JP2580210B2 - Five-way reversing valve - Google Patents

Five-way reversing valve

Info

Publication number
JP2580210B2
JP2580210B2 JP62285524A JP28552487A JP2580210B2 JP 2580210 B2 JP2580210 B2 JP 2580210B2 JP 62285524 A JP62285524 A JP 62285524A JP 28552487 A JP28552487 A JP 28552487A JP 2580210 B2 JP2580210 B2 JP 2580210B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
compressor
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62285524A
Other languages
Japanese (ja)
Other versions
JPH01127868A (en
Inventor
茂 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP62285524A priority Critical patent/JP2580210B2/en
Publication of JPH01127868A publication Critical patent/JPH01127868A/en
Application granted granted Critical
Publication of JP2580210B2 publication Critical patent/JP2580210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖切換型の可逆冷凍サイクルに用いられる
除霜用弁付きの五方逆転弁に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a five-way reversing valve with a defrosting valve used in a reversible refrigeration cycle of a cooling / heating switching type.

従来の技術 可逆冷凍サイクルの暖房運転時に蒸発器として使用し
ている室外熱交換器に付着した霜を除去するに際して
は、従来は切換弁を作動させて冷房運転に切換えること
により室外熱交換器を凝縮器として用いてその発熱によ
り除霜している。
2. Description of the Related Art Conventionally, when removing frost adhering to an outdoor heat exchanger used as an evaporator during a heating operation of a reversible refrigeration cycle, the outdoor heat exchanger is operated by operating a switching valve to switch to a cooling operation. It is used as a condenser and is defrosted by its heat generation.

しこし、この方法では切換弁の作動時に高圧の流れに
よる大きな騒音が発生し、また短時間ではあるが冷房運
転に切換えるので装置の効率の良い運転が出来ない等の
欠点があった。
However, this method has drawbacks such as generation of loud noise due to the high pressure flow when the switching valve is operated, and switching to the cooling operation for a short time, so that the device cannot be operated efficiently.

発明が解決しようとする問題点 本発明は上記した点に着目して為されたものであり、
暖房運転のままにおける冷凍サイクルの作動状態におい
て、五方切換弁の除霜用弁を作動させて高圧ガスを室外
熱交換器へ送って除霜するようにしたものである。
Problems to be Solved by the Invention The present invention has been made by focusing on the above points,
In the operating state of the refrigeration cycle in the heating operation, the defrosting valve of the five-way switching valve is operated to send high-pressure gas to the outdoor heat exchanger for defrosting.

問題点を解決するための手段 上記の目的を達成するため、本発明においては、シリ
ンダ状の逆転弁本体内をピストンにより高圧室と圧力変
換室に区画し、高圧室に圧縮機の吐出管に対する接続口
と、圧縮機の吸入管に対する接続口及び該接続口を挟ん
で室外と室内の2個の熱交換器用導管に対する接続口と
を設け、吸入管に対する接続口から2個の熱交換器用導
管に対する接続口にかけて一連の切換用弁シートを設
け、切換用弁シートに摺接するスライドバルブをピスト
ンに連結し、ピストンに高圧室と圧力変換室を連通させ
る均圧孔を形成し、ピストンを高圧室方向に付勢するば
ねを設け、圧力変換室に対し該均圧孔より大径の圧力逃
し口を有していて圧縮機の吸入側に連通する導管を接続
し、高圧室内に室外熱交換器にいたる別の導管に対する
別の接続口を設け、他の圧力変換室と高圧室との間にお
いてばねにより高圧室方向に付勢されるピストン部材と
これに連動して該別の接続口を開閉する除霜用弁を設
け、該他の圧力変換室に圧縮機の吸入側に連通する導管
を接続し、圧縮機の吸入側に連通する上記2本の導管の
間に三方電磁弁を介在させ、該三方電磁弁の動作時にお
いて両方の圧力変換室を圧縮機の吸入側に連通させる構
成を採用した。
Means for Solving the Problems In order to achieve the above object, in the present invention, the inside of a cylindrical reversing valve body is partitioned into a high-pressure chamber and a pressure conversion chamber by a piston, and the high-pressure chamber is provided for a discharge pipe of a compressor. A connection port, a connection port for a suction pipe of the compressor, and a connection port for two heat exchanger conduits both indoor and outdoor with the connection port interposed therebetween; and two heat exchanger conduits from the connection port for the suction pipe A series of switching valve seats are provided over the connection port to the valve, a slide valve that slides on the switching valve seat is connected to the piston, and a pressure equalizing hole that connects the high pressure chamber and the pressure conversion chamber to the piston is formed. A pressure spring having a larger diameter than the pressure equalizing hole and connecting a conduit communicating with the suction side of the compressor to the pressure conversion chamber. In another conduit to A defrosting valve for providing a separate connection port to the other pressure conversion chamber and biasing the high pressure chamber by a spring between the other pressure conversion chamber and the high pressure chamber and opening and closing the another connection port in conjunction with the piston member A conduit communicating with the suction side of the compressor is connected to the other pressure conversion chamber, and a three-way solenoid valve is interposed between the two conduits communicating with the suction side of the compressor; During the operation, the pressure conversion chambers are connected to the suction side of the compressor.

実施例 第1図乃至第4図において、V1は五方逆転弁、V2は三
方電磁弁を示す。
In Figure 1 through Figure 4 embodiment, V 1 is five-way reversing valve, V 2 denotes a three-way solenoid valve.

1はシリンダ状の逆転弁本体であり、両端部に栓体、
2,3が設けられている。逆転弁本体1において、周面の
1側には圧縮機4の吐出管5が連結され、周面の他側に
は軸方向において圧縮機4の吸入管6を挟んで2本の導
管7,8が連結される。導管7,8は凝縮機又は蒸発器として
逆転的に使用される室外熱交換器9と室内熱交換器10に
連結される。吸入管6と導管7,8の内端は逆転弁本体1
内に固着される切換用弁シート11の3個の通孔11a,11b,
11cに接続され、弁シート11の内側には一連の平滑面11d
が形成される。
Reference numeral 1 denotes a cylindrical reversing valve main body, and plugs are provided at both ends.
A few are provided. In the reversing valve body 1, the discharge pipe 5 of the compressor 4 is connected to one side of the peripheral surface, and two conduits 7, 8 are linked. The conduits 7, 8 are connected to an outdoor heat exchanger 9 and an indoor heat exchanger 10, which are used in reverse as a condenser or evaporator. The suction pipe 6 and the inner ends of the conduits 7 and 8 are the reversing valve body 1
The three through holes 11a, 11b,
11c, a series of smooth surfaces 11d inside the valve seat 11.
Is formed.

逆転弁本体1内において、弁シート11と栓体3間にお
いてピストン12が摺動自在に設けられ、逆転弁本体1内
を高圧室R1と圧力変換室R2に区画する。ピストン12と栓
体3間には圧縮ばね13が設けられ、ピストン12は高圧室
R1方向に常時付勢されている。ピストン12には高圧室R1
と圧力変換室R2を常時連通させる均圧孔12aが形成さ
れ、栓体3には該均圧孔12aよりも径の大きい圧力逃し
口14aを有する導管14が接続される。
In reversing valve main body 1, a piston 12 is slidably provided in between the valve seat 11 and the stopper 3, which partitions the reversing valve body 1 into the high pressure chamber R 1 and the pressure transducer chamber R 2. A compression spring 13 is provided between the piston 12 and the plug 3, and the piston 12
R Always biased in the 1 direction. High pressure chamber R 1 in piston 12
And the equalizing hole 12a for always communicated is formed a pressure transducer chamber R 2, the plug 3 is connected to a conduit 14 having a larger pressure relief port 14a of the diameter than the homogeneous pressure hole 12a.

該導管14はパイロット三方電磁弁V2のポートAに接続
され、該パイロット三方電磁弁V2のポートCには圧縮機
4の吸入側6に至る導管15が接続される。
The conduit 14 is connected to port A of pilot three-way electromagnetic valve V 2, the port C of the pilot three-way electromagnetic valve V 2 conduit 15 leading to the suction side 6 of the compressor 4 is connected.

弁シート11上には連通用内腔16aを有するスライドバ
ルブ16が設けられ、該スライドバルブ16は連結杆17によ
りピストン12に連結される。スライドバルブ16はその移
動により内腔16aを介して弁シート11における吸入管6
に対する通孔11aをその両側の熱交換器に至る導管7,8に
対する通孔11b,11cに対して択一的に連通させる。
A slide valve 16 having a communication lumen 16a is provided on the valve seat 11, and the slide valve 16 is connected to the piston 12 by a connecting rod 17. The slide valve 16 is moved to move the suction pipe 6 in the valve seat 11 through the lumen 16a.
Is selectively communicated with through holes 11b and 11c for conduits 7 and 8 to the heat exchangers on both sides thereof.

栓体2側において、高圧室R1内に位置してシリンダ18
が設けられると共に該シリンダ18内には均圧孔19aを有
するピストン19が摺動自在に設けられ、栓体2との間に
圧力変換室R3を区画する。ピストン19は栓体2との間に
設けた圧縮ばね20により常時高圧室R1方向に付勢されて
ストッパー18aに当接する。
In the plug 2 side, located in the high-pressure chamber R 1 cylinder 18
Piston 19 having a pressure equalization hole 19a is in the cylinder 18 is slidably provided, for partitioning the pressure transducer chamber R 3 between the plug body 2 with is provided. The piston 19 abuts the stopper 18a is always urged high pressure chamber R 1 direction by a compression spring 20 provided between the plug 2.

弁シート11の延長部には、通孔11fが形成されると共
に該弁シート11上には該通孔11fを開、閉する除霜用弁2
1が設けられていて連結杆22によりピストン19に連結さ
れる。通孔11fには、室外熱交換器9と絞り手段23との
間に管路に接続される導管24が接続され、圧力変換室R3
には栓体2を介してパイロット三方電磁弁V2のポートB
に至る前記同様の圧力逃し口25aを有する導管25が接続
される。
A through hole 11f is formed in an extension of the valve seat 11, and a defrosting valve 2 that opens and closes the through hole 11f on the valve seat 11.
1 is provided and connected to the piston 19 by the connecting rod 22. A conduit 24 connected to a pipeline between the outdoor heat exchanger 9 and the throttle means 23 is connected to the through hole 11f, and the pressure conversion chamber R 3
Port B of the pilot three-way solenoid valve V 2 via the plug 2
A conduit 25 having the same pressure relief port 25a as described above is connected.

三方電磁弁V2は、弁本体26にプランジャ管27を介して
ソレノイドコイル28が結合されている。
The three-way solenoid valve V 2 is the solenoid coil 28 via the plunger tube 27 to the valve body 26 is coupled.

弁本体の弁室R4には前記ポートA,B,Cが開口し、ポー
トCの内端には弁座C′が形成されている。
The port A the valve chamber R 4 of the valve body, B, C is opened, the inner end of the port C is formed with a valve seat C '.

プランジャ管27にはプランジャ29が設けられ、該プラ
ンジャ29の先端凹部29a内においてボール弁体30が固定
されていて該プランジャ29の動作により弁室R4内を移動
し、プランジャ29と吸引鉄心31間に設けられた圧縮ばね
32によりプランジャ29乃至ボール弁体30は弁座C′を閉
じる方向に常時付勢されている。
The plunger 29 is provided in the plunger tube 27, though the ball valve element 30 in the front end recess 29a of the plunger 29 is fixed to move the valve chamber R 4 by the operation of the plunger 29, the plunger 29 the suction core 31 Compression spring provided between
The plunger 29 or the ball valve element 30 is constantly urged by the valve 32 in the direction to close the valve seat C '.

第1図は冷房運転状態を示す。即ち、パイロット三方
電磁弁V2は無通電状態にあって、ボール弁体30がポート
Cを閉じているので、五方逆転弁V1において、均圧孔12
aにより高圧室R1と圧力変換室R2は同圧力となり、従っ
てピストン12はばね13により連結杆17の二又状端部17a
がシリンダ18に当接する迄押し動かされ、、スライドバ
ルブ16は通孔11aに通孔11cに対して連通させるので、冷
媒は圧縮機4→吐出管5→導管7→室外熱交換器9→絞
り手段23→室内熱交換器10→導管8→吸入管6→圧縮機
4の径路で循環する。
FIG. 1 shows a cooling operation state. That is, the pilot three-way electromagnetic valve V 2 In the non-energized state, since the ball valve element 30 closes the port C, and five-way reversing valve V 1, pressure equalization hole 12
high pressure chamber R 1 and the pressure transducer chamber R 2 by a becomes the same pressure, thus forked-shaped end 17a of the piston 12 connecting rod 17 by a spring 13
Is pushed until it comes into contact with the cylinder 18, and the slide valve 16 communicates with the through hole 11a with the through hole 11c. Therefore, the refrigerant flows from the compressor 4 → the discharge pipe 5 → the conduit 7 → the outdoor heat exchanger 9 → the throttle. Means 23 → indoor heat exchanger 10 → conduit 8 → suction pipe 6 → circulates in the path of compressor 4.

次に、冷房運転を停止し、パイロット三方電磁弁V2
通電すると前記した如くにボール弁体30がポートCを開
いて圧力逃し口14a,25aが圧縮機4の吸入側の低圧に連
通する。そして、この状態で圧縮機4を起動すると、圧
力変換室R2,R3の高圧が圧縮機4の吸入側へ流出を開始
する。
Then, stop the cooling operation, the ball valve body 30 as described above to energize the pilot three-way electromagnetic valve V 2 is opened to port C pressure relief port 14a, 25a communicates with the low pressure suction side of the compressor 4 . When the compressor 4 is started in this state, the high pressure in the pressure conversion chambers R 2 and R 3 starts flowing out to the suction side of the compressor 4.

この状態では、圧力変換室R2,R3においては冷媒が圧
力逃し口14a,25aより吸入側へ逃げると同時に高圧室R1
より均圧孔12a,19aを通って冷媒が供給され、この際に
おいて圧力逃し口14a,25aの径が均圧孔12a,19aの径より
も大であって冷媒の供給量よりも排出量が大きいので、
圧力変換室R2,R3は高圧室R1よりも低圧となり、室R1とR
2,R3間には圧縮ばね13,20の弾力に打ち勝つ差圧が発生
し、ピストン12乃至スライドバルブ16は栓体3方向に移
動を開始する。同様にピストン19乃至除霜用弁21が栓体
2方向に移動する。
In this state, in the pressure conversion chambers R 2 and R 3 , the refrigerant escapes from the pressure relief ports 14 a and 25 a to the suction side, and at the same time, the high pressure chamber R 1
Refrigerant is supplied through more equalizing holes 12a, 19a, and at this time, the diameter of pressure release ports 14a, 25a is larger than the diameter of equalizing holes 12a, 19a, and the discharge amount is smaller than the supply amount of refrigerant. Because it ’s big
The pressure conversion chambers R 2 and R 3 have a lower pressure than the high pressure chamber R 1 , and the chambers R 1 and R 3
A differential pressure that overcomes the elasticity of the compression springs 13 and 20 is generated between 2 and R 3 , and the piston 12 to the slide valve 16 start moving in the direction of the plug 3. Similarly, the piston 19 to the defrosting valve 21 move toward the plug 2.

パイロット三方電磁弁V2に通電して約1分経過する
と、ピストン12乃至スライドバルブ16が通孔11aを通孔1
1bに対して連通させて、冷媒が圧縮機4→吐出管5→導
管8→室内熱交換器10→絞り手段23→室外熱交換器9→
導管7→吸入管6→圧縮機4の径路で循環する暖房運転
に移行する(第2図)。
After about 1 minute by energizing the pilot three-way electromagnetic valve V 2, the piston 12 through the slide valve 16 through hole 11a hole 1
The refrigerant is communicated to 1b, and the refrigerant flows from the compressor 4 → the discharge pipe 5 → the conduit 8 → the indoor heat exchanger 10 → the throttle means 23 → the outdoor heat exchanger 9 →
The operation shifts to a heating operation of circulating along the path of the pipe 7 → the suction pipe 6 → the compressor 4 (FIG. 2).

暖房運転状態に移行した段階において、パイロット三
方電磁弁V2を無通電とし、ポートCを弁閉する。この場
合において、スライドバルブ16内外の圧力差等により圧
縮ばね13を含めた圧力変換室R2側の圧力に打ち勝ってピ
ストン12乃至スライドバルブ16を固定する。これに対
し、ピストン19乃至除霜用弁21は第1図の弁閉位置に戻
る(第3図)。
In the transition stages to the heating operation state, the pilot three-way solenoid valve V 2 and not energized, the valve port C closes. In this case, the pressure difference or the like of the slide valve 16 and out to overcome the pressure of the pressure transducer chamber R 2 side, including the compression spring 13 to secure the piston 12 to slide valve 16. On the other hand, the piston 19 to the defrosting valve 21 return to the valve closed position in FIG. 1 (FIG. 3).

暖房運転状態において、室外熱交換器9に霜が付着し
た場合には、パイロット三方電磁弁V2に通電して前記し
た如くにポートCを開き、スライドバルブ16を固定した
ままで、除霜用弁21を開弁し、導管24より室外熱交換器
9に高圧ガスを送って除霜を行なう。除霜の終了を検知
して、パイロット三方電磁弁V2への通電を断つと、除霜
用弁21は閉弁する(第4図)。
In the heating operation state, when the frost adhering to the outdoor heat exchanger 9, to open the port C as described above by energizing the pilot three-way electromagnetic valve V 2, while fixing the slide valve 16, for defrosting The valve 21 is opened, and high-pressure gas is sent from the conduit 24 to the outdoor heat exchanger 9 to perform defrosting. Detects the end of defrosting, when cut off the power supply to the pilot three-way electromagnetic valve V 2, defrosting valve 21 is closed (FIG. 4).

発明の効果 本発明は上記した如くに、シリンダ状の逆転弁本体内
をピストンにより高圧室と圧力変換室に区画し、高圧室
に圧縮機の吐出管に対する接続口と、圧縮機の吸入管に
対する接続口及び該接続口を挟んで室外と室内の2個の
熱交換器用導管に対する接続口とを設け、吸入管に対す
る接続口から2個の熱交換器用導管に対する接続口にか
けて一連の切換用弁シートを設け、切換用弁シートに摺
接するスライドバルブをピストンに連結し、ピストンに
高圧室と圧力変換室を連通させる均圧孔を形成し、ピス
トンを高圧室方向に付勢するばねを設け、圧力変換室に
対し該均圧孔より大径の圧力逃し口を有していた圧縮機
の吸入側に連通する導管を接続し、高圧室内に室外熱交
換器にいたる別の導管に対する別の接続口を設け、他の
圧力変換室と高圧室との間においてばねにより高圧室方
向に付勢されるピストン部材とこれに連動して該別の接
続口を開閉する除霜用弁を設け、該他の圧力変換室に圧
縮機の吸入側に連通する導管を接続し、圧縮機の吸入側
に連通する上記2本の導管の間に三方電磁弁を介在さ
せ、該三方電磁弁の動作時において両方の圧力変換室を
圧縮機の吸入側に連通させるようにして成るものである
から、暖房運転のままで室外熱交換器の除霜が出来、こ
の際において冷,暖切換用の電磁弁を用いて除霜用弁を
作動させることが出来るので、操作が容易であると共に
機構を簡略化することができる特長を有する。
Advantageous Effects of the Invention As described above, the present invention divides the inside of a cylindrical reversing valve body into a high pressure chamber and a pressure conversion chamber by a piston, and connects the high pressure chamber with a connection port for a discharge pipe of a compressor and a suction port of a compressor. A connection port and a connection port for two heat exchanger conduits inside and outside the room are provided with the connection port interposed therebetween, and a series of switching valve sheets are provided from the connection port for the suction pipe to the connection port for the two heat exchanger conduits. The slide valve that slides on the switching valve seat is connected to the piston, a pressure equalizing hole that connects the high pressure chamber and the pressure conversion chamber is formed in the piston, and a spring that biases the piston in the high pressure chamber direction is provided. A conduit communicating with the suction side of the compressor having a pressure relief port having a diameter larger than that of the pressure equalizing hole is connected to the conversion chamber, and another connection port for another conduit leading to the outdoor heat exchanger is provided in the high pressure chamber. Provide other pressure conversion A piston member urged in the direction of the high-pressure chamber by a spring between the chamber and the high-pressure chamber, and a defrosting valve for opening and closing the other connection port in conjunction with the piston member; A three-way solenoid valve is interposed between the two conduits communicating with the suction side of the compressor, and the two pressure conversion chambers are connected to the compressor when the three-way solenoid valve operates. The defrosting of the outdoor heat exchanger can be performed while the heating operation is being performed, and the defrosting valve is operated by using the cooling / heating switching electromagnetic valve at this time. Since it can be operated, it has features that the operation is easy and the mechanism can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例についての断面図、 第2図乃至第4図は同上の作動状態図、 第5図は除霜用弁部分の拡大断面図である。 V1……五方逆転弁、V2……三方電磁弁、1……逆転弁本
体、4……圧縮機、5……吐出管、6……吸入管、7,8
……導管、9……室外熱交換器、10……室内熱交換器、
11……切換用弁シート、12……ピストン、12a……均圧
孔、13……圧縮ばね、14……導管、14a……圧力逃し
孔、16……スライドバルブ、19……ピストン部材、20…
…圧縮ばね、21……除霜用弁、24……別の導管、R1……
高圧室、R2,R3……圧力変換室。
FIG. 1 is a sectional view of an embodiment of the present invention, FIGS. 2 to 4 are operating state diagrams of the same, and FIG. 5 is an enlarged sectional view of a defrosting valve portion. V 1 … Five-way reversing valve, V 2 … Three-way solenoid valve, 1… Reversing valve body, 4… Compressor, 5… Discharge pipe, 6… Suction pipe, 7, 8
... conduit, 9 outdoor heat exchanger, 10 indoor heat exchanger,
11 ... switching valve seat, 12 ... piston, 12a ... equalizing hole, 13 ... compression spring, 14 ... conduit, 14a ... pressure relief hole, 16 ... slide valve, 19 ... piston member, 20…
… Compression spring, 21 …… defrosting valve, 24 …… a separate conduit, R 1 ……
High pressure chamber, R 2 , R 3 … Pressure conversion chamber.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シリンダ状の逆転弁本体内をピストンによ
り高圧室と圧力変換室に区画し、高圧室に圧縮機の吐出
管に対する接続口と、圧縮機の吸入管に対する接続口及
び該接続口を挟んで室外と室内の2個の熱交換器用導管
に対する接続口とを設け、吸入管に対する接続口から2
個の熱交換器用導管に対する接続口にかけて一連の切換
用弁シートを設け、切換用弁シートに摺接するスライド
バルブをピストンに連結し、ピストンに高圧室と圧力変
換室を連通させる均圧孔を形成し、ピストンを高圧室方
向に付勢するばねを設け、圧力変換室に対し該均圧孔よ
り大径の圧力逃し口を有していて圧縮機の吸入側に連通
する導管を接続し、高圧室内に室外熱交換器にいたる別
の導管に対する別の接続口を設け、他の圧力変換室と高
圧室との間においてばねにより高圧室方向に付勢される
ピストン部材とこれに連動して該別の接続口を開閉する
除霜用弁を設け、該他の圧力変換室に圧縮機の吸入側に
連通する導管を接続し、圧縮機の吸入側に連通する上記
2本の導管の間に三方電磁弁を介在させ、該三方電磁弁
の動作時において両方の圧力変換室を圧縮機の吸入側に
連通させることを特徴とする可逆冷凍サイクル用五方逆
転弁。
A cylinder-shaped reversing valve body is divided into a high-pressure chamber and a pressure conversion chamber by a piston, and the high-pressure chamber has a connection port for a discharge pipe of a compressor, a connection port for a suction pipe of the compressor, and the connection port. A connection port for the two heat exchanger conduits inside and outside the room is provided with the connection therebetween, and two connection ports for the suction pipe are provided from the connection port for the suction pipe.
A series of switching valve seats are provided across the connection ports for the heat exchanger conduits, a slide valve that slides on the switching valve seat is connected to the piston, and a pressure equalizing hole is formed in the piston to allow communication between the high-pressure chamber and the pressure conversion chamber. A spring for urging the piston toward the high pressure chamber is provided, and a conduit having a pressure relief port having a diameter larger than that of the pressure equalizing hole and communicating with the suction side of the compressor is connected to the pressure conversion chamber. A separate connection port for another conduit leading to the outdoor heat exchanger is provided in the room, and a piston member urged in the direction of the high-pressure chamber by a spring between the other pressure conversion chamber and the high-pressure chamber and the piston member are interlocked with the piston member. A defrosting valve for opening and closing another connection port is provided, a conduit communicating with the suction side of the compressor is connected to the other pressure conversion chamber, and between the two conduits communicating with the suction side of the compressor. With the three-way solenoid valve interposed, when the three-way solenoid valve operates Square reversible refrigeration cycle for five-way reversing valve, characterized in that to communicate with the suction side of the compressor pressure transducer chamber.
JP62285524A 1987-11-13 1987-11-13 Five-way reversing valve Expired - Lifetime JP2580210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62285524A JP2580210B2 (en) 1987-11-13 1987-11-13 Five-way reversing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62285524A JP2580210B2 (en) 1987-11-13 1987-11-13 Five-way reversing valve

Publications (2)

Publication Number Publication Date
JPH01127868A JPH01127868A (en) 1989-05-19
JP2580210B2 true JP2580210B2 (en) 1997-02-12

Family

ID=17692645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62285524A Expired - Lifetime JP2580210B2 (en) 1987-11-13 1987-11-13 Five-way reversing valve

Country Status (1)

Country Link
JP (1) JP2580210B2 (en)

Also Published As

Publication number Publication date
JPH01127868A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
US4644760A (en) Reversible four-way valve for reversible refrigerating cycle
JPH08170865A (en) Changeover valve for heat pump air conditioning apparatus
JPS5914664B2 (en) Four-way reversing valve for refrigeration cycle
JP2580210B2 (en) Five-way reversing valve
JPH05180369A (en) Pilot type three-way solenoid valve
JPH0250060A (en) Five-way reversible valve
JPH04116360A (en) Five way reversing valve for reversible refrigeration cycle
JPS63219973A (en) Three-way solenoid valve
JPH0633921B2 (en) Defrosting method and five-way valve for reversible refrigeration cycle
JPH0419407Y2 (en)
JP2645854B2 (en) Two-stage expansion valve
JPS63220056A (en) Five-way reversing valve
JPH0562275B2 (en)
CN210372132U (en) Four-way reversing valve
JPH0547754B2 (en)
JPH0799217B2 (en) Three-way solenoid valve
JPH0579900B2 (en)
JPS5914658B2 (en) Four-way reversing valve for refrigeration cycle
JPH0649980Y2 (en) solenoid valve
JPS6244112B2 (en)
JPS61153355A (en) Four-way reversing valve for reversible refrigeration cycle
JPH02263070A (en) Heating/cooling type air conditioner
JPH04177067A (en) Defrosting method in reversible refrigeration cycle, and five-way reversing valve with defrosting valve
JPS61236981A (en) Four-way reversing valve for reversible refrigerating cycle
JPS63263365A (en) Reversible expansion valve