JPS60184991A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS60184991A
JPS60184991A JP4152084A JP4152084A JPS60184991A JP S60184991 A JPS60184991 A JP S60184991A JP 4152084 A JP4152084 A JP 4152084A JP 4152084 A JP4152084 A JP 4152084A JP S60184991 A JPS60184991 A JP S60184991A
Authority
JP
Japan
Prior art keywords
wall material
pipe
port
bypass
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4152084A
Other languages
Japanese (ja)
Inventor
Michimasa Hori
堀 通真
Yoshinobu Kojima
小嶋 能宣
Shuichi Yamamoto
修一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4152084A priority Critical patent/JPS60184991A/en
Publication of JPS60184991A publication Critical patent/JPS60184991A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make compression capacity controllable into three stages with a large range, by making a dead space formable in a cylinder wall part with a slide wall material shifted, as well as interconnecting this dead space to the suction side. CONSTITUTION:Closing a first solenoid valve 30, when a second solenoid valve 32 is closed after being once opened, back pressure in a slide wall material 14 drops to some extent whereby the slide wall material moves by dint of a spring 16. As a result, an empty space 20 constituting a dead space is produced in a base position of the slide member, and compression capacity is thus decreased. Next, when the second solenoid valve is opened, the said space 20 comes to be interconnected to the upstream side of an accumulator 27 at the suction side in succession so that the compression capacity comes to be yet more reducible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回転式圧縮機に係わり、特に、その圧縮容量を
可変とする回転式圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary compressor, and particularly to a rotary compressor whose compression capacity is variable.

従来例の構成とその問題点 従来、回転式圧縮機の圧縮′容量を大巾に可変する構造
として、圧縮機駆動用モータの電源周波数を変換して回
転数制御を行なうものがあった。しかし、この場合、高
価な周波数変換装置が必要になるとともに、回転式圧縮
機の回転数を大巾に変化させると、機械部の信頼性の低
下を招く結果となっていた。
Conventional Structures and Their Problems Conventionally, as a structure for widely varying the compression capacity of a rotary compressor, there has been a structure in which the rotation speed is controlled by converting the power frequency of the compressor drive motor. However, in this case, an expensive frequency conversion device is required, and if the rotational speed of the rotary compressor is changed widely, the reliability of the mechanical part is reduced.

発明の目的 本発明は、上記従来の欠点を解消するもので、簡単な構
造で、回転式圧縮機の容量を大巾に制御するものである
OBJECTS OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, and provides a simple structure for controlling the capacity of a rotary compressor over a wide range.

発明の構成 この目的を達成するために本発明は、円筒部材と、この
円筒部材の上下端面を閉鎖する如く設けられた上下軸受
部材とで形成されるシリンダ部と、このシリンダ部内に
設けられた回転圧縮機構と、上記シリンダ部に開口する
吸入口と、吐出口とを設けるとともに、上記シリンダ部
の内壁の一部を構成し、かつ、可動自在なスライド壁材
と、上記スライド壁材を収納する収納室と、上記収納室
の上記スライド壁材の背面側に形成される背面空間と、
この背面空間に連通し上記スライド壁材にかかる背面圧
力を制御する制御ホードと、上記スライド壁材が移動し
た場合に上記シリンダ部と連通する上記収納室の前面空
間と、この前面空間と連通ずるバイパスポートと、この
バイパスポートと連通ずるバイパス路と、このバイパス
路に設けられたばね伺逆止弁装置と、上記バイパスポー
トと上記背面空間を連通ずる背圧逃がし通路とで構成さ
れる回転式圧縮機本体と、上記回転式圧縮機本体の外部
に設けられ、上記吸入口と連通ずる吸入管と、上記吐出
口と連通ずる吐出管と、上記吐出管と上記制御ポートと
を第1の電磁弁を介して連通ずる背圧管と、上記バイパ
ス路と上記吸入管とを第2の電磁弁を介して連通ずるバ
イパス管と、上記第1の電磁弁と上記吐出管の中間と、
上記バイパス路と上記第2の電磁弁の中間とを第2の減
圧器を介して連結する高圧導入管とを設けたものである
Structure of the Invention In order to achieve this object, the present invention provides a cylinder part formed by a cylindrical member and upper and lower bearing members provided so as to close the upper and lower end surfaces of this cylindrical member, and a cylinder part formed within this cylinder part. A rotary compression mechanism, an inlet opening to the cylinder part, and a discharge port are provided, and a movable sliding wall material that forms part of the inner wall of the cylinder part and houses the sliding wall material. a rear space formed on the back side of the sliding wall material of the storage chamber;
a control hoard that communicates with the back space and controls the back pressure applied to the slide wall material; a front space of the storage chamber that communicates with the cylinder section when the slide wall material moves; and a control hood that communicates with the front space. A rotary compression system comprising a bypass port, a bypass path communicating with the bypass port, a spring-loaded check valve device provided in the bypass path, and a back pressure relief passage communicating the bypass port and the back space. A first electromagnetic valve connects the machine body, a suction pipe provided outside the rotary compressor body and communicating with the suction port, a discharge pipe communicating with the discharge port, and the discharge pipe and the control port. a back pressure pipe that communicates with the bypass passage through the suction pipe; a bypass pipe that communicates the bypass passage with the suction pipe via a second electromagnetic valve; and an intermediate portion between the first electromagnetic valve and the discharge pipe;
A high-pressure introduction pipe is provided that connects the bypass path and an intermediate point of the second electromagnetic valve via a second pressure reducer.

この構成によって、背面圧力によってスライド壁材をス
ライドさせて、前面空間の開閉を行なうとともに、この
前面空間が開放されている場合、この前面空間と吸入管
とを連通ずるバイパス路途中に設けたばね付逆止弁装置
の開閉により、圧縮容量を大巾に三段階制御するもので
ある。
With this configuration, the sliding wall material is slid by the back pressure to open and close the front space, and when the front space is open, a spring is installed in the middle of the bypass path that communicates the front space with the suction pipe. The compression capacity is controlled in three broad stages by opening and closing the check valve device.

実施例の説明 以下、本発明をその一実施例を示す第1図ないし第7図
を参考に説明する。
DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to FIGS. 1 to 7 showing one embodiment thereof.

第1図において、1は回転式圧縮機本体で、内部には円
筒部材2と上軸受部材3および下軸受部材4で形成され
るシリンダ部5がある。6,7は各々シリンダ部5に開
口した吸入口および吐出口TJる。81−1:回転圧縮
機構であるローリングピストン、9はシリンダ部6を高
圧室と低圧室に仕切る仕切りベーン、1oは吐出弁、1
1は仕切ベーン用ばね、12は圧縮容量制御機構で、下
軸受部材4の一部に貫通して設けられシリンダ部6に開
口した収納室13と、この収納室13に収納され、シリ
ンダ部6の一部を構成するとともに、上記シリンダ部5
の略半径方向にスライドするスライド壁材14と、この
スライド壁材14の下面側に設けられた凹部16と、こ
の凹部16に収められた長円形状のばね16と、上記収
納室13のふた板材17と、上記スライド壁材14の背
面圧力を制御する制御ポート18とから構成されている
In FIG. 1, reference numeral 1 denotes a rotary compressor main body, and inside thereof there is a cylinder portion 5 formed by a cylindrical member 2, an upper bearing member 3, and a lower bearing member 4. Reference numerals 6 and 7 indicate an inlet port and a discharge port TJ, respectively, which are open to the cylinder portion 5. 81-1: Rolling piston which is a rotary compression mechanism, 9 is a partition vane that partitions the cylinder part 6 into a high pressure chamber and a low pressure chamber, 1o is a discharge valve, 1
1 is a partition vane spring, 12 is a compression capacity control mechanism, which is provided through a part of the lower bearing member 4 and has a storage chamber 13 open to the cylinder section 6; The cylinder part 5
A slide wall material 14 that slides in a substantially radial direction, a recess 16 provided on the lower surface side of this slide wall material 14, an oval spring 16 housed in this recess 16, and a lid of the storage chamber 13. It is composed of a plate material 17 and a control port 18 for controlling the back pressure of the slide wall material 14.

19はバイパスポートで、スライド壁材14がばね16
で押されて図1の如くシリンダ部5と収納室13の前面
空間20とが連通したとき、この前面空間20と連通ず
る位置の円筒部材2内部に設けられており、バイパス路
21に連通している。
19 is a bypass port, and the sliding wall material 14 is a spring 16
When the cylinder part 5 and the front space 20 of the storage chamber 13 communicate with each other as shown in FIG. ing.

次に回転圧路機本体1には、吐出管22、四方弁23、
利用側熱交換器24、第1の減圧器26、熱源側熱交換
器26、四方弁23、アキュームレータ27、吸入管2
8が接続され、この吸入管28が吸入口6に接続されて
いる。又、吐出管22と四方弁23の中間より分岐した
背圧管29は第1の電磁弁30を介して制御ポート18
に接続されている。又、バイパス管31はバイパス路2
1と、アキュームレータ27の上流側とを第2の電磁弁
32を介して接続している。又、制御ボート18と第1
の電磁弁30との中間と、第2の電磁弁32とバイパス
路21の中間とを第1の逆止弁33を介して高圧逃がし
管34で接続している。又、上記第1の電磁弁30と上
記吐出管22の中間と、上記バイパス路21と上記第2
の電磁弁32の中間とを第2の減圧器33及び第1の逆
止弁34の直列回路を介して連結する高圧導入管35を
設けている。又、33はバイパスポート19と収納室1
3の背面空間4oを連通ずる背圧逃がし通路で、円筒部
材2に設けられている。又、34はバイパス路21内に
設けられたばね付逆止弁装置である。
Next, the rotary pressure path machine body 1 includes a discharge pipe 22, a four-way valve 23,
Usage side heat exchanger 24, first pressure reducer 26, heat source side heat exchanger 26, four-way valve 23, accumulator 27, suction pipe 2
8 is connected, and this suction pipe 28 is connected to the suction port 6. Also, a back pressure pipe 29 branched from the middle between the discharge pipe 22 and the four-way valve 23 is connected to the control port 18 via the first solenoid valve 30.
It is connected to the. Moreover, the bypass pipe 31 is the bypass pipe 2.
1 and the upstream side of the accumulator 27 are connected via a second solenoid valve 32. In addition, the control boat 18 and the first
A high-pressure relief pipe 34 connects an intermediate point between the second electromagnetic valve 32 and the bypass passage 21 via a first check valve 33. Also, between the first electromagnetic valve 30 and the discharge pipe 22, and between the bypass passage 21 and the second
A high pressure introduction pipe 35 is provided which connects the middle of the solenoid valves 32 to the middle of the solenoid valves 32 through a series circuit of a second pressure reducer 33 and a first check valve 34. Also, 33 is a bypass port 19 and a storage room 1.
This is a back pressure relief passage communicating with the back space 4o of No. 3, and is provided in the cylindrical member 2. Further, 34 is a spring-equipped check valve device provided within the bypass passage 21.

次に第2図以下においては第1図と同一部品は同一番号
を附した。
Next, in FIG. 2 and subsequent figures, parts that are the same as those in FIG. 1 are given the same numbers.

第2図において、35はクランクシャフトで、ステータ
36とロータ37とから成る電動機が駆動源となる。回
転圧縮機本体1内の底部には潤滑油38が溜められてお
り、下軸受部材4はほぼ浸漬されている。又、39は下
軸受部材4のボス部である。又、4oはばね逆止弁装置
34用ポートで、41は背面空間である。第3図におい
て、42は下軸受部材4の取付ボルト穴で、43は吐出
弁1o用の弁座である。収納室13のボス部39側の当
接面44の中央にばね16の一端を固定するばね穴46
が設けられている。又、ボス部39には、収納室13の
ふた板材17の為の逃げ用切欠き46があ−る。又、収
納室13は、上記下軸受部材4のフランジ部47に貫通
して設けてあネ。
In FIG. 2, 35 is a crankshaft, and an electric motor consisting of a stator 36 and a rotor 37 serves as a driving source. Lubricating oil 38 is stored at the bottom of the rotary compressor main body 1, and the lower bearing member 4 is substantially immersed therein. Further, 39 is a boss portion of the lower bearing member 4. Further, 4o is a port for the spring check valve device 34, and 41 is a back space. In FIG. 3, 42 is a mounting bolt hole for the lower bearing member 4, and 43 is a valve seat for the discharge valve 1o. A spring hole 46 for fixing one end of the spring 16 to the center of the contact surface 44 on the boss portion 39 side of the storage chamber 13
is provided. Further, the boss portion 39 has an escape notch 46 for the cover plate 17 of the storage chamber 13. Further, the storage chamber 13 is provided to penetrate the flange portion 47 of the lower bearing member 4.

第4図において48はスライド壁材14の凹部16側に
設けられたばね穴で、49は、ふた板材17の内面と接
するスライド面である。第6図において6oはばね16
の一端の突起であり、ばね穴48に入れられる。又、5
1はばね16の他端の突起でありばね穴48に入れられ
る。
In FIG. 4, 48 is a spring hole provided on the side of the recess 16 of the sliding wall material 14, and 49 is a sliding surface in contact with the inner surface of the lid plate material 17. In Fig. 6, 6o is the spring 16
This is a protrusion at one end of the spring hole 48, which is inserted into the spring hole 48. Also, 5
1 is a protrusion at the other end of the spring 16 and is inserted into the spring hole 48.

第7図において52は外枠、53は円形弁、64は弁座
、65は弁ガイド、66は円形弁63用コイルばねであ
る。
In FIG. 7, 52 is an outer frame, 53 is a circular valve, 64 is a valve seat, 65 is a valve guide, and 66 is a coil spring for the circular valve 63.

以上の構成で次に作用を説明する。Next, the operation of the above configuration will be explained.

先ず、暖房時に回転圧縮機本体1が全能力で運転される
場合は、第1の電磁弁3oは開放され、第2の電磁弁3
2は閉鎖された状態でローリングピストン8が矢印Aの
方向に回転している。従って、背圧管29を経て制御ポ
ート18に高圧ガスが導かれている為、スライド壁材1
4はばね160力に打勝って前面空間2oを閉鎖する。
First, when the rotary compressor main body 1 is operated at full capacity during heating, the first solenoid valve 3o is opened and the second solenoid valve 3o is opened.
2 is in a closed state and the rolling piston 8 is rotating in the direction of arrow A. Therefore, since high pressure gas is guided to the control port 18 via the back pressure pipe 29, the sliding wall material 1
4 overcomes the force of the spring 160 and closes the front space 2o.

この時、スライド壁材14の前面部は、スライド壁材1
4の背面にかかる高圧によって、収納室130当接面4
4に押し付けられた状態となり、シリンダ部5には、は
とんどクリアランス部を残さない。その為、制御ポート
18内の高圧冷媒がスライ%i 49を通ってシリンダ
部S内に漏れたり、シリンダ部6内の圧縮ガスが多量に
バイパス管31に漏れて、効率低下をもたらすことはな
い。又、この場合′、バイパス路21内は高圧となって
いる。従ってこの場合には、吸入口6からシリンダ部3
内に吸入された冷媒の大部分が吐出ロア、吐出弁10を
経て吐出管22へ吐出され、四方弁23よシ室内に設置
された利用側熱交換器24、減圧器26、熱源側熱交換
器26、四方弁23、アキュームレータ27、吸入管2
8を経て、再び吸入口より吸入される。この時、利用側
熱交換器24によって室内が高能力で暖房される。
At this time, the front part of the sliding wall material 14 is
Due to the high pressure applied to the back side of the storage chamber 130, the contact surface 4
4, leaving almost no clearance in the cylinder portion 5. Therefore, the high-pressure refrigerant in the control port 18 will not leak into the cylinder part S through the slide %i 49, nor will a large amount of compressed gas in the cylinder part 6 leak into the bypass pipe 31, resulting in a decrease in efficiency. . Further, in this case, the pressure inside the bypass passage 21 is high. Therefore, in this case, from the suction port 6 to the cylinder portion 3
Most of the refrigerant sucked into the chamber is discharged through the discharge lower and the discharge valve 10 to the discharge pipe 22, and is then transferred to the four-way valve 23, a user-side heat exchanger 24 installed in the chamber, a pressure reducer 26, and a heat source-side heat exchanger. container 26, four-way valve 23, accumulator 27, suction pipe 2
8, it is inhaled again from the inlet. At this time, the user-side heat exchanger 24 heats the room with high efficiency.

次に、室内温度が設定値に近づくと、温度調節器等によ
って第1の電磁弁30が閉鎖され、第2の電磁弁32が
一旦開放される。その為、制御ポート18及び背面空間
41内の高圧ガスは背圧逃がし通路33、バイパスポー
ト19、バネ付逆止弁装置37、および、バイパス路2
1よ゛リバイパス管31へ逃がされる。従って、スライ
ド壁材14はばね16によって押されて、第1図の如き
位置に戻る。次に第2の電磁弁32が閉鎖されると、シ
リンダ部5の圧縮ガスが前面空間20、バイパスポート
19より円形弁53を押し上げてバイパス路に侵入する
。その後、バイパス路21内が侵入ガス圧より高くなる
と、コイルはね660力も加わって円形弁63は弁座5
4を閉鎖した状態に保持される。その結果、シリンダ部
5に開口した前面空間20と、バイパスポート19から
ポート42までの空間が形成される。この空間に、・シ
リンダ部5内高圧室の冷媒ガスの一部が、圧縮途中に流
入し、ローリングピストン8が収納室13を通過後はシ
リンダ部5内低圧室へ戻る。その為、ローリングピスト
ン8が収納室13を通過した後のシリンダ部6の圧縮室
内の冷媒ガス重量は減少しており、吐出管22よす吐出
される冷媒は大巾に減少する。その結果、利用側熱交換
器24による暖房能力は高能力の6o%程度の中能力と
なる0なお、この場合、冷凍ザイクルの高圧が除霜等に
よって犬dJに低下しても、第1の逆止弁34を設けて
いる為にバイパス路21内の高圧は保持され、中能力を
保つ。
Next, when the indoor temperature approaches the set value, the first solenoid valve 30 is closed by a temperature controller or the like, and the second solenoid valve 32 is temporarily opened. Therefore, the high pressure gas in the control port 18 and the back space 41 is released through the back pressure relief passage 33, the bypass port 19, the spring-equipped check valve device 37, and the bypass passage 2.
1 is then released to the re-bypass pipe 31. Therefore, the sliding wall member 14 is pushed by the spring 16 and returns to the position as shown in FIG. Next, when the second electromagnetic valve 32 is closed, the compressed gas in the cylinder portion 5 pushes up the circular valve 53 from the front space 20 and the bypass port 19 and enters the bypass path. After that, when the pressure inside the bypass passage 21 becomes higher than the intruding gas pressure, the force of the coil spring 660 is also applied, and the circular valve 63 is moved against the valve seat 5.
4 is held closed. As a result, a front space 20 opened to the cylinder portion 5 and a space from the bypass port 19 to the port 42 are formed. A part of the refrigerant gas in the high pressure chamber within the cylinder section 5 flows into this space during compression, and after the rolling piston 8 passes through the storage chamber 13, it returns to the low pressure chamber within the cylinder section 5. Therefore, after the rolling piston 8 passes through the storage chamber 13, the weight of the refrigerant gas in the compression chamber of the cylinder portion 6 is reduced, and the amount of refrigerant discharged through the discharge pipe 22 is greatly reduced. As a result, the heating capacity of the heat exchanger 24 on the user side becomes a medium capacity of about 60% of the high capacity. Since the check valve 34 is provided, the high pressure inside the bypass passage 21 is maintained, and the medium capacity is maintained.

次に、室内温度が更に上昇して設定値に達すると温度調
節器によって第2の電磁弁32が開放されバイパス路2
1内は低圧となり、円形弁63は弁座54を開放する。
Next, when the indoor temperature further rises and reaches the set value, the second solenoid valve 32 is opened by the temperature controller, and the bypass path 2 is opened.
1 becomes low pressure, and the circular valve 63 opens the valve seat 54.

その為、シリンダ部5内の冷媒ガスの一部は、圧縮途中
、前面空間2oに流入し、又、その一部はバイパスポー
ト19より、ポート40を経てばね伺逆止弁装置34の
ばね力に打ち勝って円形弁53を開放し、バイパス路2
1より、バイパス管31を経てアキュームレータ27の
上流側へバイパスされる。その結果、ローリングピスト
ン8が収納室13を通過した後のシリンダ部6の圧縮室
内の冷媒ガス重量は、上記中能内時より更に減少してお
り、吐出管22より吐出される冷媒は大l]に減少する
。なお、この時、高圧ガスの一部は、背圧管29、第2
の減圧器33、第2の電磁弁32を経て、バイパス管3
1へ流出する。その結果、利用側熱交換器24によ゛る
暖房能力は高能力の30〜40%の低能力となり、暖房
負荷と平衡して、連続的な暖房が可能となる0なお冷房
時は、四方弁23が切換わるだけで、上記暖房時と同様
の作用である。
Therefore, part of the refrigerant gas in the cylinder part 5 flows into the front space 2o during compression, and part of the refrigerant gas flows from the bypass port 19 through the port 40 due to the spring force of the spring check valve device 34. The circular valve 53 is opened by overcoming the
1, it is bypassed to the upstream side of the accumulator 27 via the bypass pipe 31. As a result, the weight of the refrigerant gas in the compression chamber of the cylinder section 6 after the rolling piston 8 passes through the storage chamber 13 is further reduced than in the above-mentioned middle capacity, and the amount of refrigerant discharged from the discharge pipe 22 is large. ]. In addition, at this time, a part of the high pressure gas is transferred to the back pressure pipe 29, the second
The bypass pipe 3 passes through the pressure reducer 33 and the second solenoid valve 32.
Flows into 1. As a result, the heating capacity of the heat exchanger 24 on the user side becomes low, 30 to 40% of the high capacity, and in balance with the heating load, continuous heating is possible. Just by switching the valve 23, the operation is similar to that during heating.

以上の様に本実施例においては、第1.第2の電磁弁3
0.32の切換えによってスライド壁材を移動させ、又
、円形弁53の開閉を行なうことにより回転圧縮機の能
力を大巾に変化させ、冷暖房負荷に対応した空調が可能
である。又、第1の電磁弁3oが開放されて高圧冷媒が
制御ポート18に導入されてスライド壁材14が前面空
間20を9、高いシール性が得れるとともにシリンダ部
6にはほとんどクリアランス部を形成しない。その結果
、全能力運転時の圧縮容量制御機構12による効率低下
はほとんど無い。又、この時シリンダ部3の圧縮室冷媒
圧力は、スライド壁材14のスライド方向と直角な方向
に働らく為、収納室13をクランク角の大きい位置に設
けても、スライド壁材14が押し戻されることは無い。
As described above, in this embodiment, the first. Second solenoid valve 3
0.32 to move the sliding wall material, and by opening and closing the circular valve 53, the capacity of the rotary compressor can be changed widely, making it possible to perform air conditioning that corresponds to the heating and cooling load. In addition, the first electromagnetic valve 3o is opened and high-pressure refrigerant is introduced into the control port 18, and the slide wall material 14 closes the front space 20, achieving high sealing performance and forming almost a clearance part in the cylinder part 6. do not. As a result, there is almost no reduction in efficiency due to the compression capacity control mechanism 12 during full capacity operation. Also, at this time, the refrigerant pressure in the compression chamber of the cylinder section 3 acts in a direction perpendicular to the sliding direction of the slide wall material 14, so even if the storage chamber 13 is installed at a position with a large crank angle, the slide wall material 14 will not be pushed back. There's no chance of it happening.

従って、所望の容量制御率を自由に設計することが可能
であり、特に制御中を大きくするときに有効である。
Therefore, it is possible to freely design a desired capacity control rate, which is particularly effective when increasing the control rate.

又、この時、収納室13のシリンダ部5に面している辺
の両端部は、シリンダ部3には露出していない。その為
、スライド壁材14のこの両端部の角に形成されるわず
かなりリアランスボリュームはシリンダ部3に開口して
いない為、性能に影響し々い。又、この時収納室130
当接面44およびスライド壁材14の前面部は、共に平
面である為、この両者が尚接した場合の高いシール性を
出す為の加工も容易である。又、この時、スライド壁材
14は、その底面によってバイパスポート19を閉鎖す
る弁の役目も果しており、別個にバイパスポート弁を設
ける必要がない。
Further, at this time, both ends of the side of the storage chamber 13 facing the cylinder section 5 are not exposed to the cylinder section 3. Therefore, the slight rearance volumes formed at the corners of both ends of the slide wall material 14 do not open into the cylinder portion 3, and therefore have a significant effect on performance. Also, at this time, storage room 130
Since both the abutting surface 44 and the front surface of the slide wall material 14 are flat, it is easy to process the two to provide a high sealing performance when they are still in contact with each other. Further, at this time, the slide wall material 14 also serves as a valve for closing the bypass port 19 by its bottom surface, and there is no need to provide a separate bypass port valve.

次に、ばね付逆止弁装置34は、外枠62内に囲まれて
、一体型となっており、バイパス路21への組込みが容
易である。又、このばね付逆止弁装置34が回転圧縮機
本体1内部にある為に、前面空間20.凹部15、およ
び、バイパスポート19からポート40までの空間の合
計容積を適当な値に選定可能である。即ち、ばね付逆止
弁装置34をなくして、回転式圧縮機本体1の外部のバ
イパス路21近くに電磁弁を設け、この電磁弁の開閉に
よって中能力と低能力を切換えても、中能力は低能力と
ほぼ同程度の能力に低下してしまう。
Next, the spring-equipped check valve device 34 is surrounded by the outer frame 62 and is integrated, so that it can be easily incorporated into the bypass path 21. Also, since this spring-equipped check valve device 34 is located inside the rotary compressor main body 1, the front space 20. The total volume of the recess 15 and the space from the bypass port 19 to the port 40 can be selected to an appropriate value. That is, even if the spring-equipped check valve device 34 is eliminated and a solenoid valve is provided near the bypass path 21 outside the rotary compressor main body 1, and the medium capacity and low capacity are switched by opening and closing this solenoid valve, the medium capacity remains the same. The ability will be reduced to almost the same level as the low ability.

これは、上記合計容積を、シリンダ押除は容積の3A〜
1倍以下にしないと、円形弁63を開閉する効果が少な
い為である。
This is the total volume above, and the cylinder displacement is 3A~
This is because unless it is 1 times or less, the effect of opening and closing the circular valve 63 will be small.

次に、ばね16は断面形状を略長円とした為、凹部16
の深さが浅く出来、その結果、収納室13を設けた下軸
受部材4のフランジ部47の厚さを小さくすることが出
来る。
Next, since the spring 16 has a substantially oval cross-sectional shape, the recess 16
As a result, the thickness of the flange portion 47 of the lower bearing member 4 in which the storage chamber 13 is provided can be reduced.

発明の効果 以上の様に本発明の回転式圧縮機は、円筒部材と、この
円筒部材の上下端面を閉鎖する如く設けられた上下軸受
部材とで形成されるシリンダ部と、このシリンダ部内に
設けられた回転圧縮機構と、上記シリンダ部に開口する
吸入口と、吐出口とを設けるとともに、上記シリンダ部
の内壁の一部を構成し、かつ、可動自在なスライド壁材
と、上記スライド壁材を収納する収納室と、上記収納室
の上記スライド壁材の背面側に形成される背面空間と、
この背面空間に連通し」二記スライド壁洞にかかる背面
圧力を制御する制御ボートと、上記スライド壁材が移動
した場合に上記シリンダ部と連通ずる上記収納室の前面
空間と、この前面空間と連通ずるバイパスポートと、こ
のバイパスポートと連通ずるバイパス路と、このバイパ
ス路に設けられたバネ付逆止弁装置と、上記バイパスポ
ートと」二記背面空間を連通ずる背圧逃がし通路とで構
成される回転式圧縮機本体と、上記回転式圧縮機本体の
外部に設けられ、上記吸入口と連通ずる吸入管と、上記
吐出口と連通ずる吐出管と、上記吐出管と上記制御ポー
トとを第1の電磁弁を介して連通ずる背圧管と、上記バ
イパス路と上記吸入管とを第2の電磁弁を介して連通ず
るバイパス管と、上記第1の電磁弁と上記吐出管の中間
と、上記バイパス路と上記第2の電磁弁の中間とを第2
の減圧器を介して連結する高圧導入管とを設けたもので
あるから、回転式圧縮機の圧縮容量を、大きな範囲で三
段階に変化することが可能である・又、回転式圧縮機を
全能力で運転する場合、スライド壁材がシリンダの一部
を構成するとき、シリンダ部に余分のクリアランスボリ
ュームが形成されない為、性能の低下がない0又、回転
式圧縮本体外部には、第1及び第2の電磁弁2つだけの
開閉制御を行左うことにより、三段階制御が可能で、簡
単なシステムとなる。
Effects of the Invention As described above, the rotary compressor of the present invention includes a cylinder portion formed by a cylindrical member and upper and lower bearing members provided so as to close the upper and lower end surfaces of the cylindrical member, and a rotary compressor provided within the cylinder portion. a rotary compression mechanism, a suction port and a discharge port opening into the cylinder section, a movable sliding wall material forming a part of the inner wall of the cylinder section, and the sliding wall material. a storage chamber for storing; a rear space formed on the back side of the sliding wall material of the storage chamber;
a control boat that communicates with this back space and controls the back pressure applied to the slide wall cavity; a front space of the storage chamber that communicates with the cylinder section when the slide wall material moves; Consisting of a communicating bypass port, a bypass path communicating with the bypass port, a spring-loaded check valve device provided in the bypass path, and a back pressure relief passage communicating the bypass port and the rear space. a rotary compressor main body, a suction pipe provided outside the rotary compressor main body and communicating with the suction port, a discharge pipe communicating with the discharge port, and the discharge pipe and the control port. a back pressure pipe communicating through a first solenoid valve; a bypass pipe communicating the bypass path and the suction pipe through a second solenoid valve; and an intermediate between the first solenoid valve and the discharge pipe. , a second solenoid valve between the bypass passage and the second solenoid valve
Since the rotary compressor is equipped with a high pressure introduction pipe connected via a pressure reducer, it is possible to change the compression capacity of the rotary compressor in three stages over a wide range. When operating at full capacity, when the slide wall material forms a part of the cylinder, no extra clearance volume is formed in the cylinder section, so there is no deterioration in performance. By controlling the opening and closing of only two second electromagnetic valves, three-stage control is possible, resulting in a simple system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の回転式圧縮機を搭載した冷
凍サイクル図、第2図は第1図の回転式圧縮機の一部断
面図、第3図は第1図の下軸受部材の斜視図、第4図は
第1図のスライド壁材の斜視図、第6図は第1図のバネ
の斜視図、第6図はの ふだ板材の斜視図、第7図はばね付逆止弁装置竜断面図
である◇ 1・・・・・・回転式圧縮機、2・・・・・・円筒部材
、3・・・・・・上軸受部材、4・・・・・・下軸受部
材、5・・・・・・シリンダ部、6・・・・・・吸入口
、7・・・・・・吐出口、8・・・・・・ローリングピ
ストン(回転圧縮機構)、12・・・・・・圧縮容量制
御機構、13・・・・・・収納室、14・・・・・・ス
ライド壁材、18・・・・・・制御ボート、20・・・
・・・前面空間、21・・・・・・バイパス路、22・
・・・・・吐出管、28・・・・・・吸入管、29・・
・・・・背圧管、3Q・・・・・・第1の電磁弁、31
・・・・・・バイパス管、32・・・・・・第2の電磁
弁、33・・・・・・背圧逃がし通路、34・・・・・
・ばね付逆止弁装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 、?9 第4図 /7 第7図
Fig. 1 is a diagram of a refrigeration cycle equipped with a rotary compressor according to an embodiment of the present invention, Fig. 2 is a partial sectional view of the rotary compressor shown in Fig. 1, and Fig. 3 is a diagram of the lower bearing shown in Fig. 1. Figure 4 is a perspective view of the sliding wall material in Figure 1, Figure 6 is a perspective view of the spring in Figure 1, Figure 6 is a perspective view of the flap plate material, Figure 7 is the spring. This is a sectional view of a check valve device equipped with a dragon.◇ 1...Rotary compressor, 2...Cylindrical member, 3...Upper bearing member, 4...・Lower bearing member, 5...Cylinder part, 6...Suction port, 7...Discharge port, 8...Rolling piston (rotary compression mechanism), 12... Compression capacity control mechanism, 13... Storage chamber, 14... Slide wall material, 18... Control boat, 20...
... Front space, 21 ... Bypass path, 22.
...Discharge pipe, 28...Suction pipe, 29...
...Back pressure pipe, 3Q...First solenoid valve, 31
...Bypass pipe, 32...Second solenoid valve, 33...Back pressure relief passage, 34...
・Spring-equipped check valve device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3, ? 9 Figure 4/7 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 円筒部材と、この円筒部材の上下端面を閉鎖する如く設
けられた上下軸受部材とで形成されるシリンダ部と、こ
のシリンダ部内に設けられた回転圧縮機構と、上記シリ
ンダ部に開口する吸入口と、吐出口とを設けるとともに
、上記シリンダ部の内壁の一部を構成し、かつ、可動自
在なスライド壁材と、上記スライド壁材を収納する収納
室と、上記収納室の上記スライド壁材の背面側に形成さ
れる背面空間と、この背面空間に連通し上記スライド壁
材にかかる背面圧力を制御する制御ポートと、上記スラ
イド壁材1が移動した場合に上記シリンダ部と連通ずる
上記収納室の前面空間と、この前面空間と連通ずるバイ
パスポートと、このノ(イノぐスートと上記背面空間を
連通ずる背圧逃がし通路とで構成される回転式圧縮機本
体と、上記回転式圧縮機本体の外部に設けられ、上記吸
入口と連通ずる吸入管と、上記吐出口と連通ずる吐出管
と、上記吐出管と上記制御ポートとを第1の電磁弁を介
して連通ずる背圧管と、上記バイパス路と上記吸入管と
を第2の電磁弁を介して連通ずるバイパス管と、上記第
1の電磁弁と上記吐出管の中間と、上記バイパス路と上
記第2の電磁弁の中間とを第2の減圧器を介して連結す
る高圧導入管とを設けた回転式圧縮機。
A cylinder part formed by a cylindrical member and upper and lower bearing members provided so as to close the upper and lower end surfaces of the cylindrical member, a rotary compression mechanism provided in the cylinder part, and an inlet opening to the cylinder part. , a discharge port, a movable sliding wall material forming a part of the inner wall of the cylinder portion, a storage chamber for storing the sliding wall material, and a storage chamber for storing the sliding wall material of the storage chamber. A back space formed on the back side, a control port that communicates with the back space and controls the back pressure applied to the slide wall material, and the storage chamber that communicates with the cylinder section when the slide wall material 1 moves. A rotary compressor main body comprising a front space, a bypass port communicating with the front space, and a back pressure relief passage communicating the back space with the inogu soot, and the rotary compressor main body. a suction pipe that is provided externally and communicates with the suction port, a discharge pipe that communicates with the discharge port, a back pressure pipe that communicates the discharge pipe and the control port via the first electromagnetic valve; a bypass pipe communicating the bypass passage and the suction pipe via a second solenoid valve; an intermediate position between the first solenoid valve and the discharge pipe; and an intermediate position between the bypass passage and the second solenoid valve. A rotary compressor equipped with a high pressure introduction pipe connected via a second pressure reducer.
JP4152084A 1984-03-05 1984-03-05 Rotary compressor Pending JPS60184991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4152084A JPS60184991A (en) 1984-03-05 1984-03-05 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4152084A JPS60184991A (en) 1984-03-05 1984-03-05 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS60184991A true JPS60184991A (en) 1985-09-20

Family

ID=12610653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4152084A Pending JPS60184991A (en) 1984-03-05 1984-03-05 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS60184991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126289A (en) * 1985-11-25 1987-06-08 Toshiba Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126289A (en) * 1985-11-25 1987-06-08 Toshiba Corp Air conditioner

Similar Documents

Publication Publication Date Title
US5993177A (en) Scroll type compressor with improved variable displacement mechanism
JPS62197684A (en) Scroll compressor
JP4729773B2 (en) Scroll compressor
JPH09151867A (en) Capacitance control valve of scrolling compressor
KR100961301B1 (en) Hermetic compressor and refrigeration cycle device
US4558993A (en) Rotary compressor with capacity modulation
JP6109301B2 (en) Multi-cylinder rotary compressor and vapor compression refrigeration cycle apparatus equipped with the multi-cylinder rotary compressor
KR101157264B1 (en) Multicylindrical rotary compressor
JPS60184991A (en) Rotary compressor
JPS60184987A (en) Rotary compressor
JPS60184985A (en) Rotary compressor
JPS60184986A (en) Rotary compressor
JPS6032993A (en) Rotary compressor
JPS6161997A (en) Rotary compressor
JPS6032991A (en) Rotary compressor
JPS6032996A (en) Rotary compressor
JPS6032994A (en) Rotary comprssor
JPS60184988A (en) Rotary compressor
JPS6346714Y2 (en)
JPS6032995A (en) Rotary compressor
JP2777713B2 (en) Capacity control device for hermetic screw compressor
JPH10184568A (en) Scroll compressor and its back pressure chamber pressure control valve
JPS60184990A (en) Rotary compressor
JP2001165081A (en) Compressor and refrigerating or cooling device having refrigerating cycle with the compressor
JP2000291573A (en) Scroll compressor