JPS6161997A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS6161997A
JPS6161997A JP18176284A JP18176284A JPS6161997A JP S6161997 A JPS6161997 A JP S6161997A JP 18176284 A JP18176284 A JP 18176284A JP 18176284 A JP18176284 A JP 18176284A JP S6161997 A JPS6161997 A JP S6161997A
Authority
JP
Japan
Prior art keywords
wall material
port
cylinder part
cylinder
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18176284A
Other languages
Japanese (ja)
Inventor
Shuichi Yamamoto
修一 山本
Michimasa Hori
堀 通真
Yoshinobu Kojima
小嶋 能宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18176284A priority Critical patent/JPS6161997A/en
Publication of JPS6161997A publication Critical patent/JPS6161997A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To change the compressing capacity greatly as well as prevent drop in the efficiency by a compressing capacity control mechanism by moving a slide wall material, which constitutes part of the interior wall of the cylinder part and is capable of moving in the axial direction of cylinder. CONSTITUTION:To operate a rotary compressor 1 in full power for warming a room, a rolling piston 8 is rotated A in the condition that a solenoid valve 26 is open and another 28 is closed. High pressure gas is introduced to a control port 15 via a back pressure pipe 25, and the cylinder part 5 is shut from communication to a by-pass port 16 by the use of a slide wall material 14. As this slide wall material 14 is pressed to the cylinder part 5 at this time, no clearance will remain. Accordingly, major part of the refrigerant taken into the cylinder part 5 from a suction port 6 is discharged to a discharge port 7, discharge valve 10 and discharge pipe 18, and taken into the suction port 6 again from a four-way valve 19 after passing through a heat-exchanger on service side 20, a decompressor 21, a heat-exchanger on heat source side 22, the said four- way valve 19, an accumulator 23 and a suction pipe 24.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回転式圧縮機に係わり、特に、その圧縮容量を
可変とする回転式圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor, and particularly to a rotary compressor whose compression capacity is variable.

2 ぺ−1 従来例の構成とその問題点 従来、回転式圧縮機の圧縮容量を可変とする構造として
、シリンダ途中に開口したバイパスポートから、圧縮途
中のガスを圧縮機の吸入側へバイパスする構造がとられ
ていた。
2 Page 1 Conventional structure and its problems Traditionally, as a structure for making the compression capacity of a rotary compressor variable, the gas being compressed is bypassed to the suction side of the compressor from a bypass port opened in the middle of the cylinder. A structure was in place.

しかし、この場合バイパスポートの直径は、このポート
閉鎖時のクリアランスボリューム等の関係上、あまり大
きくはできなかった。したがって、バイパスポートでの
流路抵抗が大きく、十分なバイパス流量が得られず、そ
の結果、圧縮容量の制御率は60〜70%程度にしか低
下できなかった。
However, in this case, the diameter of the bypass port could not be made very large due to the clearance volume when the port is closed. Therefore, the flow path resistance in the bypass port is large, and a sufficient bypass flow rate cannot be obtained, and as a result, the control rate of the compression capacity can only be reduced to about 60 to 70%.

また、回転式圧縮機の圧縮容量を可変とする構造として
、軸受部材に収納室を設け、上記収納室内に設けられた
スライド壁材を、シリンダ部の略半径方向に、ばねを介
してスライドさせることにより、圧縮途中のガスを圧縮
機の吸入側へバイパスする構造のものも見られるが、し
かし、この場合、スライド壁材のスライド方向が、シリ
ンダ部の略半径方向であるため、スライド壁材のストロ
1−りが大きく、それにともない収納室も太きくなる等
の欠点を有していた。
In addition, as a structure for making the compression capacity of the rotary compressor variable, a storage chamber is provided in the bearing member, and a sliding wall material provided in the storage chamber is slid in the approximately radial direction of the cylinder section via a spring. Therefore, there are some structures that bypass the gas during compression to the suction side of the compressor, but in this case, the sliding direction of the sliding wall material is approximately the radial direction of the cylinder part, so the sliding wall material This has disadvantages such as the straw length is large and the storage chamber is accordingly large.

発明の目的 本発明は、」1記従来の欠点を解消するもので、十分な
バイパス流看を得て、圧縮容量の制御率を50%以下程
度にすることにより、犬IJな圧縮容量制御を可能にす
るとともに、圧縮容量制御機構を小型化し、なおかつ、
信頼性を向上させ、圧縮容量制御機構による効率の低下
を防止することを目r白とする。
OBJECT OF THE INVENTION The present invention solves the drawbacks of the conventional technology as described in 1. By obtaining sufficient bypass flow control and reducing the control rate of compression capacity to about 50% or less, the present invention achieves precise compression capacity control. At the same time, the compression capacity control mechanism is made smaller, and
The aim is to improve reliability and prevent a reduction in efficiency due to the compression capacity control mechanism.

発明の構成 この目的を達成するために本発明は、円筒部材と、この
円筒部材の上下端面を閉鎖する如く設けられた上下軸受
部材とで形成されるシリンダ部と、このシリンダ部に開
口する吸入口と、吐出口とを設けるとともに、上記シリ
ンダ部の内壁の一部を構成し、かつ、上記シリンダ部の
軸方向に可動自在なスライド壁材と、」1記スライド壁
材を収納する収納室と、上記収納室に連通し、」1記ス
ライド壁材にかかる背面圧力を制御する制御ポートとか
ら構成される圧縮容量制御機構を設けたものである。
Structure of the Invention In order to achieve this object, the present invention provides a cylinder part formed by a cylindrical member and upper and lower bearing members provided so as to close the upper and lower end surfaces of the cylindrical member, and a suction tube opened to the cylinder part. a sliding wall material that is provided with an opening and a discharge port, constitutes a part of the inner wall of the cylinder section, and is movable in the axial direction of the cylinder section; and a control port that communicates with the storage chamber and controls the back pressure applied to the sliding wall material.

この構成によって、背面圧力によって、スライド壁材を
スライドさせ、圧縮容量を大巾に変化させるとともに、
圧縮容量制御機構による効率低下を防止するものである
With this configuration, the sliding wall material can be slid by the back pressure, and the compression capacity can be greatly changed.
This prevents a reduction in efficiency due to the compression capacity control mechanism.

実施例の説明 以下、本発明をその一実施例を示す第1図ないし第4図
を参考に説明する。
DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to FIGS. 1 to 4 showing one embodiment thereof.

同図において、1は回転式圧縮機で、内部には円筒部材
2と上軸受部材3および下軸受部材4で形成されるシリ
ンダ部5がある。6,7は各々シリンダ部5に開口した
吸入口および吐出口である。
In the figure, reference numeral 1 denotes a rotary compressor, and inside thereof there is a cylinder part 5 formed by a cylindrical member 2, an upper bearing member 3, and a lower bearing member 4. Reference numerals 6 and 7 are an inlet port and a discharge port respectively open to the cylinder portion 5.

8は回転圧縮機構であるローリングピストン、9はシリ
ンダ部5を高圧室と低圧室に仕切る仕切りベーン、10
は吐出弁、11は仕切りベーン用ばね、12は圧縮容量
制御機構で下軸受部材4に設けられシリンダ部5に開口
した収納室13と、この収納室13に収納され、シリン
ダ部5の一部を構成するとともに、上記シリンダ部5の
軸方向にスライドするスライド壁材14と、上記スライ
ド壁材14の背面圧力を制御する制御ポート15とから
構成されている。16はバイパスポートで、スライド壁
材14が収納室下部に有り、シリンダ部5と収納室13
とが連通したとき、この収納室13と連通ずる位置の円
筒部材2内部に設けられており、バイパス路17に連通
している。
8 is a rolling piston that is a rotary compression mechanism; 9 is a partition vane that partitions the cylinder portion 5 into a high pressure chamber and a low pressure chamber; 10
1 is a discharge valve, 11 is a partition vane spring, and 12 is a compression capacity control mechanism, which is provided in the lower bearing member 4 and has a storage chamber 13 that opens into the cylinder section 5; It also comprises a slide wall material 14 that slides in the axial direction of the cylinder portion 5, and a control port 15 that controls the back pressure of the slide wall material 14. 16 is a bypass port, a sliding wall material 14 is located at the bottom of the storage chamber, and the cylinder part 5 and the storage chamber 13
It is provided inside the cylindrical member 2 at a position that communicates with the storage chamber 13 when the two are in communication with each other, and communicates with the bypass passage 17.

上記構成の回転式圧縮機1には、吐出管18、四方弁1
9、利用側熱交換器201減圧器21、熱源側熱交換器
22、アキュムレータ23、吸入管24が接続され、こ
の吸入管24が吸入口6に接続されている。又、吐出管
18と四方弁19の中間より分岐した背圧管25は第1
の電磁弁26を介して制御ポート15に接続されている
。又、バイパス管27はバイパス路17と、アキュムレ
ータ23の上流側とを接続している。又、制御ポート1
5と第1の電磁弁26との中間とバイパス管27を第2
の電磁弁28を介して高圧逃がし管29で接続している
The rotary compressor 1 with the above configuration includes a discharge pipe 18, a four-way valve 1
9. Utilization side heat exchanger 201 A pressure reducer 21, a heat source side heat exchanger 22, an accumulator 23, and a suction pipe 24 are connected, and this suction pipe 24 is connected to the suction port 6. Also, a back pressure pipe 25 branched from the middle between the discharge pipe 18 and the four-way valve 19 is the first
The control port 15 is connected to the control port 15 via a solenoid valve 26 . Further, the bypass pipe 27 connects the bypass path 17 and the upstream side of the accumulator 23. Also, control port 1
5 and the first solenoid valve 26 and the bypass pipe 27 are connected to the second solenoid valve 26.
A high pressure relief pipe 29 is connected to the high pressure relief pipe 29 via a solenoid valve 28 .

第2図において、ステータ30とロータ31とから成る
電動機が駆動源となる。回転式圧縮機16へ 内の底部には潤滑油32が溜められており、下軸受部材
4はほぼ浸漬されている。又、33は下軸受部材4のボ
スである。第3図において、34は下軸受部材取付ボル
ト穴で、35は吐出弁10用の弁座である。また第4図
において、36はスライド面を示している。
In FIG. 2, an electric motor consisting of a stator 30 and a rotor 31 serves as a driving source. Lubricating oil 32 is stored at the bottom of the rotary compressor 16, and the lower bearing member 4 is substantially immersed therein. Further, 33 is a boss of the lower bearing member 4. In FIG. 3, 34 is a lower bearing member mounting bolt hole, and 35 is a valve seat for the discharge valve 10. Further, in FIG. 4, numeral 36 indicates a sliding surface.

以上の構成で次に作用を説明する。The operation of the above configuration will be explained next.

先ず、暖房時に回転式圧縮機1が全能力で運転される場
合は、第1の電磁弁26は開放され、第2の電磁弁28
は閉鎖された状態で、ローリングピストン8が矢印Aの
方向に回転している。従って、背圧管25を経て制御ポ
ート15に高圧ガスが導かれている為、スライド壁材1
4は、シリンダ部5とバイパスポート16との連通を閉
鎖する。
First, when the rotary compressor 1 is operated at full capacity during heating, the first solenoid valve 26 is opened and the second solenoid valve 28 is opened.
is closed, and the rolling piston 8 is rotating in the direction of arrow A. Therefore, since high pressure gas is guided to the control port 15 via the back pressure pipe 25, the sliding wall material 1
4 closes communication between the cylinder portion 5 and the bypass port 16.

この時、スライド壁材14は、背面にかかる高圧によっ
て、シリンダ部5に押し付けられた状態となり、シリン
ダ部5には、はとんどクリアランス部を残さない。その
為、制御ポート15内の高圧冷媒ガスがスライド面3G
を通ってシリンダ部5に漏れたり、シリンダ部5内の圧
縮ガスが多量にはない。
At this time, the slide wall material 14 is pressed against the cylinder part 5 due to the high pressure applied to the back surface, and almost no clearance part is left in the cylinder part 5. Therefore, the high pressure refrigerant gas in the control port 15 is transferred to the slide surface 3G.
There is no leakage into the cylinder part 5 through the cylinder part 5, and there is no large amount of compressed gas inside the cylinder part 5.

従って、この場合には、吸入口6からシリンダ部5内に
吸入された冷媒の大部分が吐出ロア、吐出弁10を経て
、吐出管18へ吐出され、四方弁19より室内に設置さ
れた利用側熱交換器20、減圧器21、熱源側熱交換器
22、四方弁19、アキュムレータ23、吸入管24を
経て、再び吸入口より吸入される。この時、利用側熱交
換器20によって室内が高能力で暖房される。
Therefore, in this case, most of the refrigerant sucked into the cylinder part 5 from the suction port 6 passes through the discharge lower and the discharge valve 10, and is discharged to the discharge pipe 18. After passing through the side heat exchanger 20, pressure reducer 21, heat source side heat exchanger 22, four-way valve 19, accumulator 23, and suction pipe 24, it is sucked in again from the suction port. At this time, the user-side heat exchanger 20 heats the room with high efficiency.

次に、室内温度が所定値まで上昇すると温度調節器等に
よって第1の電磁弁26が閉鎖され、同時に第2の電磁
弁28が開放される。その為、制御ポート15内の高圧
ガスは高圧逃がし管29よリバイパス管27へ逃がされ
る。
Next, when the indoor temperature rises to a predetermined value, the first solenoid valve 26 is closed by a temperature controller or the like, and at the same time, the second solenoid valve 28 is opened. Therefore, the high pressure gas in the control port 15 is released from the high pressure relief pipe 29 to the rebypass pipe 27.

従って、スライド壁材14は収納室13の下部へ戻り、
シリンダ部5とバイパスポート16とが連通ずる。この
時、シリンダ部5内の冷媒ガスの一部は、圧縮途中で、
バイパスポート16よりバイパス管27を経てアキュム
レータ23の」二流側ヘバイパスされる。その為、ロー
リングピストン8が収納室13を通過した後のシリンダ
部5の圧縮室内の冷媒ガス重量は大きく減少しており吐
出管18より吐出される冷媒は大巾に減少する。
Therefore, the sliding wall material 14 returns to the lower part of the storage chamber 13,
The cylinder portion 5 and the bypass port 16 communicate with each other. At this time, a part of the refrigerant gas in the cylinder part 5 is in the middle of compression,
It is bypassed from the bypass port 16 to the second-stream side of the accumulator 23 via the bypass pipe 27. Therefore, after the rolling piston 8 passes through the storage chamber 13, the weight of the refrigerant gas in the compression chamber of the cylinder portion 5 is greatly reduced, and the amount of refrigerant discharged from the discharge pipe 18 is greatly reduced.

その結果、利用側熱交換器20による暖房能力は小さく
なり、暖房負荷に近い能力となる。
As a result, the heating capacity of the user-side heat exchanger 20 becomes small, and becomes a capacity close to the heating load.

中 なお、冷房時は、四方弁19が切換れるだけで、上記暖
房時と同様の作用である。
Note that during cooling, the four-way valve 19 is simply switched, and the operation is similar to that during heating.

以上の様に、本実施例においては、第1、第2の電磁弁
26.28の切換えによってスライド壁材14を移動さ
せ、回転式圧縮機の能力を大巾に変化させ、冷暖房負荷
に対応した空調が可能である。又、第1の電磁弁26が
開放されて、高圧冷媒が制御ポート15に導入されてス
ライド壁材14が、シリンダ部5とバイパスポート16
との連通を閉鎖して、全能力となった場合、スライド内 壁材14と同筒部材2とは密着状態となり、高いシール
性が得られるとともに、シリンダ部5にはほとんどクリ
アランス部を形成しない。その結果、圧縮容量制御機構
12による全能力運転時の効率低下はほとんど無い。
As described above, in this embodiment, the sliding wall material 14 is moved by switching the first and second solenoid valves 26 and 28, and the capacity of the rotary compressor is greatly changed to cope with the heating and cooling load. air conditioning is possible. Also, the first solenoid valve 26 is opened, high-pressure refrigerant is introduced into the control port 15, and the slide wall material 14 is connected to the cylinder portion 5 and the bypass port 16.
When the communication is closed and the full capacity is reached, the slide inner wall material 14 and the cylindrical member 2 are in close contact with each other, and a high sealing performance is obtained, and almost no clearance is formed in the cylinder portion 5. As a result, there is almost no reduction in efficiency when the compression capacity control mechanism 12 operates at full capacity.

次に、第1の電磁弁26が閉鎖され、第2の電磁弁28
が開放されて、スライド壁材14が、収納室13の下部
に戻された場合、シリンダ部5に半月状の大きな開口が
出来るとともに、バイパスポート16と連通ずる。従っ
て、ローリングピストン8が上記半月状の開口を通過す
るまでは、シリンダ部5の高圧室では冷媒の圧縮は余り
行なわれず、大きな容量制御が出来ると同時に、消費電
力も大巾に低下することが出来る。また、スライド壁材
14の可動方向をシリンダ部5の軸方向としたため、ス
ライド壁材14の可動ストロークを小さくすることがで
きると共に、収納室も小さくすることができる。さらに
、ばねを用いることなく、スライド壁材の動作が可能と
なる。
Next, the first solenoid valve 26 is closed and the second solenoid valve 28 is closed.
When the sliding wall material 14 is returned to the lower part of the storage chamber 13 after being opened, a large half-moon-shaped opening is formed in the cylinder portion 5 and communicates with the bypass port 16. Therefore, until the rolling piston 8 passes through the semicircular opening, the refrigerant is not compressed very much in the high pressure chamber of the cylinder section 5, making it possible to achieve large capacity control and to significantly reduce power consumption. I can do it. Furthermore, since the sliding wall material 14 is moved in the axial direction of the cylinder portion 5, the moving stroke of the sliding wall material 14 can be made small, and the storage chamber can also be made small. Furthermore, movement of the sliding wall material is possible without using springs.

本実施例においては、スライド壁材の動作にはばねを用
いていないが、より安定した動作を得るためにばねを用
いても良い。また、ばねを用いることにより、圧縮容量
制御機構を上軸受部に設けることも可能となる。
In this embodiment, springs are not used for the movement of the sliding wall material, but springs may be used to obtain more stable movement. Further, by using a spring, it is also possible to provide a compression capacity control mechanism in the upper bearing part.

10ベー/ 発明の効果 以上の様に、本発明の回転式圧縮機は、円筒部材と、こ
の円筒部材の上下端面を閉鎖する如く設けられた上下軸
受部材とで形成されるシリンダ部と、このシリンダ部に
設けられた回転圧縮機構と、上記シリンダ部に開口する
吸入口と吐出口とを設けるとともに、上記シリンダ部の
内壁の一部を構成し、かつ、上記シリンダの軸方向に可
動自在なスライド壁材と、上記スライド壁材を収納する
収納室と、上記収納室に連通し、上記スライド壁材にか
かる背面圧力を制御する制御ポートとから構成される圧
縮容量制御機構を設けたものであるから、回転式圧縮機
を全能力で運転する場合、スライド壁材がシリンダの一
部を構成するとき、シリンダ部に余分なりリアランス部
が形成されないため、性能の低下がない。又、圧縮容量
を減少させる場合は、制御ポートへの圧力を制御するこ
とにより簡単に行なうことが出来る。さらに、収納室の
シリンダ部に開口した空間容積が大きくとれるため、回
転圧縮機構がシリンダ内で圧縮容量制御11 ・・ 機構を通過するまでは、はとんど圧縮を行なわないため
大きな圧縮容量制御率を得ることが出来るものである。
10 b/ Effects of the Invention As described above, the rotary compressor of the present invention includes a cylinder portion formed by a cylindrical member, and upper and lower bearing members provided to close the upper and lower end surfaces of the cylindrical member; A rotary compression mechanism provided in the cylinder part, an inlet port and a discharge port opening in the cylinder part, and forming part of the inner wall of the cylinder part and movable in the axial direction of the cylinder part. A compression capacity control mechanism is provided that includes a sliding wall material, a storage chamber that stores the sliding wall material, and a control port that communicates with the storage chamber and controls the back pressure applied to the sliding wall material. Therefore, when the rotary compressor is operated at full capacity, when the slide wall material constitutes a part of the cylinder, no excess or rearance is formed in the cylinder portion, so there is no deterioration in performance. Further, when reducing the compression capacity, this can be easily done by controlling the pressure to the control port. Furthermore, since the space volume opened in the cylinder part of the storage chamber can be large, compression capacity control 11 is possible because the rotation compression mechanism does not perform compression until it passes through the mechanism. It is possible to obtain the rate.

また、さらに、スライド壁材の可動方向をシリンダ部の
軸方向としたため、スライド壁材の可動ストロークを小
さくでき、それに伴い、収納室も小さくすることが可能
となる。
Furthermore, since the moving direction of the sliding wall material is the axial direction of the cylinder portion, the moving stroke of the sliding wall material can be made smaller, and accordingly, the storage chamber can also be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回転式圧縮機を搭載した冷
凍サイクル図、第2図は同回転式圧縮機の一部断面図、
第3図は同圧縮機における下軸受部材の斜視図、第4図
は同圧縮機におけるスライド壁材の斜視図である。 1・・・・・・回転式圧縮機、2・・・・・・円筒部材
、3・・・・・・上軸受部材、4・・・・・・下軸受部
材、5・・・・・・シリンダ部、6・・・・・・吸入口
、7・・・・・・吐出口、8・・・・・・ローリングピ
ストン(回転圧縮機構)、12・・・・・・圧縮容量制
御機構、13・・・・・・収納室、14・・・・・・ス
ライド壁材、18・・・・・・制御ポート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Fig. 1 is a diagram of a refrigeration cycle equipped with a rotary compressor according to an embodiment of the present invention, Fig. 2 is a partial sectional view of the rotary compressor,
FIG. 3 is a perspective view of a lower bearing member in the same compressor, and FIG. 4 is a perspective view of a slide wall material in the same compressor. 1... Rotary compressor, 2... Cylindrical member, 3... Upper bearing member, 4... Lower bearing member, 5...・Cylinder part, 6... Suction port, 7... Discharge port, 8... Rolling piston (rotary compression mechanism), 12... Compression capacity control mechanism , 13...Storage room, 14...Sliding wall material, 18...Control port. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims]  円筒部材と、この円筒部材の上下端面を閉鎖する如く
設けられた上下軸受部材とで形成されるシリンダ部と、
このシリンダ部内に設けられた回転圧縮機構と、上記シ
リンダ部に開口する吸入口、吐出口とを設けるとともに
、上記シリンダ部の内壁の一部を構成し、かつ、上記シ
リンダ部の軸方向に可動自在なスライド壁材と、上記ス
ライド壁材を収納する収納室と、上記収納室に連通し上
記スライド壁材にかかる背面圧力を制御する制御ポート
とから構成される圧縮容量制御機構を設けた回転式圧縮
機。
a cylinder portion formed by a cylindrical member and upper and lower bearing members provided to close upper and lower end surfaces of the cylindrical member;
A rotary compression mechanism is provided in the cylinder part, an inlet port and a discharge port are provided that are open to the cylinder part, and the structure forms part of the inner wall of the cylinder part and is movable in the axial direction of the cylinder part. A rotation device equipped with a compression capacity control mechanism consisting of a freely sliding wall material, a storage chamber for storing the sliding wall material, and a control port that communicates with the storage chamber and controls the back pressure applied to the sliding wall material. type compressor.
JP18176284A 1984-08-31 1984-08-31 Rotary compressor Pending JPS6161997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18176284A JPS6161997A (en) 1984-08-31 1984-08-31 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18176284A JPS6161997A (en) 1984-08-31 1984-08-31 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS6161997A true JPS6161997A (en) 1986-03-29

Family

ID=16106439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18176284A Pending JPS6161997A (en) 1984-08-31 1984-08-31 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS6161997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198032B1 (en) 2011-03-08 2012-11-06 비아이피 주식회사 Electric power generating system using expansion of fluid
KR101241183B1 (en) 2011-03-08 2013-03-13 비아이피 주식회사 Electric power generation system using fluid circulation
CN103185007A (en) * 2011-12-29 2013-07-03 珠海格力节能环保制冷技术研究中心有限公司 Cylinder for rotary compressor, rotary compressor and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198032B1 (en) 2011-03-08 2012-11-06 비아이피 주식회사 Electric power generating system using expansion of fluid
KR101241183B1 (en) 2011-03-08 2013-03-13 비아이피 주식회사 Electric power generation system using fluid circulation
CN103185007A (en) * 2011-12-29 2013-07-03 珠海格力节能环保制冷技术研究中心有限公司 Cylinder for rotary compressor, rotary compressor and air conditioner
CN103185007B (en) * 2011-12-29 2015-11-04 珠海格力节能环保制冷技术研究中心有限公司 The cylinder of rotary compressor, rotary compressor and air conditioner

Similar Documents

Publication Publication Date Title
JP4856091B2 (en) Variable capacity rotary compressor and cooling system including the same
US7931453B2 (en) Capacity variable device for rotary compressor and driving method of air conditioner having the same
JPH09151867A (en) Capacitance control valve of scrolling compressor
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
JPH02230995A (en) Compressor for heat pump and operating method thereof
JPS6161997A (en) Rotary compressor
JPH10184568A (en) Scroll compressor and its back pressure chamber pressure control valve
KR100690892B1 (en) Capacity varying compressor and driving method thereof
JPS61129495A (en) Rotary compressor
JP7401804B2 (en) Compressors and air conditioners
KR100677527B1 (en) Rotary compressor
JPS6032996A (en) Rotary compressor
JPS6059498B2 (en) Refrigeration equipment capacity control method
JPS60184990A (en) Rotary compressor
JPS60184989A (en) Rotary compressor
JPS60184985A (en) Rotary compressor
JPS60184988A (en) Rotary compressor
JPS6325343Y2 (en)
JPS60184986A (en) Rotary compressor
JPS6032993A (en) Rotary compressor
JPS6193285A (en) Control device in compressor
JPS6032991A (en) Rotary compressor
JPS6032995A (en) Rotary compressor
JPS60184991A (en) Rotary compressor
JPS6032992A (en) Rotary compressor