JPS63199980A - Pilot proportional valve - Google Patents

Pilot proportional valve

Info

Publication number
JPS63199980A
JPS63199980A JP62032471A JP3247187A JPS63199980A JP S63199980 A JPS63199980 A JP S63199980A JP 62032471 A JP62032471 A JP 62032471A JP 3247187 A JP3247187 A JP 3247187A JP S63199980 A JPS63199980 A JP S63199980A
Authority
JP
Japan
Prior art keywords
valve
sub
valve body
main
fluid passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62032471A
Other languages
Japanese (ja)
Inventor
Masakazu Isobe
磯部 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP62032471A priority Critical patent/JPS63199980A/en
Publication of JPS63199980A publication Critical patent/JPS63199980A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make heating and cooling performable simultaneously at the time of dehumidification, by installing a pilot proportional valve in space between two room heat exchangers. CONSTITUTION:A second sub-valve seat 22, where a second sub-fluid passage to be interconnected to a main valve chamber 1a is opened, is installed in a sub-valve chamber 1b. And, a first sub-valve body 4 is energized toward a first sub-valve seat 14 by a first spring 3, and also a second sub-valve body 6 is energized toward the second sub-valve body 22 by a second spring 5. In addition, there is provided with a valve driving rod 9 which separates the firs sub-valve body 4 from the first sub-valve seat 14 steplessly according to rotation of a motor. With this constitution, heating or cooling can be made possible to be done simultaneously at the time of dehumidification.

Description

【発明の詳細な説明】 〔発明の目的〕 童栗上少肌里分立 本発明はヒートポンプ式冷暖房装置における冷媒の流量
制御などに用いる比例弁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a proportional valve used for controlling the flow rate of refrigerant in a heat pump type air-conditioning device.

従来勿茨血 ヒートポンプ式冷暖房装置は冷媒の流通方向を逆転する
ことによって冷暖房の切換えを行なうが、除湿をも行な
おうとすると、室内熱交換器を冷却用と再加熱用の2個
に分割して、その間に膨張器を設けるような冷媒回路を
構成する必要がある。
Conventional Ibaraki heat pump type air-conditioning systems switch between heating and cooling by reversing the flow direction of the refrigerant, but if dehumidification is also attempted, the indoor heat exchanger must be divided into two parts, one for cooling and one for reheating. Therefore, it is necessary to construct a refrigerant circuit that includes an expander between them.

かかる冷媒回路の改良例が特開昭58−106369号
に開示されている(第8図)。この回路においては、室
外熱交換器Cと室内熱交換器すとの間に可逆流通性を有
する膨張弁fを設け、室内熱交換器a、b間にキャピラ
リーチューブhと二方電磁弁gとを並列として設けであ
る。そして、通常の冷房または暖房時には電磁弁gを開
いて室内熱交換器a、bを共に冷却または加熱用として
用い、除湿時には電磁弁gを閉じて室内熱交換器すを加
熱用にまた室内熱交換器aを冷却用に用いるものである
。dは圧縮機、eは四方弁である。
An improved example of such a refrigerant circuit is disclosed in Japanese Patent Application Laid-Open No. 58-106369 (FIG. 8). In this circuit, an expansion valve f having reversible flow is provided between the outdoor heat exchanger C and the indoor heat exchanger S, and a capillary tube h and a two-way solenoid valve g are provided between the indoor heat exchangers a and b. are set up in parallel. During normal cooling or heating, the solenoid valve g is opened to use both indoor heat exchangers a and b for cooling or heating, and during dehumidification, the solenoid valve g is closed and the indoor heat exchanger is used for heating and indoor heat exchange. Exchanger a is used for cooling. d is a compressor, and e is a four-way valve.

ところが、このような回路における電磁弁gとしては、
冷房または暖房時の冷媒の流通を妨げないために大型の
ものである必要がある。そしてまた、膨張器としてキャ
ピラリーチューブhを用いているから除湿時に室温の上
昇や低下を制御することができず、除湿と同時に室温の
調節をしようとするとキャピラリーチューブの代りに少
流量の多段制御または連続的制御ができる弁、たとえば
電動式弁などを用いる必要がある。
However, as a solenoid valve g in such a circuit,
It needs to be large so as not to obstruct the flow of refrigerant during cooling or heating. Furthermore, since the capillary tube h is used as an expander, it is not possible to control the rise or fall of the room temperature during dehumidification, and if you try to adjust the room temperature at the same time as dehumidification, instead of using the capillary tube, you can use multi-stage control with a small flow rate or It is necessary to use a valve that can be continuously controlled, such as an electrically operated valve.

”しよ゛と るロ 占 上述のように、冷暖房および除湿ができる従来の空調装
置において除湿時にも快適な環境を実現するため多少の
冷却や加温をしようとすると、キャピラリーチューブに
代えて、大型で高価な制御弁を負荷しなければならず、
必然的に複数の制御弁の作動を同期させるための制御装
置が複雑となり、大型となると共にコストが上昇すると
いう問題がある。
As mentioned above, when trying to provide some cooling or heating to create a comfortable environment during dehumidification with conventional air conditioners that can perform cooling, heating, and dehumidification, instead of capillary tubes, Large and expensive control valves must be loaded;
Inevitably, a control device for synchronizing the operations of a plurality of control valves becomes complicated, resulting in a problem of increased size and cost.

そこで本発明は、このような2個の室内熱交換器の間に
設けられて冷媒の流量制御を行なう装置の機能を高める
と共にコンパクト化し、また同時にコスト上昇を防ぐこ
とを目的としたものであり、またかかる目的に合致した
小型の膨張弁兼用の流量制御弁を提供しようとするもの
である。
Therefore, the present invention aims to improve the functionality of a device installed between two indoor heat exchangers to control the flow rate of refrigerant, make it more compact, and at the same time prevent cost increases. Another object of the present invention is to provide a small-sized flow control valve that also functions as an expansion valve and meets the above objectives.

〔発明の構成〕[Structure of the invention]

。 占  ゛  るための 前記のような本発明の目的は、弁室底面に第1主流体通
路が開口する主弁座と弁室上面に第1主流体通路から分
岐した第1副流体通路が開口する第1副弁座と弁室側壁
に第2主流体通路開口とを設けた弁本体と、弁室内にピ
ストン状に嵌合して弁室を主弁室と副弁室とに区画しか
つ主弁座を閉止できる主弁体であって副弁室側に主弁室
側と連通ずる第2副流体通路が開口する第2副弁座を設
けたものと、第1副弁座を閉止できる第1副弁体であっ
て主弁体との間に設けられた第1ばねによって第1副弁
座に向けて付勢されているものと、第1副弁体の主弁体
側に設けられ第2副弁座を閉止できる第2副弁体であっ
て第1副弁体との間に設けられた第2ばねによって第2
副弁座に向けて付勢されていると共に第1副弁体からの
突出長さが制限されたものと、モータの回転に応じて第
1副弁体を第1副弁座から無段階に離隔させることがで
きる弁駆動棒と、を備えてなるバイロフト式比例弁によ
って達成される。
. The object of the present invention as described above is to provide a main valve seat in which a first main fluid passage is opened at the bottom of the valve chamber, and a first auxiliary fluid passage branched from the first main fluid passage is opened at the top of the valve chamber. a valve body having a first auxiliary valve seat and a second main fluid passage opening on a side wall of the valve chamber; and a valve body that fits into the valve chamber like a piston to divide the valve chamber into a main valve chamber and a auxiliary valve chamber; A main valve body that can close the main valve seat, and is provided with a second sub-valve seat in which a second sub-fluid passage communicating with the main valve chamber opens on the sub-valve chamber side, and a first sub-valve seat that can close the first sub-valve seat. A first sub-valve body that can be biased toward the first sub-valve seat by a first spring provided between the first sub-valve body and a first sub-valve body provided on the main valve body side of the first sub-valve body. A second sub-valve body that can close the second sub-valve seat by a second spring provided between the second sub-valve seat and the first sub-valve body.
One is biased toward the sub-valve seat and has a limited protrusion length from the first sub-valve element, and the other is one in which the first sub-valve element is moved steplessly from the first sub-valve seat in accordance with the rotation of the motor. This is accomplished by a biloft proportional valve comprising a valve drive rod that can be spaced apart.

このような本発明のパイロット式比例弁の例を第1図に
示すが、弁本体1には円筒形の弁室10が形成されてお
り、その底面には流体通路Aが開口する主弁座12、そ
の側面には流体通路Bの開口部13、またその上面には
流体通路Aから分岐した流体通路Cが開口する第1副弁
座14が設けられている。弁室10内にはピストン状の
主弁体2が上下摺動可能に設けられており、弁室10を
主弁室1aと副弁室1bとに区画している。また、主弁
体2には主弁室1aに一方端が開放された流体通路21
が副弁室1b側に開口し、第2副弁座22が形成されて
いる。
An example of such a pilot type proportional valve according to the present invention is shown in FIG. 1, in which a cylindrical valve chamber 10 is formed in the valve body 1, and a main valve seat into which a fluid passage A opens is formed on the bottom surface of the valve chamber 10. 12, an opening 13 for a fluid passage B is provided on its side surface, and a first sub-valve seat 14 is provided on its upper surface into which a fluid passage C branched from the fluid passage A opens. A piston-shaped main valve body 2 is provided in the valve chamber 10 so as to be slidable up and down, and divides the valve chamber 10 into a main valve chamber 1a and a sub-valve chamber 1b. The main valve body 2 also has a fluid passage 21 which is open at one end to the main valve chamber 1a.
opens toward the sub-valve chamber 1b side, and a second sub-valve seat 22 is formed.

主弁体2の上部は円筒状に形成され、その中に第1ばね
3が収容されると共に第1副弁体4が第1ばね3を圧縮
する状態で設けられている。
The upper part of the main valve body 2 is formed into a cylindrical shape, and the first spring 3 is accommodated therein, and the first sub-valve body 4 is provided to compress the first spring 3.

第1副弁体4はそれ自体も円筒形状に形成され、第1副
弁座14に対向する位置にニードル41を備えていて、
第1パイロツト弁を構成している。
The first sub-valve body 4 itself is formed in a cylindrical shape, and is provided with a needle 41 at a position facing the first sub-valve seat 14.
It constitutes the first pilot valve.

また第1副弁体4の円筒部下端には内向きの係止部42
が設けられていて、円筒形状の第2副弁体6の上端に設
けられた外向きの係止部61と係合できるようになって
いる。第1副弁体4と第2副弁体6の夫々の円筒部の内
部には第2ばね5が収容され、第1副弁体4から第2副
弁体6を押し出す方向に付勢しているが、係止部42と
係止部61とが係合し、第2副弁体6は第1副弁体4か
ら離脱できないようになっている。
In addition, an inward locking portion 42 is provided at the lower end of the cylinder of the first sub-valve body 4.
is provided so that it can engage with an outward locking portion 61 provided at the upper end of the cylindrical second sub-valve body 6. A second spring 5 is housed inside the cylindrical portion of each of the first sub-valve body 4 and the second sub-valve body 6, and urges the second sub-valve body 6 from the first sub-valve body 4. However, the locking portion 42 and the locking portion 61 are engaged, and the second sub-valve body 6 cannot be separated from the first sub-valve body 4.

また、第2副弁体6の下面62は、主弁体2に設けられ
た第2副弁座22と対向していて、第2パイロツト弁を
構成している。
Further, the lower surface 62 of the second sub-valve body 6 faces the second sub-valve seat 22 provided on the main valve body 2, and constitutes a second pilot valve.

弁本体1の上部には外面に雄ねじが形成されたガイド7
が植立されており、ステッピングモータ8のロータ81
がガイド7に沿って回転移動できるように螺合されてい
る。82はロータ81を囲む密閉ケースであり、83は
密閉ケース82の外側に固定されたステータである。ま
た84はロータ81の端面に接するように設けられた滑
り用ワッシャで、回転するロータ81のガイド7の軸方
向への移動量のみを推力受け85を介して弁駆動棒9,
9へ伝達するように構成されている。
At the upper part of the valve body 1, there is a guide 7 having a male thread formed on the outer surface.
is planted, and the rotor 81 of the stepping motor 8
are screwed together so that they can rotate and move along the guide 7. 82 is a sealed case surrounding the rotor 81, and 83 is a stator fixed to the outside of the sealed case 82. Further, 84 is a sliding washer provided so as to be in contact with the end surface of the rotor 81, and only the amount of movement of the rotating rotor 81 in the axial direction of the guide 7 is transmitted through the thrust receiver 85 to the valve drive rod 9,
9.

弁駆動棒9,9は弁本体1の上部壁を貫いて摺動可能に
設けられ、第1副弁体4を弁の軸線方向に押し下げて、
第1バイロフト弁を開くように作動する。そして、ロー
タ81が逆回転して上方に移動すると、第1ばね3が第
1副弁体4を押し上げると共に弁駆動棒9をも同時に押
し上げて、第1パイロツト弁が閉じるように作動する。
The valve drive rods 9, 9 are slidably provided through the upper wall of the valve body 1, and push down the first sub-valve body 4 in the axial direction of the valve.
Operates to open the first virofft valve. When the rotor 81 reversely rotates and moves upward, the first spring 3 pushes up the first sub-valve body 4 and simultaneously pushes up the valve drive rod 9, so that the first pilot valve closes.

上記のように構成された本発明のパイロット式比例弁は
、弁駆動棒9がモータ8の回転に応じて弁室内に向って
突出し、また引込むようになっており、最も引込んだと
きには第1ばね3の力によって主弁体2と第1副弁体4
とがそれぞれ押されて、主弁と第1パイロツト弁との双
方共に第1図の如く閉じている。この場合、流体通路A
から流体通路Bへ向う流体は第1ばね3を圧縮しなから
主弁体2を押上げて流れるので大流量でも通すことがで
きる(第2図)が、逆に流体通路Bから流体通路への方
向には流れることができない(第1図)。
In the pilot type proportional valve of the present invention configured as described above, the valve drive rod 9 protrudes toward the inside of the valve chamber and retracts in accordance with the rotation of the motor 8, and when retracted the most, the first spring The force of 3 causes the main valve body 2 and the first sub-valve body 4 to
are pushed, and both the main valve and the first pilot valve are closed as shown in FIG. In this case, fluid passage A
The fluid flowing from the main valve body 2 to the fluid passage B pushes up the main valve body 2 without compressing the first spring 3, so it can pass even at a large flow rate (Fig. 2). It cannot flow in the direction of (Figure 1).

次いでモータ8の回転に応じて弁駆動棒9が第1副弁体
4を押すと第1パイロツト弁が少しずつ開く。この状態
では第2副弁体6は第2副弁座22から離れたままであ
るから、流体通路Bから流入する流体は主弁室1aと副
弁室1bとを同時に加圧するので主弁は開かない。その
ため流体は流体通路21から第2パイロツト弁を通り副
弁室1bに入り、さらに第1パイロツト弁と流体通路C
を経て流体通路Aに向う(第3図)。この状態において
は、流体が逆に流体通路Aから流体通路Bに向うときも
同様な経路を逆に通って流れることができる。
Next, when the valve drive rod 9 pushes the first sub-valve body 4 in accordance with the rotation of the motor 8, the first pilot valve opens little by little. In this state, the second sub-valve body 6 remains separated from the second sub-valve seat 22, so the fluid flowing in from the fluid passage B pressurizes the main valve chamber 1a and the sub-valve chamber 1b at the same time, so that the main valve does not open. do not have. Therefore, the fluid passes through the second pilot valve from the fluid passage 21, enters the auxiliary valve chamber 1b, and then flows through the first pilot valve and the fluid passage C.
and then toward fluid passage A (Fig. 3). In this state, when the fluid goes from the fluid passage A to the fluid passage B, it can flow through the same path in reverse.

更に弁駆動棒9が第1副弁体4を押すと第1パイロツト
弁が更に開き、開度に応じて流体通路Cへ向う流体量が
増加する。このようにして、弁駆動棒9によって更に第
1副弁体4を押し下げてゆ(と第1パイロツト弁の開度
は更に大きくなるが、一方第2副弁体6が第2副弁座2
2に接近するから、流体通路Cへ向う流体量が制限され
る(第4図)。そして副弁室1b内の圧が低下するよう
になり、主弁体2の下面にかかる主弁室1aの圧力と上
面にがかる副弁室1bの圧力との差によって主弁体2は
第1ばね3および第2ばね5の力に抗して押し上げられ
る。このとき第2パイロツト弁は閉じ、流体通路Bから
の流体は開放された主弁を通り流体通路Aに向って大量
に流れるようになる(第5図)。
When the valve drive rod 9 further pushes the first sub-valve body 4, the first pilot valve opens further, and the amount of fluid flowing toward the fluid passage C increases in accordance with the degree of opening. In this way, the first sub-valve body 4 is further pushed down by the valve drive rod 9 (and the opening degree of the first pilot valve becomes even larger), but on the other hand, the second sub-valve body 6 is pushed down further by the second sub-valve seat
2, the amount of fluid flowing toward the fluid passage C is limited (FIG. 4). Then, the pressure in the sub-valve chamber 1b begins to decrease, and the difference between the pressure in the main valve chamber 1a applied to the bottom surface of the main valve body 2 and the pressure in the sub-valve chamber 1b applied to the top surface causes the main valve body 2 to It is pushed up against the forces of the spring 3 and the second spring 5. At this time, the second pilot valve is closed, and a large amount of fluid from fluid passage B flows toward fluid passage A through the opened main valve (FIG. 5).

このような本発明のパイロット式比例弁を2個の室内熱
交換器の間に設けた冷暖房装置の冷媒回路(冷房・除湿
時)を第6図に示す。本発明のパイロット式比例弁をV
で表わしたほか、他の機器等は従来技術を示した第8図
と同じ記号で表わした。この冷媒回路において、除湿を
行なうために膨張弁fを開いたときの比例弁■の流量特
性を第7図に示す。図中、■は第1パイロツト弁の開度
0の第1図の状態すなわち主弁全開の暖房運転に適した
状態であり、■は第2パイロツト弁の開度0すなわち第
1パイロツト弁の開放の第5図の状態すなわち主弁全開
の冷房運転に通した状態である。そしてこの中間の■は
主弁閉止の除湿運転に適した状態である。
FIG. 6 shows a refrigerant circuit (during cooling/dehumidification) of an air-conditioning system in which the pilot type proportional valve of the present invention is provided between two indoor heat exchangers. The pilot type proportional valve of the present invention is
In addition to this, other devices are shown using the same symbols as in FIG. 8, which shows the prior art. In this refrigerant circuit, FIG. 7 shows the flow rate characteristics of the proportional valve (2) when the expansion valve (f) is opened for dehumidification. In the figure, ■ is the state shown in Figure 1 where the opening of the first pilot valve is 0, which is a state suitable for heating operation with the main valve fully open, and ■ is the state where the opening of the second pilot valve is 0, that is, the first pilot valve is open. This is the state shown in FIG. 5, that is, the state of cooling operation with the main valve fully open. The middle ■ is a state suitable for dehumidifying operation with the main valve closed.

〔発明の効果〕〔Effect of the invention〕

本発明のパイロット式比例弁は、除湿を行なうことがで
きるヒートポンプ式冷暖房装置の2個の室内熱交換器の
間に取り付けることにより、除湿時に同時に加温または
冷却することが自由に行なえるようになったもので、機
能の高度化に拘らず冷媒回路を簡素化することができる
。そしてかかる本発明の比例弁は小型であって大流量の
流体を流すことができ、しかも経済的な冷暖房装置を構
成することができる利点がある。
By installing the pilot type proportional valve of the present invention between two indoor heat exchangers of a heat pump type air conditioning system that can perform dehumidification, it is possible to freely perform heating or cooling at the same time as dehumidification. This makes it possible to simplify the refrigerant circuit regardless of the sophistication of its functions. The proportional valve of the present invention has the advantage of being small in size, allowing a large flow of fluid to flow, and being able to construct an economical heating and cooling system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバイロフト式比例弁の実施例の縦断面
図、 第2〜5図はそれぞれその作動状態を示す説明図、 第6図は本発明のパイロット式比例弁を利用した冷暖房
装置の回路図、 第7図は本発明のパイロット式比例弁の流量制御特性を
示すグラフ、 第8図は従来の除湿機能付きの冷暖房装置の回路図であ
る。 1・・・弁本体、2・・・主弁体、3・・・第1ばね、
4・・・第1副弁体、5・・・第2ばね、6・・・第2
副弁体、7・・・ガイド、8・・・モータ、9・・・弁
駆動棒、A、B。 C・・・流体通路、a、b・・・室内熱交換器、C・・
・室外熱交換器、d・・・圧縮機、e・・・四方切換弁
、f・・・膨張弁、g・・・電磁二方弁、h・・・キャ
ピラリーチェーブ、■・・・パイロット式比例弁。 第1図 A−BB−C−A B −C−A            B 、A第4図
    第5図 ■ 第6■ 第7図
Fig. 1 is a vertical cross-sectional view of an embodiment of the biloft type proportional valve of the present invention, Figs. 2 to 5 are explanatory diagrams showing the operating states thereof, and Fig. 6 is an air conditioning system using the pilot type proportional valve of the present invention. FIG. 7 is a graph showing the flow rate control characteristics of the pilot type proportional valve of the present invention. FIG. 8 is a circuit diagram of a conventional air-conditioning device with a dehumidifying function. 1... Valve body, 2... Main valve body, 3... First spring,
4...First sub-valve body, 5...Second spring, 6...Second
Sub-valve body, 7... Guide, 8... Motor, 9... Valve drive rod, A, B. C...Fluid passage, a, b...Indoor heat exchanger, C...
・Outdoor heat exchanger, d...Compressor, e...Four-way switching valve, f...Expansion valve, g...Solenoid two-way valve, h...Capillary tube, ■...Pilot formula proportional valve. Figure 1 A-BB-C-A B -C-A B , A Figure 4 Figure 5 ■ Figure 6 ■ Figure 7

Claims (1)

【特許請求の範囲】[Claims] 弁室底面に第1主流体通路が開口する主弁座と弁室上面
に第1主流体通路から分岐した第1副流体通路が開口す
る第1副弁座と弁室側壁に第2主流体通路開口とを設け
た弁本体と、弁室内にピストン状に嵌合して弁室を主弁
室と副弁室とに区画しかつ主弁座を閉止できる主弁体で
あって副弁室側に主弁室側と連通する第2副流体通路が
開口する第2副弁座を設けたものと、第1副弁座を閉止
できる第1副弁体であって主弁体との間に設けられた第
1ばねによって第1副弁座に向けて付勢されているもの
と、第1副弁体の主弁体側に設けられ第2副弁座を閉止
できる第2副弁体であって第1副弁体との間に設けられ
た第2ばねによって第2副弁座に向けて付勢されている
と共に第1副弁体からの突出長さが制限されたものと、
モータの回転に応じて第1副弁体を第1副弁座から無段
階に離隔させることができる弁駆動棒と、を備えてなる
パイロット式比例弁。
A main valve seat with a first main fluid passage opening on the bottom surface of the valve chamber, a first sub-valve seat with a first sub-fluid passage branched from the first main fluid passage opening on the top surface of the valve chamber, and a second main fluid passage on the side wall of the valve chamber. A main valve body having a passage opening and a main valve body that fits into the valve chamber like a piston to divide the valve chamber into a main valve chamber and a sub-valve chamber and close the main valve seat, and a sub-valve chamber. A second auxiliary valve seat provided with a second auxiliary fluid passage opening on the side that communicates with the main valve chamber side, and a first auxiliary valve body that can close the first auxiliary valve seat and between the main valve body. A second sub-valve body is provided on the main valve body side of the first sub-valve body and can close the second sub-valve seat. the valve body is biased toward the second sub-valve seat by a second spring provided between the valve body and the first sub-valve body, and the length of protrusion from the first sub-valve body is limited;
A pilot type proportional valve comprising: a valve drive rod capable of steplessly separating a first sub-valve element from a first sub-valve seat in accordance with rotation of a motor.
JP62032471A 1987-02-17 1987-02-17 Pilot proportional valve Pending JPS63199980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032471A JPS63199980A (en) 1987-02-17 1987-02-17 Pilot proportional valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032471A JPS63199980A (en) 1987-02-17 1987-02-17 Pilot proportional valve

Publications (1)

Publication Number Publication Date
JPS63199980A true JPS63199980A (en) 1988-08-18

Family

ID=12359888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032471A Pending JPS63199980A (en) 1987-02-17 1987-02-17 Pilot proportional valve

Country Status (1)

Country Link
JP (1) JPS63199980A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183776A (en) * 1989-01-06 1990-07-18 Matsushita Electric Ind Co Ltd Air conditioner
JPH02183777A (en) * 1989-01-06 1990-07-18 Matsushita Electric Ind Co Ltd Air conditioner
JPH043177U (en) * 1990-04-23 1992-01-13
JP2008064301A (en) * 2006-08-07 2008-03-21 Fuji Koki Corp Pilot type control valve
JP2012002251A (en) * 2010-06-15 2012-01-05 Tgk Co Ltd Control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183776A (en) * 1989-01-06 1990-07-18 Matsushita Electric Ind Co Ltd Air conditioner
JPH02183777A (en) * 1989-01-06 1990-07-18 Matsushita Electric Ind Co Ltd Air conditioner
JPH043177U (en) * 1990-04-23 1992-01-13
JP2008064301A (en) * 2006-08-07 2008-03-21 Fuji Koki Corp Pilot type control valve
JP2012002251A (en) * 2010-06-15 2012-01-05 Tgk Co Ltd Control valve

Similar Documents

Publication Publication Date Title
JP5022120B2 (en) Motorized valves for air conditioning systems
JP6079397B2 (en) Flow control valve for refrigeration cycle
US7854390B2 (en) Expansion valve, heat pump type refrigeration cycle apparatus, and air handling unit
JPH0744775Y2 (en) Compressor capacity control device
JPH0665915B2 (en) Reversible electric expansion valve
US3367130A (en) Expansion valve and refrigeration system responsive to subcooling temperature
US4976286A (en) Four-way slide valve
EP2479520B1 (en) Three-way electromagnetic valve
JP2012225438A (en) Control valve
JP4056378B2 (en) Differential pressure valve
US5038579A (en) Dual flow variable area expansion device for heat pump system
JPS63199980A (en) Pilot proportional valve
US4055056A (en) Reversible refrigerant system and four-way reversing valve therefor or the like
US5029454A (en) Dual flow variable area expansion device for heat pump system
JP2516626B2 (en) Two-stage pressure reducing valve
JP7350888B2 (en) Refrigeration cycle equipment
JPH06221723A (en) Four-way switch valve for air conditioner
US3972347A (en) Reversible refrigerant system and four-way reversing valve therefor or the like
US2889690A (en) Valve structure
JPH0316513B2 (en)
JP3150791B2 (en) Refrigerant control valve and refrigeration cycle device
JP2645854B2 (en) Two-stage expansion valve
JPS6260586B2 (en)
KR100882518B1 (en) A thermostatic expansion valve for variable capacity in used air conditioner
JPH0639184Y2 (en) Bidirectional solenoid valve