perform precise flow rate control at a low flow rate, and functions to switch to a high flow rate by pilot operation when the flow rate control range is exceeded. Therefore, by installing a control valve in the middle of two indoor heat exchangers in a cooling and heating apparatus with a dehumidifying function, a highly functional and economical apparatus can be constructed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の二段式減圧弁の例の断面図、 第2図は本発明の二段式減圧弁を使用した冷暖房用冷凍
回路の例、 第3〜5図は本発明の二段式減圧弁の作動状況を説明す
るそれぞれの断面図、 第6図は本発明の二段式減圧弁の流量特性の例のグラ
フ、 第7図は従来の冷暖房用冷凍回路の例である。 1……弁本体、11……上蓋、12……下部弁室、13……主
弁座、15……副通路、16……背圧室、2……隔壁、21…
…上部弁室、22……弁座、3……ニードル弁体、4……
第1流体通路、5……第2流体通路、6……主弁体、61
……漏洩通路、7……弁ばね、8……アクチュエータ、
81……雄ねじ筒、82……ロータ、85……ばね、a,b……
室内熱交換器、c……室外熱交換器、d……圧縮機、e
……四方切換弁、f……膨張弁、g……電磁弁、h……
キャピラリーチューブ、v……二段式減圧弁。
FIG. 1 is a cross-sectional view of an example of a two-stage pressure reducing valve of the present invention, FIG. 2 is an example of a cooling / heating refrigeration circuit using the two-stage pressure reducing valve of the present invention, and FIGS. FIG. 6 is a cross-sectional view for explaining the operating condition of the step-type pressure reducing valve, FIG. 6 is a graph showing an example of flow rate characteristics of the two-step pressure reducing valve of the present invention, and FIG. 7 is an example of a conventional cooling / heating refrigeration circuit. 1 ... Valve body, 11 ... Upper lid, 12 ... Lower valve chamber, 13 ... Main valve seat, 15 ... Sub passage, 16 ... Back pressure chamber, 2 ... Partition wall, 21 ...
… Upper valve chamber, 22 …… Valve seat, 3 …… Needle valve body, 4 ……
First fluid passage, 5 ... Second fluid passage, 6 ... Main valve body, 61
...... Leakage passage, 7 ...... Valve spring, 8 ...... Actuator,
81 …… Male screw cylinder, 82 …… Rotor, 85 …… Spring, a, b ……
Indoor heat exchanger, c ... Outdoor heat exchanger, d ... Compressor, e
...... Four-way switching valve, f ... Expansion valve, g ... Solenoid valve, h ...
Capillary tube, v ... Two-stage pressure reducing valve.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上部弁室と下部弁室とを区画する隔壁に設
けた弁座に対し該上部弁室側から無段階に進退するニー
ドル弁体を備えた制御弁において、第1流体通路と連通
する該下部弁室には第2流体通路に通ずる主弁座を設
け、該主弁座に向けてばね付勢されたピストン状の主弁
体を該下部弁室内に上下摺動可能に嵌設して該隔壁と該
主弁体との間に背圧空間を形成し、該下部弁室と該背圧
空間とを連絡する漏洩通路であってその流通抵抗がニー
ドル弁の全開時における流通抵抗より大であるものおよ
び該上部弁室と該第2流体通路とを連絡する副通路を設
けてなることを特徴とする二段式減圧弁。
1. A control valve provided with a needle valve body which moves steplessly from the upper valve chamber side with respect to a valve seat provided in a partition wall that divides the upper valve chamber and the lower valve chamber, and A main valve seat communicating with the second fluid passage is provided in the communicating lower valve chamber, and a piston-shaped main valve body biased by a spring toward the main valve seat is vertically slidably fitted in the lower valve chamber. Is a leakage passage that establishes a back pressure space between the partition wall and the main valve body and connects the lower valve chamber and the back pressure space, and the flow resistance is a flow passage when the needle valve is fully opened. A two-stage pressure reducing valve, characterized in that it is provided with an auxiliary passage which is larger than resistance and which connects the upper valve chamber and the second fluid passage.
JP62110850A 1987-05-08 1987-05-08 Two-stage pressure reducing valve Expired - Fee Related JP2516626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110850A JP2516626B2 (en) 1987-05-08 1987-05-08 Two-stage pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110850A JP2516626B2 (en) 1987-05-08 1987-05-08 Two-stage pressure reducing valve

Publications (2)

Publication Number Publication Date
JPS63275865A JPS63275865A (en) 1988-11-14
JP2516626B2 true JP2516626B2 (en) 1996-07-24

Family

ID=14546243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110850A Expired - Fee Related JP2516626B2 (en) 1987-05-08 1987-05-08 Two-stage pressure reducing valve

Country Status (1)

Country Link
JP (1) JP2516626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321990A (en) * 2007-08-30 2007-12-13 Saginomiya Seisakusho Inc Two-way solenoid controlled valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069515B2 (en) * 1995-11-24 2000-07-24 新キャタピラー三菱株式会社 Electromagnetic proportional relief valve
JP6505151B2 (en) * 2017-03-23 2019-04-24 株式会社不二工機 Flow control valve
CN109027347B (en) * 2018-09-18 2024-05-28 中国电建集团河南省电力勘测设计院有限公司 Pressure vessel pressure relief device with step self-opening
WO2020170721A1 (en) * 2019-02-21 2020-08-27 株式会社不二工機 Flow rate control valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321990A (en) * 2007-08-30 2007-12-13 Saginomiya Seisakusho Inc Two-way solenoid controlled valve
JP4629709B2 (en) * 2007-08-30 2011-02-09 株式会社鷺宮製作所 Bidirectional solenoid valve

Also Published As

Publication number Publication date
JPS63275865A (en) 1988-11-14

Similar Documents

Publication Publication Date Title
JPH0665915B2 (en) Reversible electric expansion valve
US20020187057A1 (en) Compressors for providing automatic capacity modulation and heat exchanging system including the same
JPS6146743B2 (en)
JP2516626B2 (en) Two-stage pressure reducing valve
US5996369A (en) Air conditioner with sub-condenser
US4055056A (en) Reversible refrigerant system and four-way reversing valve therefor or the like
JP2672416B2 (en) Fluid flow rate measuring device
CN106482402B (en) Refrigerant control device, heat exchange system and control method of refrigerant control device
CN106907881A (en) The control method of refrigerant controller, heat-exchange system and the refrigerant controller
CN108253669B (en) Multi-way reversing device and air conditioning system
JPH0587746B2 (en)
JP2645854B2 (en) Two-stage expansion valve
JPS63199980A (en) Pilot proportional valve
JP2003042585A (en) Air conditioner
JPH0451319Y2 (en)
US3972347A (en) Reversible refrigerant system and four-way reversing valve therefor or the like
JPS6343083A (en) Pilot type solenoid operated valve
JPS602538Y2 (en) Refrigeration cycle overload control device
JPS63263365A (en) Reversible expansion valve
JPS62141469A (en) Heat pump type air conditioner
JPS6025706B2 (en) Refrigerator control device
JP2002130870A (en) Double-direction valve
JPS6260586B2 (en)
JPS6135756Y2 (en)
JPH0332946Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees