JP3786518B2 - Expansion valve with solenoid valve - Google Patents

Expansion valve with solenoid valve Download PDF

Info

Publication number
JP3786518B2
JP3786518B2 JP11312098A JP11312098A JP3786518B2 JP 3786518 B2 JP3786518 B2 JP 3786518B2 JP 11312098 A JP11312098 A JP 11312098A JP 11312098 A JP11312098 A JP 11312098A JP 3786518 B2 JP3786518 B2 JP 3786518B2
Authority
JP
Japan
Prior art keywords
valve
pressure
pilot hole
pressure refrigerant
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11312098A
Other languages
Japanese (ja)
Other versions
JPH11304298A (en
Inventor
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP11312098A priority Critical patent/JP3786518B2/en
Publication of JPH11304298A publication Critical patent/JPH11304298A/en
Application granted granted Critical
Publication of JP3786518B2 publication Critical patent/JP3786518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車用空調装置等に用いられる冷凍サイクルにおいて蒸発器に送り込まれる冷媒の流量を制御するための電磁弁付膨張弁に関する。
【0002】
【従来の技術】
膨張弁は、一般に、蒸発器の出口から送り出される低圧冷媒の温度変化を感知して作動するパワーエレメントにより弁を駆動して、蒸発器に送り込まれる冷媒の流量を制御している。
【0003】
ただし、蒸発器が複数設けられた冷凍サイクルにおいては、使用の必要のない蒸発器にまで冷媒を流すとエネルギーの無駄使いになるので、各膨張弁をソレノイドで強制的に閉じることができるようになっている。
【0004】
【発明が解決しようとする課題】
しかし、膨張弁の弁体を強制的に閉じるにはパワーエレメントの開弁力に抗して弁体を推さなければならないので、ソレノイドが大型になってしまい、広いスペースと大きな電力消費を伴うデメリットがあった。
【0005】
そこで本発明は、蒸発器から送り出される低圧冷媒の温度に対応する流量制御状態と全閉状態との切り換えを、小型で消費電力の少ないソレノイドで行うことができる電磁弁付膨張弁を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明の電磁弁付膨張弁は、蒸発器の入口に向かう高圧冷媒が通る高圧冷媒流路の途中に形成された弁座に上流側から対向して配置された弁体と、リーク路を介して上記弁座より下流側において上記高圧冷媒流路と連通するように形成された調圧室と、上記弁体と共に移動するように一端側が上記弁座内を通過して上記弁体に連結され、他端側が上記調圧室内の圧力を受圧するように上記調圧室に面して配置されたピストン状部材と、上記リーク路より大きな流路断面積を有し、上記ピストン状部材内を貫通して一端が上記弁体の背面側に開口し、他端が上記調圧室内に開口するパイロット孔と、上記蒸発器の出口から送り出される低圧冷媒の温度と圧力の変化を感知して作動するパワーエレメントにより駆動されて上記パイロット孔を開閉する第1のパイロット孔開閉弁と、ソレノイドによって駆動されて上記パイロット孔の弁体背面側の開口を開閉する第2のパイロット孔開閉弁とを設けたことを特徴とする。
【0007】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明する。
図1は例えば自動車用空調装置(カーエアコン)の冷凍サイクルに用いられる膨張弁を示している。膨張弁の本体ブロック1には、図示されていない蒸発器の入口に向かう高圧冷媒が通る高圧冷媒流路2と、蒸発器から送り出された低圧冷媒が通る低圧冷媒流路3とが平行に形成されている。
【0008】
高圧冷媒流路2は途中でクランク状に曲げて形成されている。そして、その部分の高圧冷媒流路2の内周部に、管路径を細めた弁座4が形成されていて、高圧冷媒の流量を制御するための円錐状の弁体5が、弁座4に上流側から対向して配置されている。
【0009】
したがって、弁体5が弁座4に当接しているときは蒸発器への冷媒の流れが止められ、弁座4から弁体5が退避するのに伴って冷媒の流量が増え、冷媒が断熱膨張しながら蒸発器に送り込まれる。
【0010】
弁座4の中心軸線の延長線上には、弁座4より大きな径の貫通孔7が低圧冷媒流路3と直交して穿設されており、その貫通孔7の外端部にパワーエレメント10が取り付けられている。
【0011】
パワーエレメント10には、低圧冷媒流路3内の冷媒との間をダイアフラム11で仕切られた感温室12が形成されている。感温室12内には、冷媒と同じか又は似た特性のガスが封入されており、ダイアフラム11を介して低圧冷媒流路3内の冷媒の温度を感知し、それによって感温室12内の圧力が変化する。
【0012】
ダイアフラム11の裏面(感温室12外の面)には、支持筒15に支持された圧縮コイルスプリング16によって付勢されたダイアフラム受け盤13が当接していて、感温室12内と低圧冷媒流路3内との差圧と圧縮コイルスプリング16の付勢力とが釣り合う位置でダイアフラム受け盤13が停止するようになっている。
【0013】
支持筒15は、貫通孔7と軸線を合わせて低圧冷媒流路3を横切る状態で本体ブロック1に固定されており、圧縮コイルスプリング16の固定端側がその支持筒15に支持されている。17は、組み立て時に圧縮コイルスプリング16の付勢力を調整できるように支持筒15に螺合して取り付けられたスプリング受けナットである。
【0014】
貫通孔7内には、ピストン状部材20が軸線方向にスライド自在に緩く嵌挿されていて、貫通孔7内が、弁体5をパイロット作動させるための調圧室21になっており、ピストン状部材20が一端側において調圧室21内の圧力を受圧する。
【0015】
調圧室21内と低圧冷媒流路3との間は完全に塞がれているが、弁座4より下流側位置の高圧冷媒流路2内と調圧室21内とは、ピストン状部材20と貫通孔7との嵌合部(リーク路)22を介して狭い断面積で通じている。
【0016】
ピストン状部材20は、弁座4内を通過する状態に配置された連結筒24を介して弁体5と一体的に連結されていて、それらを軸線方向に貫通するパイロット孔25が形成されている。
【0017】
パイロット孔25は、リーク路22より大きな流路断面積を有していて、その一端は弁体5の背面部分(弁座4側から見て裏側の部分)において弁座4より上流位置の高圧冷媒流路2に開口し、他端は調圧室21内に開口している。
【0018】
パイロット孔25の調圧室側開口の近傍に形成された弁座26にパイロット孔25の内側から対向して、球状に形成された第1のパイロット弁体27が配置されていて、ピストン状部材20内に配置された弱い圧縮コイルスプリング28によって閉じ方向に付勢されている。
【0019】
この第1のパイロット弁体27とパワーエレメント10のダイアフラム受け盤13との間には、支持筒15内に軸線方向に進退自在に挿通配置されたロッド29の両端が当接している。したがって、ダイアフラム11の変位にしたがってロッド29を介して第1のパイロット弁体27が移動し、パイロット孔25と調圧室21内との間が開閉される。
【0020】
パイロット孔25の弁体背面側開口に対向して、第2のパイロット弁体30が配置されている。第2のパイロット弁体30は、螺合によって本体ブロック1に一体的に取り付けられたソレノイド40の可動鉄芯41の先端部分に取り付けられている。
【0021】
そして、電磁コイル42に通電されていないときは、図1に示されるように、第2のパイロット弁体30が、可動鉄芯41と固定鉄芯43との間に介挿配置された圧縮コイルスプリング44の付勢力によって弁体5の背面に押し付けられて、パイロット孔25を塞いでいる。
【0022】
したがって、パイロット孔25は第1のパイロット弁体27の状態にかかわりなく常に閉じているので、調圧室21内はリーク路22を介して連通する弁座4より下流の高圧冷媒流路2と同じ圧力になっている。その結果、弁体5が圧縮コイルスプリング31の付勢力によって弁座4に押し付けられて、高圧冷媒流路2は完全に閉塞された状態を維持する。
【0023】
そして、電磁コイル42に通電をすると、図2に示されるように、可動鉄芯41が固定鉄芯43に引きつけられて第2のパイロット弁体30が弁体5の背面から退避し、パイロット孔25の弁体背面側開口が開いた状態になる。
【0024】
この時必要な力は、可動鉄芯41と固定鉄芯43との間に介挿配置された圧縮コイルスプリング44を圧縮させるだけなので、電磁コイル42に必要な電流値は非常に小さくて済む。
【0025】
第2のパイロット弁体30が弁体5の背面から退避した状態では、パイロット孔25は、パワーエレメント10によって駆動される第1のパイロット弁体27によって開閉される。
【0026】
図3は、低圧冷媒流路3を流れる低圧冷媒の温度と圧力の変化によってパワーエレメント10が動作し、それによってロッド29を介して第1のパイロット弁体27が弁座26から離れる方向に押された状態を示している。
【0027】
この状態になると、パイロット孔25が開き、調圧室21内が弁座4より上流側の高圧冷媒流路2内と連通して高圧になる結果、ピストン状部材20と弁体5が一体的に押し下げられて、弁体5と弁座4との間の隙間が広がり、蒸発器に送り込まれる冷媒の流量が増える。
【0028】
低圧冷媒流路3を流れる低圧冷媒の温度降下(圧力上昇)があると、パワーエレメント10の動作によって、図4に示されるように、ロッド29が第1のパイロット弁体27から退避して第1のパイロット弁体27が弁座26に押し付けられる。
【0029】
この状態になると、パイロット孔25が閉じ、調圧室21内がリーク路22を介して弁座4より下流側の高圧冷媒流路2内と連通して圧力が下がる結果、弁体5が圧縮コイルスプリング31で弁座4に押し付けられ、冷媒が蒸発器に送り込まれなくなる。
【0030】
このように、ソレノイド40がオンの状態の間は、蒸発器の出口から送り出される低圧冷媒の温度と圧力の変化を感知して作動するパワーエレメント10によって第1のパイロット弁体27の開度が制御され、蒸発器に送り込まれる冷媒の流量が制御される。
【0031】
【発明の効果】
本発明によれば、蒸発器から送り出される低圧冷媒の温度に対応する流量制御状態と全閉状態との切り換えを小さなソレノイドで行うことができるので、スペース上及び消費電力上非常に有利である。
【図面の簡単な説明】
【図1】本発明の実施の形態の電磁弁付膨張弁の強制的閉弁状態の縦断面図である。
【図2】本発明の実施の形態の電磁弁付膨張弁の強制的閉弁状態が解除された状態の縦断面図である。
【図3】本発明の実施の形態の電磁弁付膨張弁の強制的閉弁状態が解除された状態における開弁状態の部分拡大断面図である。
【図4】本発明の実施の形態の電磁弁付膨張弁の強制的閉弁状態が解除された状態における閉弁状態の部分拡大断面図である。
【符号の説明】
2 高圧冷媒流路
3 低圧冷媒流路
4 弁座
5 弁体
10 パワーエレメント
20 ピストン状部材
21 調圧室
22 リーク路
25 パイロット孔
26 弁座
27 第1のパイロット弁体
30 第2のパイロット弁体
31 圧縮コイルスプリング
40 ソレノイド
41 可動鉄芯
44 圧縮コイルスプリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an expansion valve with an electromagnetic valve for controlling the flow rate of refrigerant sent to an evaporator in a refrigeration cycle used for an air conditioner for automobiles and the like.
[0002]
[Prior art]
In general, the expansion valve controls the flow rate of the refrigerant fed into the evaporator by driving the valve with a power element that operates by sensing the temperature change of the low-pressure refrigerant delivered from the outlet of the evaporator.
[0003]
However, in a refrigeration cycle with a plurality of evaporators, it is a waste of energy if the refrigerant is allowed to flow to an evaporator that does not need to be used, so that each expansion valve can be forcibly closed by a solenoid. It has become.
[0004]
[Problems to be solved by the invention]
However, in order to forcibly close the valve body of the expansion valve, the valve body must be pushed against the opening force of the power element, so that the solenoid becomes large, with a large space and large power consumption. There were disadvantages.
[0005]
Accordingly, the present invention provides an expansion valve with a solenoid valve that can be switched between a flow control state corresponding to the temperature of the low-pressure refrigerant delivered from the evaporator and a fully closed state with a small solenoid that consumes less power. With the goal.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the expansion valve with a solenoid valve of the present invention is disposed so as to face the valve seat formed in the middle of the high-pressure refrigerant flow path through which the high-pressure refrigerant toward the inlet of the evaporator passes from the upstream side. A valve body, a pressure regulating chamber formed to communicate with the high-pressure refrigerant flow path downstream from the valve seat via a leak path, and one end side passing through the valve seat so as to move together with the valve body A piston-like member that is connected to the valve body and is disposed facing the pressure regulating chamber so that the other end receives the pressure in the pressure regulating chamber, and has a channel cross-sectional area larger than the leak path. A pilot hole penetrating through the piston-like member and having one end opened on the back side of the valve body and the other end opened in the pressure regulating chamber, and the temperature of the low-pressure refrigerant sent out from the outlet of the evaporator Powered by a power element that operates by sensing pressure changes A first pilot hole opening / closing valve that opens and closes the pilot hole, and a second pilot hole opening / closing valve that is driven by a solenoid to open and close the opening of the pilot hole on the valve body rear side. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an expansion valve used in, for example, a refrigeration cycle of an automotive air conditioner (car air conditioner). In the main body block 1 of the expansion valve, a high-pressure refrigerant flow path 2 through which a high-pressure refrigerant directed to the inlet of the evaporator (not shown) and a low-pressure refrigerant flow path 3 through which the low-pressure refrigerant sent from the evaporator pass are formed in parallel. Has been.
[0008]
The high-pressure refrigerant flow path 2 is formed to be bent in a crank shape on the way. A valve seat 4 having a narrow pipe diameter is formed in the inner peripheral portion of the high-pressure refrigerant flow path 2 at that portion, and a conical valve body 5 for controlling the flow rate of the high-pressure refrigerant is provided in the valve seat 4. Are arranged opposite to each other from the upstream side.
[0009]
Therefore, when the valve body 5 is in contact with the valve seat 4, the flow of the refrigerant to the evaporator is stopped, the flow rate of the refrigerant increases as the valve body 5 retreats from the valve seat 4, and the refrigerant is insulated. It is sent to the evaporator while expanding.
[0010]
On the extension of the central axis of the valve seat 4, a through hole 7 having a diameter larger than that of the valve seat 4 is formed perpendicular to the low pressure refrigerant flow path 3, and the power element 10 is formed at the outer end of the through hole 7. Is attached.
[0011]
The power element 10 is formed with a temperature-sensitive greenhouse 12 that is partitioned by a diaphragm 11 from the refrigerant in the low-pressure refrigerant flow path 3. A gas having the same or similar characteristics as the refrigerant is sealed in the temperature-sensitive greenhouse 12, and the temperature of the refrigerant in the low-pressure refrigerant flow path 3 is sensed through the diaphragm 11, thereby the pressure in the temperature-sensitive greenhouse 12. Changes.
[0012]
A diaphragm receiving plate 13 urged by a compression coil spring 16 supported by a support cylinder 15 is in contact with the back surface of the diaphragm 11 (the surface outside the temperature-sensitive greenhouse 12). The diaphragm receiving plate 13 is stopped at a position where the pressure difference between the pressure and the biasing force of the compression coil spring 16 is balanced.
[0013]
The support cylinder 15 is fixed to the main body block 1 so as to cross the low-pressure refrigerant flow path 3 with the through hole 7 and the axis aligned, and the fixed end side of the compression coil spring 16 is supported by the support cylinder 15. Reference numeral 17 denotes a spring receiving nut that is screwed onto the support tube 15 so that the urging force of the compression coil spring 16 can be adjusted during assembly.
[0014]
A piston-like member 20 is loosely fitted in the through-hole 7 so as to be slidable in the axial direction, and the inside of the through-hole 7 serves as a pressure regulating chamber 21 for pilot-operating the valve body 5. The shaped member 20 receives the pressure in the pressure regulating chamber 21 at one end side.
[0015]
Although the space between the pressure regulating chamber 21 and the low pressure refrigerant flow path 3 is completely closed, the inside of the high pressure refrigerant flow path 2 and the pressure regulating chamber 21 located downstream of the valve seat 4 is a piston-like member. 20 and a through-hole 7 are connected with a narrow cross-sectional area through a fitting portion (leak path) 22.
[0016]
The piston-like member 20 is integrally connected to the valve body 5 via a connecting cylinder 24 arranged so as to pass through the valve seat 4, and a pilot hole 25 penetrating them in the axial direction is formed. Yes.
[0017]
The pilot hole 25 has a flow path cross-sectional area larger than that of the leak path 22, and one end of the pilot hole 25 is a high pressure upstream of the valve seat 4 in the back surface portion (the back side portion when viewed from the valve seat 4 side). The refrigerant channel 2 opens and the other end opens in the pressure regulating chamber 21.
[0018]
A first pilot valve body 27 formed in a spherical shape is arranged facing a valve seat 26 formed in the vicinity of the pressure regulation chamber side opening of the pilot hole 25 from the inside of the pilot hole 25, and is a piston-like member. It is urged in the closing direction by a weak compression coil spring 28 arranged in 20.
[0019]
Between the first pilot valve body 27 and the diaphragm receiving plate 13 of the power element 10, both ends of a rod 29 that is inserted in the support cylinder 15 so as to be capable of moving back and forth in the axial direction are in contact. Accordingly, the first pilot valve body 27 moves through the rod 29 according to the displacement of the diaphragm 11, and the space between the pilot hole 25 and the pressure regulating chamber 21 is opened and closed.
[0020]
A second pilot valve body 30 is disposed so as to face the opening on the back side of the valve body of the pilot hole 25. The second pilot valve body 30 is attached to the distal end portion of the movable iron core 41 of the solenoid 40 that is integrally attached to the main body block 1 by screwing.
[0021]
When the electromagnetic coil 42 is not energized, as shown in FIG. 1, the second pilot valve element 30 is a compression coil that is disposed between the movable iron core 41 and the fixed iron core 43. The pilot hole 25 is blocked by being pressed against the back surface of the valve body 5 by the urging force of the spring 44.
[0022]
Therefore, since the pilot hole 25 is always closed regardless of the state of the first pilot valve body 27, the inside of the pressure regulating chamber 21 is connected to the high-pressure refrigerant flow path 2 downstream from the valve seat 4 communicating via the leak path 22. The pressure is the same. As a result, the valve body 5 is pressed against the valve seat 4 by the urging force of the compression coil spring 31, and the high-pressure refrigerant flow path 2 is maintained in a completely closed state.
[0023]
When the electromagnetic coil 42 is energized, as shown in FIG. 2, the movable iron core 41 is attracted to the fixed iron core 43, and the second pilot valve body 30 is retracted from the back surface of the valve body 5, and the pilot hole 25 valve body back side opening will be in the open state.
[0024]
Since the force required at this time is only to compress the compression coil spring 44 interposed between the movable iron core 41 and the fixed iron core 43, the current value required for the electromagnetic coil 42 can be very small.
[0025]
When the second pilot valve body 30 is retracted from the back surface of the valve body 5, the pilot hole 25 is opened and closed by the first pilot valve body 27 driven by the power element 10.
[0026]
FIG. 3 shows that the power element 10 is operated by changes in the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant flow path 3, thereby pushing the first pilot valve body 27 away from the valve seat 26 via the rod 29. It shows the state that was done.
[0027]
In this state, the pilot hole 25 is opened and the inside of the pressure regulating chamber 21 communicates with the inside of the high-pressure refrigerant flow path 2 on the upstream side of the valve seat 4 so that the pressure becomes high. , The gap between the valve body 5 and the valve seat 4 is widened, and the flow rate of the refrigerant fed into the evaporator is increased.
[0028]
If there is a temperature drop (pressure rise) of the low-pressure refrigerant flowing through the low-pressure refrigerant flow path 3, the rod 29 is retracted from the first pilot valve body 27 and moved by the operation of the power element 10 as shown in FIG. One pilot valve element 27 is pressed against the valve seat 26.
[0029]
In this state, the pilot hole 25 is closed, and the pressure regulating chamber 21 communicates with the inside of the high-pressure refrigerant flow path 2 on the downstream side of the valve seat 4 via the leak path 22. The coil spring 31 is pressed against the valve seat 4 so that the refrigerant is not sent to the evaporator.
[0030]
Thus, while the solenoid 40 is in the ON state, the opening degree of the first pilot valve element 27 is controlled by the power element 10 that operates by sensing changes in the temperature and pressure of the low-pressure refrigerant sent from the outlet of the evaporator. And the flow rate of the refrigerant fed into the evaporator is controlled.
[0031]
【The invention's effect】
According to the present invention, switching between the flow rate control state corresponding to the temperature of the low-pressure refrigerant sent from the evaporator and the fully closed state can be performed with a small solenoid, which is very advantageous in terms of space and power consumption.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a forced valve closing state of an expansion valve with a solenoid valve according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a state in which the forced valve closing state of the expansion valve with electromagnetic valve according to the embodiment of the present invention is released.
FIG. 3 is a partially enlarged cross-sectional view of a valve opening state in a state where a forced valve closing state of the expansion valve with electromagnetic valve according to the embodiment of the present invention is released.
FIG. 4 is a partially enlarged cross-sectional view of the valve closing state in a state where the forced valve closing state of the expansion valve with electromagnetic valve according to the embodiment of the present invention is released.
[Explanation of symbols]
2 High-pressure refrigerant flow path 3 Low-pressure refrigerant flow path 4 Valve seat 5 Valve element 10 Power element 20 Piston-like member 21 Pressure regulating chamber 22 Leakage path 25 Pilot hole 26 Valve seat 27 First pilot valve element 30 Second pilot valve element 31 Compression coil spring 40 Solenoid 41 Movable iron core 44 Compression coil spring

Claims (1)

蒸発器の入口に向かう高圧冷媒が通る高圧冷媒流路の途中に形成された弁座に上流側から対向して配置された弁体と、
リーク路を介して上記弁座より下流側において上記高圧冷媒流路と連通するように形成された調圧室と、
上記弁体と共に移動するように一端側が上記弁座内を通過して上記弁体に連結され、他端側が上記調圧室内の圧力を受圧するように上記調圧室に面して配置されたピストン状部材と、
上記リーク路より大きな流路断面積を有し、上記ピストン状部材内を貫通して一端が上記弁体の背面側に開口し、他端が上記調圧室内に開口するパイロット孔と、
上記蒸発器の出口から送り出される低圧冷媒の温度と圧力の変化を感知して作動するパワーエレメントにより駆動されて上記パイロット孔を開閉する第1のパイロット孔開閉弁と、
ソレノイドによって駆動されて上記パイロット孔の弁体背面側の開口を開閉する第2のパイロット孔開閉弁とを
設けたことを特徴とする電磁弁付膨張弁。
A valve element disposed opposite to the valve seat formed in the middle of the high-pressure refrigerant flow path through which the high-pressure refrigerant toward the inlet of the evaporator passes,
A pressure regulating chamber formed so as to communicate with the high-pressure refrigerant flow path downstream from the valve seat via a leak path;
One end side passes through the valve seat so as to move together with the valve body and is connected to the valve body, and the other end side is arranged facing the pressure regulating chamber so as to receive the pressure in the pressure regulating chamber. A piston-like member;
A pilot hole having a flow passage cross-sectional area larger than the leak passage, penetrating through the piston-like member and having one end opened on the back side of the valve body and the other end opened in the pressure regulating chamber;
A first pilot hole opening / closing valve that opens and closes the pilot hole driven by a power element that operates by sensing changes in temperature and pressure of the low-pressure refrigerant delivered from the outlet of the evaporator;
An expansion valve with a solenoid valve, characterized in that a second pilot hole on-off valve that is driven by a solenoid to open and close the opening of the pilot hole on the valve element rear side is provided.
JP11312098A 1998-04-23 1998-04-23 Expansion valve with solenoid valve Expired - Fee Related JP3786518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11312098A JP3786518B2 (en) 1998-04-23 1998-04-23 Expansion valve with solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11312098A JP3786518B2 (en) 1998-04-23 1998-04-23 Expansion valve with solenoid valve

Publications (2)

Publication Number Publication Date
JPH11304298A JPH11304298A (en) 1999-11-05
JP3786518B2 true JP3786518B2 (en) 2006-06-14

Family

ID=14604037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11312098A Expired - Fee Related JP3786518B2 (en) 1998-04-23 1998-04-23 Expansion valve with solenoid valve

Country Status (1)

Country Link
JP (1) JP3786518B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201212A (en) * 2000-01-18 2001-07-27 Fuji Koki Corp Temperature expansion valve
JP4090317B2 (en) 2002-09-25 2008-05-28 株式会社テージーケー Expansion valve with solenoid valve
JP4693403B2 (en) * 2003-12-16 2011-06-01 オットー・エゲルホフ・ゲーエムベーハー・ウント・コンパニ・カーゲー Shut-off valve, kit having shut-off valve, and expansion valve
JP2011196428A (en) * 2010-03-18 2011-10-06 Fuji Electric Co Ltd Electronic expansion valve
JP5619520B2 (en) * 2010-08-17 2014-11-05 株式会社不二工機 Expansion valve with integrated solenoid valve
CN104344611B (en) * 2013-08-08 2018-01-26 盾安环境技术有限公司 A kind of expansion valve

Also Published As

Publication number Publication date
JPH11304298A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3977066B2 (en) Solenoid proportional valve
US6390782B1 (en) Control valve for a variable displacement compressor
JP4153133B2 (en) Expansion valve
JP3428926B2 (en) Pilot operated flow control valve
JPH07151422A (en) Expansion valve with solenoid valve
US7036744B2 (en) Solenoid valve-equipped expansion valve
EP0999486B1 (en) Pilot operated flow regulating valve
EP1335160B1 (en) Differential pressure valve
JPH11159919A (en) Thermostat type expansion valve assembly and method for controlling feed of refrigerant to valve
JP3786518B2 (en) Expansion valve with solenoid valve
JP3844321B2 (en) Pilot operated three-way switching solenoid valve
KR101020808B1 (en) Expansion valve integrated with solenoid valve
JP2971745B2 (en) solenoid valve
JP3840354B2 (en) Electrically controlled expansion valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP4566150B2 (en) Expansion valve with integrated solenoid valve
JP3780101B2 (en) Expansion valve with solenoid valve
JP2001153498A (en) Supercooling degree control type expansion valve
JP3743733B2 (en) Solenoid proportional control valve
JP3825929B2 (en) Refrigeration cycle with bypass
JP4049909B2 (en) Pilot operated flow adjustment valve
JPH0419407Y2 (en)
JPH1114164A (en) Freezing cycle with bypass pipeline
JPH10267471A (en) Expansion valve
JPH10176864A (en) Refrigeration cycle using variable capacity compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees