JPS602538Y2 - Refrigeration cycle overload control device - Google Patents

Refrigeration cycle overload control device

Info

Publication number
JPS602538Y2
JPS602538Y2 JP5095979U JP5095979U JPS602538Y2 JP S602538 Y2 JPS602538 Y2 JP S602538Y2 JP 5095979 U JP5095979 U JP 5095979U JP 5095979 U JP5095979 U JP 5095979U JP S602538 Y2 JPS602538 Y2 JP S602538Y2
Authority
JP
Japan
Prior art keywords
valve
intermediate discharge
refrigeration cycle
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5095979U
Other languages
Japanese (ja)
Other versions
JPS55150964U (en
Inventor
明 池田
道生 山村
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP5095979U priority Critical patent/JPS602538Y2/en
Publication of JPS55150964U publication Critical patent/JPS55150964U/ja
Application granted granted Critical
Publication of JPS602538Y2 publication Critical patent/JPS602538Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は、冷暖兼用形空気調和機を構成する冷凍サイク
ルの過負荷制御装置の改良に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement of an overload control device for a refrigeration cycle that constitutes a dual-purpose air conditioner.

従来の冷暖兼用形空気調和機においては、同じ室内で使
用する場合冷房能力が暖房能力と比較して大きすぎるた
め、暖房時にヒータを追加して冷暖房能力のバランスを
とったり、また冷房時は大きすぎる能力を温度調節器で
圧縮機の運転時間を制御して調節していたため、安全上
または冷房感覚上不充分であったり、さらに暖房運転時
熱源側の温度が高くなると、圧縮機の負荷が過大になる
ことから熱源側熱交換器用のファンを止める操作を必要
とする等の欠点があった。
In conventional air conditioners that can be used for both cooling and heating, the cooling capacity is too large compared to the heating capacity when used in the same room. The capacity was adjusted by controlling the operating time of the compressor using a temperature controller, which may not be sufficient for safety or cooling sensation, and if the temperature on the heat source side rises during heating operation, the load on the compressor may become excessive. This has disadvantages such as requiring an operation to stop the fan for the heat exchanger on the heat source side.

そこで本考案は、上記従来の制御にみられる欠点を解消
し、冷房時の能力を三段階に制御し、暖房時能力を二段
階に制御して常に最適な空気調和効果が得られるように
するものである。
Therefore, the present invention solves the drawbacks of the conventional control described above, and controls the cooling capacity in three stages and the heating capacity in two stages, so that the optimal air conditioning effect can always be obtained. It is something.

以下、本考案をその一実施例を示す添付図面を参考に説
明する。
Hereinafter, the present invention will be described with reference to the accompanying drawings showing one embodiment thereof.

図において、1は回転式圧縮機で、密閉容器2の内部に
電動機3ど圧縮機構部4とが配設されている。
In the figure, 1 is a rotary compressor, and an electric motor 3 and a compression mechanism section 4 are disposed inside a closed container 2.

前記圧縮機構部4は、気筒5と気筒5の両端面を閉止す
るとともに、回転軸6を支承する軸受端板(図示せず)
と回転軸6の回転に伴って気筒5内を偏心転動するピス
トン8と気筒5に設けた仕切溝9に摺動自在に嵌入しか
つ一端が常にピストン8に接するようにバネ10により
付勢された仕切板11とから構成され、また前記気筒5
には仕切溝9から回転軸6の回転方向に向って順に吸入
孔12、中間吐出孔13、吐出孔14がそれぞれ設けら
れている。
The compression mechanism section 4 closes the cylinder 5 and both end surfaces of the cylinder 5, and also includes a bearing end plate (not shown) that supports the rotating shaft 6.
and a piston 8 that eccentrically rolls inside the cylinder 5 as the rotating shaft 6 rotates.The piston 8 is slidably fitted into a partition groove 9 provided in the cylinder 5 and is biased by a spring 10 so that one end is always in contact with the piston 8. partition plate 11, and the cylinder 5
A suction hole 12, an intermediate discharge hole 13, and a discharge hole 14 are provided in this order from the partition groove 9 toward the rotational direction of the rotating shaft 6, respectively.

さらに前記吸入孔12は、密閉容器2の外へ連通し、ま
た中間吐出孔13は中間吐出弁15、中間吐出路16を
介して密閉容器2の外へ連通し、さらに吐出孔14は吐
出弁17を介して密閉容器2内に連通している。
Furthermore, the suction hole 12 communicates with the outside of the closed container 2, the intermediate discharge hole 13 communicates with the outside of the closed container 2 via an intermediate discharge valve 15 and an intermediate discharge passage 16, and the discharge hole 14 communicates with the outside of the closed container 2 through an intermediate discharge valve 15 and an intermediate discharge passage 16. It communicates with the inside of the closed container 2 via 17.

18は密閉容器2の内部と外部を連通ずる吐出管である
18 is a discharge pipe that communicates the inside and outside of the closed container 2.

19は冷暖房時の冷媒通路を切換える四方切換弁、20
は熱源側熱交換器、21は冷凍サイクルの絞り装置、2
2は利用側熱交換器、23は利用側熱交換器22と四方
切換弁19とを連結する冷媒管である。
19 is a four-way switching valve that switches the refrigerant passage during heating and cooling; 20
is the heat source side heat exchanger, 21 is the refrigeration cycle throttling device, 2
Reference numeral 2 denotes a utilization side heat exchanger, and 23 denotes a refrigerant pipe connecting the utilization side heat exchanger 22 and the four-way switching valve 19.

24は流量制限装置で、冷媒管23と中間吐出路16を
連通ずるバイパス路25に設けられ、ここを流れる冷媒
流量を制限するもので細管あるいは減圧装置等によりな
る。
Reference numeral 24 denotes a flow rate restricting device, which is provided in a bypass passage 25 that communicates the refrigerant pipe 23 with the intermediate discharge passage 16, and restricts the flow rate of the refrigerant flowing therethrough, and is made of a thin tube, a pressure reducing device, or the like.

26はバイパス路25を開閉する第1開閉弁、27は細
管等の流量制限装置24と中間吐出路16との中間から
第2開閉弁28を介して四方切換弁19と圧縮機1の吸
入側を接続する吸入路29へ連結した吸入バイパス路で
ある。
26 is a first on-off valve that opens and closes the bypass passage 25; 27 is a connection between the flow rate restriction device 24, such as a thin tube, and the intermediate discharge passage 16, via a second on-off valve 28, and the four-way switching valve 19 and the suction side of the compressor 1; This is a suction bypass path connected to the suction path 29 connecting to the suction path 29.

30はアキュムレータである。30 is an accumulator.

次に、上記構成からなる冷凍サイクルの過負荷制御動作
について説明する。
Next, the overload control operation of the refrigeration cycle having the above configuration will be explained.

圧縮機1は回転軸6の回転に伴って吸入孔12より気体
冷媒を吸入し、ピストン8と気筒5の内壁と軸受端板と
仕切板11で囲まれた圧縮空間で気体冷媒を圧縮し、通
常吐出孔14より吐出弁17を介して密閉容器2を通し
て吐出管18より高圧の冷媒気体を吐出する。
The compressor 1 sucks gaseous refrigerant through the suction hole 12 as the rotating shaft 6 rotates, compresses the gaseous refrigerant in a compression space surrounded by the piston 8, the inner wall of the cylinder 5, the bearing end plate, and the partition plate 11, Normally, high-pressure refrigerant gas is discharged from the discharge hole 14 through the discharge pipe 18 through the closed container 2 via the discharge valve 17 .

この通常運転状態において、中間吐出路16に吸入圧力
をかけると圧縮された気体冷媒の一部は中間吐出孔13
から中間吐出弁15を介して圧縮機1の吸入側であるア
キュムレータ30へ流れる。
In this normal operating state, when suction pressure is applied to the intermediate discharge passage 16, a portion of the compressed gaseous refrigerant is transferred to the intermediate discharge hole 13.
The air then flows through the intermediate discharge valve 15 to the accumulator 30, which is the suction side of the compressor 1.

次に中間吐出路16に吐出圧力をかけると気体冷媒は吐
出孔14より吐出弁17を介して密閉容器2から吐出す
る。
Next, when a discharge pressure is applied to the intermediate discharge passage 16, the gaseous refrigerant is discharged from the closed container 2 through the discharge hole 14 and the discharge valve 17.

したがって、冷房運転時において両開閉弁26.2Bを
ともに閉じた場合には、圧縮機1より吐出された高温高
圧の気体冷媒は実線矢印で示す如く四方切換弁19を介
して熱源側熱交換器20で冷却され、凝縮して高圧の液
冷媒となり、絞り装置21で減圧されて利用側熱交換器
22により周囲の熱を吸熱し低圧の気体冷媒となる。
Therefore, when both on-off valves 26.2B are closed during cooling operation, the high temperature and high pressure gaseous refrigerant discharged from the compressor 1 is transferred to the heat source side heat exchanger via the four-way switching valve 19 as shown by the solid arrow. 20, the refrigerant is cooled and condensed to become a high-pressure liquid refrigerant, which is depressurized by an expansion device 21, absorbs ambient heat by a user-side heat exchanger 22, and becomes a low-pressure gas refrigerant.

そして四方切換弁19を介して圧縮機1へ戻る。Then, it returns to the compressor 1 via the four-way switching valve 19.

この冷房作動状態において、第1開閉弁26だけを開け
ると中間吐出路16は細管等からなる流量制限装置24
を介して低圧側冷媒管23と連通し、気筒5内で圧縮さ
れた気体冷媒の一部が中間吐出孔13より中間吐出弁1
5を介して流量制限装置24により流量を制限されて前
記利用側熱交換器22より流れてきた冷媒とともに圧縮
機1の吸入側へバイパスされる。
In this cooling operating state, when only the first on-off valve 26 is opened, the intermediate discharge passage 16 is connected to the flow rate restricting device 24 made of a thin tube or the like.
A part of the gaseous refrigerant compressed in the cylinder 5 is communicated with the low-pressure side refrigerant pipe 23 through the intermediate discharge hole 13 to the intermediate discharge valve 1.
The refrigerant is bypassed to the suction side of the compressor 1 together with the refrigerant flowing from the user-side heat exchanger 22 with its flow rate being restricted by the flow rate restriction device 24 via the refrigerant 5 .

したがって、冷媒循環量が減少すことから冷房能力が若
干減少する。
Therefore, since the amount of refrigerant circulation is reduced, the cooling capacity is slightly reduced.

一方、通常の冷房運転時において、第2開閉弁28だけ
を開けると、中間吐出路16は吸入路29と連通し、気
筒5内で圧縮された気体冷媒の一部が中間吐出孔13よ
り中間吐出弁15を介して圧縮機1の吸入側へ直接バイ
パスされ、冷房能力が大巾に減少する。
On the other hand, when only the second on-off valve 28 is opened during normal cooling operation, the intermediate discharge passage 16 communicates with the suction passage 29, and a portion of the gaseous refrigerant compressed in the cylinder 5 flows from the intermediate discharge hole 13 to the intermediate discharge passage 16. The air is directly bypassed to the suction side of the compressor 1 via the discharge valve 15, and the cooling capacity is greatly reduced.

そして第2開閉弁28を開いている状態では第1開閉弁
26を開いても冷媒循環量は変しないため、能力は変化
しない。
When the second on-off valve 28 is open, the refrigerant circulation amount does not change even if the first on-off valve 26 is opened, so the capacity does not change.

次に、暖房運転時において、開閉弁26.28をともに
閉じた場合には、圧縮機1より吐出された高温高圧の気
体冷媒は破線矢印で示す如く四方切換弁19を介して利
用側熱交換器22で放熱凝縮し、絞り装置21で減圧さ
れて熱源側熱交換器20で吸熱し低圧気体冷媒となって
四方切換弁19を通り圧縮機1へ戻る。
Next, during heating operation, when both the on-off valves 26 and 28 are closed, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 undergoes heat exchange on the user side via the four-way switching valve 19 as shown by the broken line arrow. The refrigerant radiates heat and condenses in the refrigerant 22, is depressurized in the throttle device 21, absorbs heat in the heat source side heat exchanger 20, becomes a low-pressure gas refrigerant, and returns to the compressor 1 through the four-way switching valve 19.

この暖房作動状態において、第2開閉弁28だけを開け
ると中間吐出路16は吸入路29と連通し、気筒5内で
圧縮された気体冷媒の一部が中間吐出孔13より中間吐
出弁15を介して圧縮機1の吸入側へバイパスされる。
In this heating operation state, when only the second on-off valve 28 is opened, the intermediate discharge passage 16 is communicated with the suction passage 29, and a part of the gaseous refrigerant compressed in the cylinder 5 flows from the intermediate discharge hole 13 to the intermediate discharge valve 15. The air is bypassed to the suction side of the compressor 1 through the air.

したがって、冷媒循環量が大巾に減少し、暖房時の能力
が大巾に低下する。
Therefore, the amount of refrigerant circulated is drastically reduced, and the heating capacity is drastically reduced.

さらに両開閉弁26.28を同時に開けると、圧縮機1
より吐出された高圧のガスの一部が流量制限装置24を
具備したバイパス路25より圧縮機1の吸入側へ流れる
ため第2開閉弁28だけを開けた場合よりさらに暖房時
の能力が減少する。
Furthermore, when both on-off valves 26 and 28 are opened at the same time, compressor 1
A portion of the high-pressure gas discharged flows to the suction side of the compressor 1 through the bypass path 25 equipped with the flow restriction device 24, so the heating capacity is further reduced compared to when only the second on-off valve 28 is opened. .

暖房運転時には第1開閉弁26だけを開けても圧縮機1
の吸入側が連通していないため、冷媒がバイパス路25
を流れず暖房能力は変化しない。
Even if only the first on-off valve 26 is opened during heating operation, the compressor 1
Since the suction side of the
does not flow and the heating capacity does not change.

したがって、例えば暖房時ヒータを使用しない空気調和
機の場合、冷房運転時には第1開閉弁26を開けること
により冷房時の入力が過大になることが防止できる。
Therefore, for example, in the case of an air conditioner that does not use a heater during heating, the input during cooling can be prevented from becoming excessive by opening the first on-off valve 26 during cooling operation.

また従来、冷暖房時において空気調和機能力が冷暖房負
荷より大きすぎる場合には、温度調節器等により圧縮機
をひんばんにON、OFFして空気調和機の能力を制限
していたが、この制御によれば利用側熱交換器22の温
度変動が大きく、不快感を増加するが、第2開閉弁28
を開ける制御であれば大巾に冷暖房能力が減少するから
圧縮機をひんばんにON、OFFすることがなく、シた
がって利用側熱交換器22の温度変動がなくなり、不快
感を感じさせることが少ない。
Additionally, in the past, when the air conditioning function capacity was greater than the cooling/heating load during cooling/heating, the compressor was frequently turned on and off using a temperature controller, etc. to limit the capacity of the air conditioner. According to , the temperature fluctuation of the user-side heat exchanger 22 is large and increases discomfort, but the second on-off valve 28
If the control is open, the heating and cooling capacity will be drastically reduced, so the compressor will not be turned on and off frequently, and therefore the temperature fluctuation of the heat exchanger 22 on the user side will be eliminated, causing discomfort. Less is.

さらに暖房運転時負荷が重く圧縮機1に過大な負荷がか
かる場合には、従来は熱源側熱交換器20のファン(図
示せず)を停止する等して熱源側熱交換器20の熱交換
量を制限していたが、本実施例によれば開閉弁28を開
けるだけで圧縮機1にかかる負荷が軽減できる。
Furthermore, when the load is heavy during heating operation and an excessive load is applied to the compressor 1, conventionally, the fan (not shown) of the heat source side heat exchanger 20 is stopped, etc. to exchange heat in the heat source side heat exchanger 20. Although the amount was limited, according to this embodiment, the load on the compressor 1 can be reduced simply by opening the on-off valve 28.

すなわち、冷房運転時、暖房運転時等において室内温度
、室外温度、冷凍サイクル中の圧力等(必要に応じてい
ずれか)を適宜検出装置(図示せず)によって検出して
、まず温度あるいは圧力が第1の設定値に達すると、冷
房時は第1開閉弁26が開いて能力制御を行い、この状
態で温度あるいは圧力がもとに復帰すれば第1開閉弁2
6が閉じ、さらに第1開閉弁26が開いた状態でさらに
温度あるいは圧力が第2の設定値に達すると第2開閉弁
28が開くように各開閉弁26,28の開閉制御を行え
ばよいものである(この場合、第1開閉弁26は閉じて
いるほうが好ましい)。
That is, during cooling operation, heating operation, etc., the indoor temperature, outdoor temperature, pressure during the refrigeration cycle, etc. (any one as necessary) are detected by an appropriate detection device (not shown), and the temperature or pressure is first detected. When the first set value is reached, the first on-off valve 26 opens during cooling to perform capacity control, and if the temperature or pressure returns to the original value in this state, the first on-off valve 26 opens.
The on-off valves 26 and 28 may be controlled to open and close so that when the temperature or pressure reaches the second set value with the first on-off valve 26 closed and the temperature or pressure reaching the second set value, the second on-off valve 28 opens. (In this case, it is preferable that the first on-off valve 26 is closed).

また、暖房時は、同様に上記適宜検出装置によって室内
温度、室外温度、冷凍サイクル中の圧力等(必要に応じ
ていずれか)を検出して、温度あるいは圧力が第1の設
定値に達すると、第2開閉弁28が開いて冷媒循環量を
減少して能力制御を行い、この状態で温度あるいは圧力
がもとに復帰すれば第2開閉弁28が閉じる。
In addition, during heating, the indoor temperature, outdoor temperature, pressure during the refrigeration cycle, etc. (any one as necessary) are similarly detected by the above-mentioned appropriate detection device, and when the temperature or pressure reaches the first set value, , the second on-off valve 28 opens to reduce the amount of refrigerant circulation to perform capacity control, and if the temperature or pressure returns to the original level in this state, the second on-off valve 28 closes.

さらに第2開閉弁28が開いた状態でさらに温度あるい
は圧力が第2の設定値に達すると第1開閉弁26も開き
、能力をより低下させる。
Further, when the temperature or pressure further reaches the second set value while the second on-off valve 28 is open, the first on-off valve 26 also opens, further reducing the performance.

したがって、冷房時、暖房時の回転式圧縮機1が運転さ
れている状態において、冷媒の循環量(冷媒吐出量)が
多段にわたって制御されるため、きめ細かな能力制御が
行え、また回転式圧縮機1をひんばんに断続運転するこ
とがないため、急激な温度変化を感じることもなく、良
好な冷暖房効果が得られるとともに、冷房時の入力も低
減できる。
Therefore, when the rotary compressor 1 is operating during cooling and heating, the amount of refrigerant circulation (refrigerant discharge amount) is controlled in multiple stages, so fine capacity control can be performed, and the rotary compressor 1 1 is not frequently operated intermittently, no sudden temperature changes are felt, good cooling and heating effects can be obtained, and input during cooling can be reduced.

なお、第3図に示す如くベーンllaをヒストン8に設
けた構成の回転式圧縮機においても同様に実施できるも
のである。
Incidentally, the present invention can be similarly implemented in a rotary compressor having a configuration in which the vane lla is provided on the histone 8 as shown in FIG.

上記実施例より明らかなように、本考案における冷凍サ
イクルの過負荷制御装置は、回転式圧縮機と、四方切換
弁と、利用側熱交換器と、熱源側熱交換器と、減圧装置
により冷凍サイクルを構成し、前記回転式圧縮機を、気
筒とピストンを具備しこの気筒の圧縮空間に圧縮行程の
途中まで開口する中間吐出孔を設けこの中間吐出口から
中間吐出弁を介して回転式圧縮機外に連通ずる中間吐出
路を設けた構成とし、さらに前記冷凍サイクルに、一端
が前記利用側熱交換器と前記四方切換弁の間に接続され
、他端が前記中間吐出路に接続されたバイパス路を設け
、このバイパス路に第1開閉弁を設け、さらに前記第1
開閉弁と前記中間吐出弁の間から第2開閉弁を介して前
記圧縮機の吸入路側へ連結された吸入バイパス路を設け
たもので、第1開閉弁だけを開くことにより、冷房時の
能力を少し減少させることができ、また第2開閉弁だけ
を開くことによって、冷暖房時の能力を大巾に減少させ
ることができ、さらに暖房時は、第1、第2開閉弁を開
くことにより、いっそう暖房能力が減少できるとともに
、上述のことから冷房時の入力の低減をはかることがで
き、従来の如く圧縮機の断続運転による特に冷房時にお
ける空調温度の制御に比べてその温度の変化が少なく、
冷房感の向上がはかれ、さらに暖房負荷が重い場合に熱
源側熱交換器の熱交換能力を減少させる必要がなくなる
等の種々の利点を有する。
As is clear from the above embodiments, the refrigeration cycle overload control device of the present invention uses a rotary compressor, a four-way switching valve, a user side heat exchanger, a heat source side heat exchanger, and a pressure reducing device. The rotary compressor is equipped with a cylinder and a piston, and is provided with an intermediate discharge hole that opens midway through the compression stroke into the compression space of the cylinder. An intermediate discharge passage communicating with the outside of the machine is provided, and one end of the refrigeration cycle is connected between the user-side heat exchanger and the four-way switching valve, and the other end is connected to the intermediate discharge passage. A bypass path is provided, a first on-off valve is provided in the bypass path, and the first on-off valve is provided in the bypass path.
A suction bypass path is provided between the on-off valve and the intermediate discharge valve and connected to the suction path side of the compressor via a second on-off valve, and by opening only the first on-off valve, the cooling capacity can be increased. By opening only the second on-off valve, the capacity during cooling and heating can be greatly reduced.Furthermore, by opening the first and second on-off valves during heating, In addition to further reducing the heating capacity, it is possible to reduce the input during cooling due to the above-mentioned factors, and the change in temperature is smaller compared to the conventional method of controlling the air conditioning temperature, especially during cooling, by intermittent operation of the compressor. ,
It has various advantages such as an improved feeling of air conditioning, and there is no need to reduce the heat exchange capacity of the heat source side heat exchanger when the heating load is heavy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例における過負荷制御装置を具
備した冷凍サイクル図、第2図は同冷凍サイクルを構成
する回転式圧縮機の断面図、第3図は本考案の他の実施
例における回転式圧縮機の断面図である。 1・・・・・・回転式圧縮機、5・・・・・・気筒、訃
・・・・ゼストン、13・・・・・・中間吐出孔、15
・・・・・・中間吐出弁、16・・・・・・中間吐出路
、19・・・・・・四方切換弁、20・・・・・・熱源
側熱交換器、21・・・・・・絞り装置、22・・・・
・・利用側熱交換器、24・・・・・・流量制限装置、
25・・・・・・バイパス路、26・・・・・・第1開
閉弁、27・・・・・・吸入バイパス路、28・・・・
・・第2開閉弁。
Fig. 1 is a diagram of a refrigeration cycle equipped with an overload control device according to an embodiment of the present invention, Fig. 2 is a sectional view of a rotary compressor that constitutes the refrigeration cycle, and Fig. 3 is another embodiment of the present invention. It is a sectional view of the rotary compressor in an example. 1... Rotary compressor, 5... Cylinder, End... Zeston, 13... Intermediate discharge hole, 15
......Intermediate discharge valve, 16...Intermediate discharge passage, 19...Four-way switching valve, 20...Heat source side heat exchanger, 21... ...Aperture device, 22...
... User side heat exchanger, 24 ... Flow rate restriction device,
25... Bypass path, 26... First on-off valve, 27... Suction bypass path, 28...
...Second on-off valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転式圧縮機と四方切換弁と、利用側熱交換器と、熱源
側熱交換器と、減圧装置により冷凍サイクルを構成し、
前記回転式圧縮機を、気筒とピストンを具備しこの気筒
の圧縮空間に圧縮行程の途中まで開口する中間吐出孔を
設けこの中間吐出口から中間吐出弁を介して回転式圧縮
機外に連通ずる中間吐出路を設けた構成とし、さらに前
記冷凍サイクルに、一端が前記利用側熱交換器と前記四
方切換弁の間に接続され、他端が前記中間吐出路に接続
されたバイパス路を設け、このバイパス路に第1開閉弁
を設け、さらに前記第1開閉弁と前記中間吐出弁の間か
ら第2開閉弁を介して前記圧縮機の吸入路側へ連結され
た吸入バイパス路を設けた冷凍サイクルの過負荷制御装
置。
A refrigeration cycle is composed of a rotary compressor, a four-way switching valve, a user side heat exchanger, a heat source side heat exchanger, and a pressure reducing device.
The rotary compressor is provided with a cylinder and a piston, and an intermediate discharge hole is provided in the compression space of the cylinder and opens halfway through the compression stroke, and the intermediate discharge port communicates with the outside of the rotary compressor via an intermediate discharge valve. An intermediate discharge passage is provided, and the refrigeration cycle is further provided with a bypass passage whose one end is connected between the utilization side heat exchanger and the four-way switching valve and the other end is connected to the intermediate discharge passage, A refrigeration cycle in which a first on-off valve is provided in the bypass path, and a suction bypass path is connected from between the first on-off valve and the intermediate discharge valve to the suction path side of the compressor via a second on-off valve. overload control device.
JP5095979U 1979-04-16 1979-04-16 Refrigeration cycle overload control device Expired JPS602538Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5095979U JPS602538Y2 (en) 1979-04-16 1979-04-16 Refrigeration cycle overload control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5095979U JPS602538Y2 (en) 1979-04-16 1979-04-16 Refrigeration cycle overload control device

Publications (2)

Publication Number Publication Date
JPS55150964U JPS55150964U (en) 1980-10-30
JPS602538Y2 true JPS602538Y2 (en) 1985-01-24

Family

ID=28939427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5095979U Expired JPS602538Y2 (en) 1979-04-16 1979-04-16 Refrigeration cycle overload control device

Country Status (1)

Country Link
JP (1) JPS602538Y2 (en)

Also Published As

Publication number Publication date
JPS55150964U (en) 1980-10-30

Similar Documents

Publication Publication Date Title
CA1146370A (en) Reversible compressor heat pump
JPS6146743B2 (en)
KR0183481B1 (en) Refrigerating apparatus, airconditioner using the same and method for driving the airconditioner
US7574872B2 (en) Capacity-variable air conditioner
JPH04295566A (en) Engine-driven air-conditioning machine
JPS602538Y2 (en) Refrigeration cycle overload control device
CN110207417B (en) Air conditioning system
KR20220134708A (en) Scroll compressor and air conditioner for vehicle including the same
JP2516626B2 (en) Two-stage pressure reducing valve
JP2003042585A (en) Air conditioner
JPS5916177B2 (en) air conditioner
KR101147735B1 (en) Control method for air conditioner
CN218915143U (en) Air conditioner
JPH06239131A (en) Air-conditioner
JPS6333092Y2 (en)
JPH11344264A (en) Freezing cycle device
JPH02171562A (en) Freezing cycle device
JPS6325492Y2 (en)
KR101053600B1 (en) Air conditioner
JPH0311665Y2 (en)
JP2539680Y2 (en) Air conditioner
KR101154946B1 (en) Air-conditioner
JPH0741359U (en) Automotive air conditioner
CN118293479A (en) Air conditioner and control method thereof
JPS6161997A (en) Rotary compressor