JPH0547754B2 - - Google Patents

Info

Publication number
JPH0547754B2
JPH0547754B2 JP59232932A JP23293284A JPH0547754B2 JP H0547754 B2 JPH0547754 B2 JP H0547754B2 JP 59232932 A JP59232932 A JP 59232932A JP 23293284 A JP23293284 A JP 23293284A JP H0547754 B2 JPH0547754 B2 JP H0547754B2
Authority
JP
Japan
Prior art keywords
pressure
valve
chamber
piston
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59232932A
Other languages
Japanese (ja)
Other versions
JPS61112871A (en
Inventor
Tadashi Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP59232932A priority Critical patent/JPS61112871A/en
Priority to US06/794,851 priority patent/US4644760A/en
Publication of JPS61112871A publication Critical patent/JPS61112871A/en
Publication of JPH0547754B2 publication Critical patent/JPH0547754B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷暖房兼用型空調機において、冷暖房
の切り換え操作に用いられる四方逆転弁に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a four-way reversing valve used for switching between cooling and heating in a heating and cooling air conditioner.

従来の技術 従来における差圧駆動型の四方逆転弁は、シリ
ンダ状逆転弁本体内を一対のピストン等により高
圧室と低圧室と圧力変換室、又は高圧室と2個の
圧力変換室の3室に区分するのがほとんどであ
り、該圧力変換室をパイロツト三方電磁弁等によ
り切り換えてピストン及至は該ピストンに連結さ
れた流路切換用の弁体を移動させる構成であつ
た。
Conventional technology A conventional differential pressure driven four-way reversing valve has three chambers: a high pressure chamber, a low pressure chamber, and a pressure conversion chamber, or a high pressure chamber and two pressure conversion chambers, using a pair of pistons or the like within the cylindrical reversing valve body. In most cases, the pressure conversion chamber is switched by a pilot three-way solenoid valve or the like to move a piston and a valve body connected to the piston for switching the flow path.

解決しようとする問題点 上記従来技術では、逆転四方弁もパイロツト電
磁弁も構造が複雑であると共に相互の連通用導管
の数も多くて小型化の隘路となつており、また該
パイロツト電磁弁の操作による制御は該圧力変換
室に対する消極的な減圧と積極的な加圧によるの
で、微細な電子制御に適していない等の欠点があ
つた。
Problems to be Solved In the above conventional technology, both the reversing four-way valve and the pilot solenoid valve have complex structures and a large number of mutually communicating conduits, creating a bottleneck in miniaturization. Since the control by operation involves passive pressure reduction and active pressurization of the pressure conversion chamber, it has disadvantages such as not being suitable for fine electronic control.

本発明は上記した点に着目し、逆転弁本体内を
ピストンにより高圧室と圧力変換室の二室に区分
すると共に該圧力変換室を開閉弁により開閉して
該ピストン乃至は流路切換弁を移動させる構成を
採用し、もつて構造の簡略化と小型化を達成し、
更には該開閉弁による該圧力変換室の制御を該圧
力変換室から圧縮機の吸入側に対する一定方向の
冷媒流に対する開閉操作とすることにより電子方
式による微細な制御を可能としたものである。
The present invention focuses on the above points, and divides the inside of the reversing valve body into two chambers, a high pressure chamber and a pressure conversion chamber, by a piston, and opens and closes the pressure conversion chamber by an on-off valve to operate the piston or the flow path switching valve. By adopting a movable configuration, we have achieved a simpler and more compact structure.
Furthermore, the control of the pressure conversion chamber by the opening/closing valve is an opening/closing operation for a refrigerant flow in a fixed direction from the pressure conversion chamber to the suction side of the compressor, thereby enabling fine electronic control.

問題点を解決するための手段 上記目的を達成するため、本発明においては、
シリンダ状の逆転弁本体内を軸方向の両側におい
て略同一の受圧部を有する単一のピストンにより
高圧室と圧力変換室に区画し、高圧室に圧縮機の
吐出管に対する接続口と、圧縮機の吸入管に対す
る接続口及び該接続口を挟んで2個の熱交換器用
導管に対する接続口を設け、吸入管に対する接続
口から2個の熱交換器用導管に対する接続口にか
けて一連の切換用弁シートを設け、該切換用弁シ
ートに摺接するスライドバルブを該ピストンに連
結して該スライドバルブにより該吸入管に対する
接続口を該2個の熱交換器用導管に対する接続口
に択一的に連通させると共に該2個の熱交換器用
導管に対する接続口を該高圧室に択一的に連通さ
せ、該ピストンに高圧室と圧力変換室を常時連通
させる均圧孔を形成し、該ピストンを高圧室方向
に付勢するばねを設け、圧力変換室に圧縮機の吸
入側に連通する圧力逃し孔を設けると共に該圧力
逃し孔に非通電時において該圧力逃し孔を閉じる
電磁開閉弁を設け、該圧力逃し孔の径を該均圧孔
の径より大きく形成し、圧縮機の起動時において
該電磁開閉弁に通電して該圧力逃し孔を開くこと
により該高圧室と該圧力変換室間の差圧が該ばね
に抗して該ピストン及び該スライドバルブを高圧
室側作動位置より圧力変換室側作動位置へ移動さ
せ、圧力変換室側作動位置において該電磁開閉弁
を非通電とした状態で該高圧室に位置する該スラ
イドバルブの内外における高、低圧間の差圧が該
スライドバルブを該切換用弁シートに圧接させる
ことにより該ばねの弾力に打ち勝つて該ピストン
及びスライドバルブを該圧力変換室側作動位置に
固定することを特徴とする。
Means for Solving the Problems In order to achieve the above object, in the present invention,
The cylindrical reversing valve body is divided into a high pressure chamber and a pressure conversion chamber by a single piston having substantially the same pressure receiving part on both sides in the axial direction, and the high pressure chamber has a connection port for the compressor discharge pipe and a compressor. A connection port for the suction pipe and a connection port for the two heat exchanger conduits are provided across the connection port, and a series of switching valve seats is provided from the connection port for the suction pipe to the connection port for the two heat exchanger conduits. a slide valve that is in sliding contact with the switching valve seat is connected to the piston, and the slide valve selectively communicates the connection port for the suction pipe with the connection port for the two heat exchanger conduits; Connecting ports for the two heat exchanger conduits are selectively communicated with the high pressure chamber, a pressure equalizing hole is formed in the piston to constantly communicate the high pressure chamber and the pressure conversion chamber, and the piston is attached in the direction of the high pressure chamber. A pressure relief hole communicating with the suction side of the compressor is provided in the pressure conversion chamber, and an electromagnetic opening/closing valve is provided in the pressure relief hole to close the pressure relief hole when electricity is not applied. By forming the diameter to be larger than the diameter of the pressure equalization hole, and opening the pressure relief hole by energizing the electromagnetic on-off valve when starting the compressor, the differential pressure between the high pressure chamber and the pressure conversion chamber is reduced by the spring. The piston and the slide valve are moved from the high pressure chamber side operating position to the pressure conversion chamber side operating position against the pressure, and in the pressure conversion chamber side operating position, the electromagnetic on-off valve is de-energized and placed in the high pressure chamber. The differential pressure between the high and low pressures inside and outside the slide valve presses the slide valve against the switching valve seat, thereby overcoming the elasticity of the spring and moving the piston and slide valve to the pressure conversion chamber side operating position. It is characterized by being fixed.

実施例 以下本発明の一実施例について図面と共に説明
する。図面において、1はシリンダ状の逆転弁本
体であり、両端部に栓体2,3が溶接して固着さ
れている。栓体2には圧縮機4の吐出管5が連結
され、逆転弁本体1には軸方向において圧縮機4
の吸入管6を挾んで2本の導管7,8が連結され
る。導管7,8は凝縮器又は蒸発器として逆転的
に使用される2個の熱交換器9,10に連結され
る。吸入管6と導管7,8の内端は逆転弁本体1
内に固着される切換用の弁シート11の3個の通
孔11a,11b,11cに接続され、弁シート
11の内側には一連の平滑面11dが形成され
る。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. In the drawings, reference numeral 1 denotes a cylindrical reversing valve body, and plugs 2 and 3 are welded and fixed to both ends. A discharge pipe 5 of a compressor 4 is connected to the plug body 2, and a compressor 4 is connected to the reversing valve body 1 in the axial direction.
Two conduits 7 and 8 are connected with a suction pipe 6 between them. The conduits 7, 8 are connected to two heat exchangers 9, 10 which are used reciprocally as condensers or evaporators. The inner ends of the suction pipe 6 and conduits 7 and 8 are connected to the reversing valve body 1.
A series of smooth surfaces 11d are formed on the inside of the valve seat 11, which are connected to three through holes 11a, 11b, and 11c of the switching valve seat 11 fixed therein.

逆転弁本体1内において、弁シート11と栓体
3間において軸方向の両側において略同一の受圧
部A、Bを有するピストン12が摺動自在に設け
られ、逆転弁本体1内を高圧室R1と圧力変換室
R2に区画する。ピストン12と栓体3間には圧
縮ばね13が設けられ、ピストン12は高圧室
R1方向に常時付勢されている。ピストン12に
は高圧室R1と圧力変換室R2を常時連通させる均
圧孔12aが形成され、栓体3には該均圧孔12
aよりも径の大きい圧力逃し孔3aが形成される
と共に該圧力逃し孔3aには吸入管6に至る導管
14が接続される。
Inside the reversing valve main body 1, a piston 12 having substantially the same pressure receiving portions A and B on both sides in the axial direction is slidably provided between the valve seat 11 and the stopper 3, and the piston 12 has substantially the same pressure receiving portions A and B on both sides in the axial direction. 1 and pressure conversion chamber
Plot into R 2 . A compression spring 13 is provided between the piston 12 and the stopper 3, and the piston 12 is connected to a high pressure chamber.
R Constantly biased in one direction. A pressure equalization hole 12a is formed in the piston 12, and the pressure equalization hole 12a is formed in the plug body 3 to constantly communicate the high pressure chamber R1 and the pressure conversion chamber R2 .
A pressure relief hole 3a having a larger diameter than the pressure relief hole 3a is formed, and a conduit 14 leading to the suction pipe 6 is connected to the pressure relief hole 3a.

栓体3にプランジヤ管15を介して電磁開閉弁
16が付設され、そのプランジヤ17の先端に設
けたニードル弁体18が圧力逃し孔3aの途中に
設けた弁シート3bに接離して該圧力逃し孔3a
を開閉する。プランジヤ17と吸引鉄心19間に
は圧縮ばね20が設けられてニードル弁体18は
弁シート3bに当接する方向に付勢される。
An electromagnetic on-off valve 16 is attached to the plug body 3 via a plunger pipe 15, and a needle valve body 18 provided at the tip of the plunger 17 approaches and separates from a valve seat 3b provided in the middle of the pressure relief hole 3a to relieve the pressure. Hole 3a
Open and close. A compression spring 20 is provided between the plunger 17 and the suction core 19, and the needle valve body 18 is biased in the direction of contacting the valve seat 3b.

弁シート11上には連通用内腔21aを有する
スライドバルブ21が設けられ、該スライドバル
ブ21は連結杆22によりピストン12に連結さ
れる。スライドバルブ21はその内腔21aを介
して弁シート11における吸入管6に対する通孔
11aをその両側の熱交換器用導管7,8に対す
る通孔11b,11cに対して択一的に連通させ
る。
A slide valve 21 having a communication bore 21a is provided on the valve seat 11, and the slide valve 21 is connected to the piston 12 by a connecting rod 22. The slide valve 21 selectively communicates the through hole 11a for the suction pipe 6 in the valve seat 11 with the through holes 11b and 11c for the heat exchanger conduits 7 and 8 on both sides of the slide valve 21 through its inner cavity 21a.

上記構成において、圧縮機4の運転停止時にお
いてはピストン12がばね13により押されて弁
シート11に当接した高圧室側作動位置にあり、
無通電状態の電磁開閉弁16においてプランジヤ
17がばね20により押されてニードル弁体18
が圧力逃し孔3aを閉じている(第1図)。
In the above configuration, when the compressor 4 is stopped, the piston 12 is pushed by the spring 13 and is in the high pressure chamber side operating position in contact with the valve seat 11;
In the electromagnetic on-off valve 16 in a non-energized state, the plunger 17 is pushed by the spring 20 and the needle valve body 18
closes the pressure relief hole 3a (FIG. 1).

この状態で圧縮機を運転すると吐出管5からの
高圧が高圧室R1と均圧孔12aを介して圧力変
換室R2に送られて両室R1、R2は同圧力となり、
ピストン12がそのままの位置に保持されること
によりスライドバルブ21は通孔11aを通孔1
1cに対して連通させるので、冷媒は圧縮機4→
吐出管5→導管7→室外熱交換機9→絞り手段2
3→室内熱交換器10→導管8→吸入管6→圧縮
機4の経路で循環する冷房運転状態となる(第1
図)。
When the compressor is operated in this state, the high pressure from the discharge pipe 5 is sent to the pressure conversion chamber R 2 via the high pressure chamber R 1 and the pressure equalization hole 12a, and both chambers R 1 and R 2 have the same pressure.
By holding the piston 12 in the same position, the slide valve 21 opens the through hole 11a.
Since it is connected to 1c, the refrigerant is transferred to compressor 4→
Discharge pipe 5 → conduit 7 → outdoor heat exchanger 9 → throttle means 2
3→Indoor heat exchanger 10→Conduit 8→Suction pipe 6→Compressor 4 The air conditioner is in a cooling operation state (first
figure).

圧縮機4の運転停止状態において、電磁開閉弁
16に通電すると共に圧縮機4を起動すると、プ
ランジヤ17が吸引されてニードル弁体18が圧
力逃し孔3aを開き、圧力変換室R2内を圧縮機
4の吸入側の低圧に連通させる。これにより、圧
力変換室R2においては冷媒が圧力逃し孔3aよ
り吸入側へ逃げると同時に高圧室R1より均圧孔
12aを介して冷媒が供給され、この際において
圧力逃し孔3aの径が均圧孔12aの径よりも大
であつて冷媒の供給量よりも排出量が大きいので
圧力変換室R2は低圧となり、室R1、R2間には圧
縮ばね13の弾力に打ち勝つ差圧が発生し、第2
図に示される如くにピストン12乃至スライドバ
ルブ21は栓体3方向に移動した圧力変換室側作
動位置となる。そして、スライドバルブ21は通
孔11aを通孔11bに対して連通させるので、
冷媒は圧縮機4→吐出管5→導管8→室外熱交換
機10→絞り手段23→室外熱交換器9→導管7
→吸入管6→圧縮機4の経路で循環して暖房運転
となる。
When the compressor 4 is stopped and the electromagnetic on-off valve 16 is energized and the compressor 4 is started, the plunger 17 is attracted, the needle valve body 18 opens the pressure relief hole 3a, and the inside of the pressure conversion chamber R 2 is compressed. Connect to the low pressure on the suction side of machine 4. As a result, in the pressure conversion chamber R2 , refrigerant escapes from the pressure relief hole 3a to the suction side, and at the same time, refrigerant is supplied from the high pressure chamber R1 through the pressure equalization hole 12a, and at this time, the diameter of the pressure relief hole 3a increases. Since the diameter of the pressure equalization hole 12a is larger and the amount of refrigerant discharged is larger than the amount of refrigerant supplied, the pressure conversion chamber R2 has a low pressure, and there is a pressure difference between the chambers R1 and R2 that overcomes the elasticity of the compression spring 13. occurs, and the second
As shown in the figure, the piston 12 to the slide valve 21 are moved in the direction of the stopper 3 to the pressure conversion chamber side operating position. Since the slide valve 21 allows the through hole 11a to communicate with the through hole 11b,
The refrigerant flows through the compressor 4 → discharge pipe 5 → conduit 8 → outdoor heat exchanger 10 → throttle means 23 → outdoor heat exchanger 9 → conduit 7
The air circulates through the path of → suction pipe 6 → compressor 4, resulting in heating operation.

ピストン12乃至全体21の切り換え移動後に
おける一定時間を経て差圧が通常2Kg/cm2前後を
超えた時点で電磁開閉弁16を無通電状態とす
る。この状態においては、スライドバルブ21の
連通用内腔21a内における低圧とスライドバル
ブ21の外側における高圧との差圧により該スラ
イドバルブ21は弁シート11に押圧、固定さ
れ、圧縮ばね13の弾力に打ち勝つて該位置を保
持する。
When the differential pressure normally exceeds about 2 kg/cm 2 after a certain period of time after the piston 12 or the entire body 21 is switched and moved, the electromagnetic on-off valve 16 is de-energized. In this state, the slide valve 21 is pressed and fixed to the valve seat 11 due to the differential pressure between the low pressure inside the communication lumen 21a of the slide valve 21 and the high pressure outside the slide valve 21, and the elasticity of the compression spring 13 Overcome and hold the position.

このように、圧縮機の運転状態においてはスラ
イドバルブ2の内外における差圧が該スライドバ
ルブ2の位置決めロツク作用を有するので、上記
暖房運転状態への切り換えは、圧縮機を起動した
際のスライドバルブの内外に差圧の発生しない状
態において、電磁開閉弁16に通電して圧力逃し
孔3aを開くことにより達成される。
As described above, in the operating state of the compressor, the differential pressure between the inside and outside of the slide valve 2 has a positioning locking effect for the slide valve 2, so that the switching to the above-mentioned heating operating state is performed using the slide valve when the compressor is started. This is achieved by energizing the electromagnetic on-off valve 16 to open the pressure relief hole 3a in a state where no differential pressure is generated between the inside and outside of the valve.

サーモスタツトによる圧縮機4の停止時には電
磁開閉弁16に通電して圧力逃し孔3aを開くこ
とにより強制的に均圧させて均圧時間を短縮し、
圧縮ばね13の弾力で冷房状態に切り換える。こ
のように暖房運転時において冷房状態に迅速に切
り換えた後、除霜開始信号により除霜運転を行な
う。
When the compressor 4 is stopped by the thermostat, the electromagnetic on-off valve 16 is energized to open the pressure relief hole 3a to forcibly equalize the pressure and shorten the pressure equalization time.
The air conditioner is switched to the cooling state by the elasticity of the compression spring 13. After quickly switching to the cooling state during the heating operation in this way, the defrosting operation is performed in response to the defrosting start signal.

発明の効果 本発明は上記した如くに、シリンダ状の逆転弁
本体内を軸方向の両側において略同一の受圧部を
有する単一のピストンにより高圧室と圧力変換室
に区画し、高圧室に圧縮機の吐出管に対する接続
口と、圧縮機の吸入管に対する接続口及び該接続
口を挟んで2個の熱交換器用導管に対する接続口
を設け、吸入管に対する接続口から2個の熱交換
器用導管に対する接続口にかけて一連の切換用弁
シートを設け、該切換用弁シートに摺接するスラ
イドバルブを該ピストンに連結して該スライドバ
ルブにより該吸入管に対する接続口を該2個の熱
交換器用導管に対する接続口に択一的に連通させ
ると共に該2個の熱交換器用導管に対する接続口
を該高圧室に択一的に連通させ、該ピストンに高
圧室と圧力変換室を常時連通させる均圧孔を形成
し、該ピストンを高圧室方向に付勢するばねを設
け、圧力変換室に圧縮機の吸入側に連通する圧力
逃し孔を設けると共に該圧力逃し孔に非通電時に
おいて該圧力逃し孔を閉じる電磁開閉弁を設け、
該圧力逃し孔の径を該均圧孔の径より大きく形成
し、圧縮機の起動時において該電磁開閉弁に通電
して該圧力逃し孔を開くことにより該高圧室と該
圧力変換室間の差圧が該ばねに抗して該ピストン
及び該スライドバルブを高圧室側作動位置より圧
力変換室側作動位置へ移動させ、圧力変換室側作
動位置において該電磁開閉弁を非通電とした状態
で該高圧室に位置する該スライドバルブの内外に
おける高、低圧間の差圧が該スライドバルブを該
切換用弁シートに圧接させることにより該ばねの
弾力に打ち勝つて該ピストン及びスライドバルブ
を該圧力変換室側作動位置に固定することを特徴
とするものであるから、 (イ) 単一のピストンによつて高圧室から区画され
ると共に該ピストンに形成した均圧孔を介して
該高圧室と連通する状態の圧力変換室内の圧力
を、該圧力室変換室から圧縮機の吸入側に連通
する圧力逃し孔を二方口の電磁開閉弁により開
閉操作して吸入側への冷媒の流れを連通又は遮
断することにより、高圧又は低圧に変換し得る
ものであつて、電磁弁も含めて全体の構造を簡
略化することが出来ると共に電子方式による電
磁弁の開閉動作で微細な冷暖制御を行なうこと
ができ、 (ロ) 高圧室内に位置するスライドバルブの連通用
内腔が常時低圧であることによる内外圧力差に
よりスライドバルブは弁シートに圧接してピス
トンに対するロツク作用を有し、該ロツク作用
により該ばねの弾力に打ち勝つてピストン及び
スライドバルブを圧力変換室側作動位置に固定
することができるので、冷凍回路の差圧変動に
対しても作動位置を安定させることができると
共に電磁開閉弁に通電してピストン及びスライ
ドバルブを圧力変換室側作動位置に移動させた
後において電磁開閉弁を遮断しても上記ロツク
作用により該変換室側作動位置を保持すること
が可能であり、省エネを達成することができ
る。
Effects of the Invention As described above, the present invention divides the inside of a cylindrical reversing valve body into a high pressure chamber and a pressure conversion chamber by a single piston having substantially the same pressure receiving portion on both sides in the axial direction, and compresses the air into the high pressure chamber. A connection port for the discharge pipe of the compressor, a connection port for the suction pipe of the compressor, and a connection port for two heat exchanger conduits are provided across the connection port, and two heat exchanger conduits are provided from the connection port for the suction pipe. A series of switching valve seats are provided across the connection ports to the switching valve seats, and a slide valve that is in sliding contact with the switching valve seats is connected to the piston, and the slide valves connect the connection ports to the suction pipes to the two heat exchanger conduits. A pressure equalization hole is provided in the piston, which selectively communicates with the connection port and selectively communicates the connection port for the two heat exchanger conduits with the high pressure chamber, and allows the piston to constantly communicate the high pressure chamber and the pressure conversion chamber. A spring is provided to bias the piston toward the high pressure chamber, a pressure relief hole is provided in the pressure conversion chamber that communicates with the suction side of the compressor, and the pressure relief hole is closed when the pressure relief hole is not energized. Equipped with an electromagnetic on-off valve,
The diameter of the pressure relief hole is formed larger than the diameter of the pressure equalization hole, and when the compressor is started, the electromagnetic on-off valve is energized to open the pressure relief hole, thereby reducing the pressure between the high pressure chamber and the pressure conversion chamber. The differential pressure moves the piston and the slide valve from the high pressure chamber side operating position to the pressure conversion chamber side operating position against the spring, and the electromagnetic on-off valve is de-energized in the pressure conversion chamber side operating position. The differential pressure between the high and low pressures inside and outside of the slide valve located in the high pressure chamber presses the slide valve against the switching valve seat, overcomes the elasticity of the spring, and causes the piston and slide valve to convert the pressure. (a) It is separated from the high pressure chamber by a single piston and communicates with the high pressure chamber through a pressure equalizing hole formed in the piston. The pressure inside the pressure conversion chamber in the state of By shutting off, the pressure can be converted to high or low pressure, and the overall structure including the solenoid valve can be simplified, and fine heating and cooling control can be performed by electronically opening and closing the solenoid valve. (b) Due to the pressure difference between the inside and outside due to the constant low pressure in the communication bore of the slide valve located in the high pressure chamber, the slide valve comes into pressure contact with the valve seat and has a locking effect on the piston, and this locking effect causes the piston to lock. Since the piston and slide valve can be fixed at the operating position on the pressure conversion chamber side by overcoming the elasticity of the spring, the operating position can be stabilized even against differential pressure fluctuations in the refrigeration circuit, and the electromagnetic on-off valve can be energized. Even if the electromagnetic on-off valve is shut off after the piston and slide valve are moved to the pressure conversion chamber side operating position, it is possible to maintain the conversion chamber side operating position by the above-mentioned locking action, thereby achieving energy saving. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例についての断面図、
第2図は同上の作動状態図である。 1……逆転弁本体、R1……高圧室、R2……圧
力変換室、3a……圧力逃し孔、4……圧縮機、
5……吐出管、6……吸入管、7,8……熱交換
器用導管、11……切換用弁シート、12……ピ
ストン、12a……均圧孔、13……ばね、16
……開閉弁、21……スライドバルブ。
FIG. 1 is a sectional view of an embodiment of the present invention;
FIG. 2 is an operating state diagram of the same as above. 1... Reversing valve body, R 1 ... High pressure chamber, R 2 ... Pressure conversion chamber, 3a... Pressure relief hole, 4... Compressor,
5... Discharge pipe, 6... Suction pipe, 7, 8... Heat exchanger conduit, 11... Switching valve seat, 12... Piston, 12a... Equalizing hole, 13... Spring, 16
...Opening/closing valve, 21...Slide valve.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダ状の逆転弁本体内を軸方向の両側に
おいて略同一の受圧部を有する単一のピストンに
より高圧室と圧力変換室に区画し、高圧室に圧縮
機の吐出管に対する接続口と、圧縮機の吸入管に
対する接続口及び該接続口を挟んで2個の熱交換
器用導管に対する接続口を設け、吸入管に対する
接続口から2個の熱交換器用導管に対する接続口
にかけて一連の切換用弁シートを設け、該切換用
弁シートに摺接するスライドバルブを該ピストン
に連結して該スライドバルブにより該吸入管に対
する接続口を該2個の熱交換器用導管に対する接
続口に択一的に連通させると共に該2個の熱交換
器用導管に対する接続口を該高圧室に択一的に連
通させ、該ピストンに高圧室と圧力変換室を常時
連通させる均圧孔を形成し、該ピストンを高圧室
方向に付勢するばねを設け、圧力変換室に圧縮機
の吸入側に連通する圧力逃し孔を設けると共に該
圧力逃し孔に非通電時において該圧力逃し孔を閉
じる電磁開閉弁を設け、該圧力逃し孔の径を該均
圧孔の径より大きく形成し、圧縮機の起動時にお
いて該電磁開閉弁に通電して該圧力逃し孔を開く
ことにより該高圧室と該圧力変換室間の差圧が該
ばねに抗して該ピストン及び該スライドバルブを
高圧室側作動位置より圧力変換室側作動位置へ移
動させ、圧力変換室側作動位置において該電磁開
閉弁を非通電とした状態で該高圧室に位置する該
スライドバルブの内外における高、低圧間の差圧
が該スライドバルブを該切換用弁シートに圧接さ
せることにより該ばねの弾力に打ち勝つて該ピス
トン及びスライドバルブを該圧力変換室側作動位
置に固定することを特徴とする可逆冷凍サイクル
用四方逆転弁。
1 The cylindrical reversing valve body is divided into a high pressure chamber and a pressure conversion chamber by a single piston having substantially the same pressure receiving part on both sides in the axial direction, and the high pressure chamber has a connection port for the discharge pipe of the compressor and a compression chamber. A connection port for the suction pipe of the machine and a connection port for two heat exchanger conduits are provided across the connection port, and a series of switching valve seats is provided from the connection port for the suction pipe to the connection ports for the two heat exchanger conduits. a slide valve that is in sliding contact with the switching valve seat is connected to the piston, and the slide valve selectively communicates the connection port for the suction pipe with the connection port for the two heat exchanger conduits, and Connecting ports for the two heat exchanger conduits are selectively communicated with the high pressure chamber, a pressure equalizing hole is formed in the piston to constantly communicate the high pressure chamber and the pressure conversion chamber, and the piston is directed toward the high pressure chamber. A biasing spring is provided, a pressure relief hole communicating with the suction side of the compressor is provided in the pressure conversion chamber, and an electromagnetic opening/closing valve is provided in the pressure relief hole to close the pressure relief hole when electricity is not applied, and the pressure relief hole The diameter of the pressure equalizing hole is larger than that of the pressure equalizing hole, and when the compressor is started, the electromagnetic on-off valve is energized to open the pressure relief hole, thereby reducing the pressure difference between the high pressure chamber and the pressure conversion chamber. The piston and the slide valve are moved from the high pressure chamber side operating position to the pressure conversion chamber side operating position against the spring, and the electromagnetic on-off valve is de-energized in the pressure conversion chamber side operating position, and the valve is moved to the high pressure chamber. The differential pressure between high and low pressure inside and outside the slide valve presses the slide valve against the switching valve seat, overcomes the elasticity of the spring, and moves the piston and slide valve to the pressure conversion chamber side operating position. A four-way reversing valve for reversible refrigeration cycles, which is characterized by being fixed to.
JP59232932A 1984-11-05 1984-11-05 4-way reverse rotating valve for reversible freezing cycle Granted JPS61112871A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59232932A JPS61112871A (en) 1984-11-05 1984-11-05 4-way reverse rotating valve for reversible freezing cycle
US06/794,851 US4644760A (en) 1984-11-05 1985-11-04 Reversible four-way valve for reversible refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232932A JPS61112871A (en) 1984-11-05 1984-11-05 4-way reverse rotating valve for reversible freezing cycle

Publications (2)

Publication Number Publication Date
JPS61112871A JPS61112871A (en) 1986-05-30
JPH0547754B2 true JPH0547754B2 (en) 1993-07-19

Family

ID=16947104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232932A Granted JPS61112871A (en) 1984-11-05 1984-11-05 4-way reverse rotating valve for reversible freezing cycle

Country Status (1)

Country Link
JP (1) JPS61112871A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694032B2 (en) * 1988-12-08 1997-12-24 株式会社鷺宮製作所 Air conditioner for both heating and cooling
WO2005007349A1 (en) 2003-07-18 2005-01-27 Sebek Limited Stapler and connected staple assembly cassette
JP4958966B2 (en) * 2009-12-03 2012-06-20 株式会社鷺宮製作所 Switching valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352110U (en) * 1976-10-07 1978-05-04
JPS5844576B2 (en) * 1976-07-30 1983-10-04 株式会社日立製作所 Feed roller drive device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844576U (en) * 1981-09-21 1983-03-25 日電工業株式会社 three-way solenoid valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844576B2 (en) * 1976-07-30 1983-10-04 株式会社日立製作所 Feed roller drive device
JPS5352110U (en) * 1976-10-07 1978-05-04

Also Published As

Publication number Publication date
JPS61112871A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
JP6530991B2 (en) Direct acting solenoid valve and four-way switching valve equipped with the same as a pilot valve
US4760709A (en) Five-way valve having simultaneous defrosting and heating functions
US4644760A (en) Reversible four-way valve for reversible refrigerating cycle
US4976286A (en) Four-way slide valve
US6986498B2 (en) Differential pressure valve
JPH0547754B2 (en)
CA3107528C (en) Compressor and refrigeration device
US4178768A (en) Internally piloted reversing valve for heat pump
JP7367972B2 (en) pilot valve
JP3786518B2 (en) Expansion valve with solenoid valve
JPH05180369A (en) Pilot type three-way solenoid valve
JPS61218883A (en) Four way type reversing valve for reversible refrigerating cycle
JPH0559309B2 (en)
JPH0419407Y2 (en)
JP2694032B2 (en) Air conditioner for both heating and cooling
JPH0250060A (en) Five-way reversible valve
JP2645854B2 (en) Two-stage expansion valve
JP2580210B2 (en) Five-way reversing valve
JP2002130870A (en) Double-direction valve
JPS61153355A (en) Four-way reversing valve for reversible refrigeration cycle
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JPH0799296B2 (en) Air conditioning switching device
JPH0799217B2 (en) Three-way solenoid valve
JPH038853Y2 (en)
JPH0633921B2 (en) Defrosting method and five-way valve for reversible refrigeration cycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees