JP4049909B2 - Pilot operated flow adjustment valve - Google Patents

Pilot operated flow adjustment valve Download PDF

Info

Publication number
JP4049909B2
JP4049909B2 JP31576398A JP31576398A JP4049909B2 JP 4049909 B2 JP4049909 B2 JP 4049909B2 JP 31576398 A JP31576398 A JP 31576398A JP 31576398 A JP31576398 A JP 31576398A JP 4049909 B2 JP4049909 B2 JP 4049909B2
Authority
JP
Japan
Prior art keywords
valve
pilot
pressure
pilot passage
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31576398A
Other languages
Japanese (ja)
Other versions
JP2000146012A (en
Inventor
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP31576398A priority Critical patent/JP4049909B2/en
Priority to US09/428,189 priority patent/US6457696B1/en
Priority to DE69915001T priority patent/DE69915001T2/en
Priority to EP99121678A priority patent/EP0999486B1/en
Priority to ES99121678T priority patent/ES2216411T3/en
Publication of JP2000146012A publication Critical patent/JP2000146012A/en
Application granted granted Critical
Publication of JP4049909B2 publication Critical patent/JP4049909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Fluid-Driven Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、弁の前後差圧を一定に保って流体の流量を調整するようにしたパイロット作動流量調整弁に関する。
【0002】
【従来の技術】
流量調整弁は、一般に、電磁ソレノイドで弁の前後差圧を調整して、その設定差圧に対応して流量が制御されるようになっている。
【0003】
しかし、その差圧が例えば50気圧ないし100気圧と非常に大きい場合には、流路の断面積に比較して巨大なソレノイドが必要となって実用的でなくなるため、パイロット作動の流量調整弁が用いられる。
【0004】
そのようなパイロット作動の流量調整弁は、単なるパイロット作動の開閉弁と違って、パイロット通路を開閉する弁を定差圧弁にする必要がある。そこで従来は、主弁の下流側流路と調圧室内との間に形成したパイロット通路を、ソレノイドで付勢される定差圧弁により下流側から開閉するようにし、上流側流路と調圧室内とを細いリーク路で連通させていた。
【0005】
【発明が解決しようとする課題】
しかし、上述のような構成をとると、弁閉時にパイロット通路が閉じられたとき、細いリーク路を介して上流側と連通する調圧室内が高圧になる。すると上述のように下流側との差圧が非常に大きい場合には、パイロット通路やその周辺を通じて調圧室内から下流側に流体が流れてしまい、常にある程度以上の流量が発生してしまう不都合がある。
【0006】
そこで本発明は、上流の流体圧が高圧でも、パイロット通路が閉じられたときには、下流側への流体の流れを確実に止めることができるパイロット作動流量調整弁を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明のパイロット作動流量調整弁は、高圧の流体が送られてくる流路内に形成された弁座に上流側から当接して閉状態になるように配置された主弁と、上記弁座の下流側の流路から分岐して形成された調圧室と、上記弁座の下流側の流路内の圧力と上記調圧室内の圧力とを表裏両面に受けて上記主弁と一体的に移動するように上記主弁と連結部材によって連結された受圧部材と、上記弁座の下流側の流路内と上記調圧室内との間を細い断面積でリークさせるリーク路と、上記弁座より上流側の流路内と上記調圧室内とを連通させるパイロット通路と、上記パイロット通路の入口と出口の差圧が一定以上になると開いて上記パイロット通路の入口と出口の差圧を一定に保つパイロット通路定差圧弁とを設けたことを特徴とする。
【0008】
なお、上記パイロット通路定差圧弁が電磁作動弁であり、電磁コイルへの通電電流によって差圧値を制御することができるようにしてもよく、上記パイロット通路を開閉する開閉弁が上記パイロット通路定差圧弁と直列に接続配置されていてもよい。
【0009】
また、上記パイロット通路が上記連結部材中から上記受圧部材中にわたって形成されていて、上記パイロット通路定差圧弁がその部分に配置されていてもよい。
【0010】
その場合、上記パイロット通路定差圧弁が、電磁コイルによって駆動される可動鉄芯によりパイロット弁体を付勢する電磁作動弁であり、上記パイロット通路中に配置された可動鉄芯が外部に配置された電磁コイルによって駆動されるようにしてもよい。
【0011】
そして、上記可動鉄芯が上記パイロット通路の上流側に向けて上記パイロット弁体を付勢し、上記可動鉄芯の下流側端部に上記パイロット通路を開閉するための開閉弁が連結されていてもよい。
【0012】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明する。
本発明のパイロット作動流量調整弁は、例えば炭酸ガスを冷媒とする冷凍サイクルの膨張弁や、内燃機関の直噴燃料制御弁あるいは高水圧の流量制御弁等のように、高圧の流体が送られてきて大きな差圧下で動作させる必要がある弁に用いられる。
【0013】
図1は、本発明の第1の実施の形態のパイロット作動流量調整弁を示しており、例えば50気圧ないし100気圧という高圧の流体が送られて来る管路の途中に、環状に弁座1が形成されている。
【0014】
弁座1より上流側の管路2と下流側の管路3とは直角に曲がって形成されていて、弁座1は上流側の管路2内に形成されている。
主弁4は、上流側の端面が塞がった円筒状に形成されて、軸線方向に進退自在に弁座1内に嵌挿配置されていて、主弁4の側壁面に流量調整用のスリット5が形成されている。
【0015】
また、主弁4の上流側端部には止め弁部6がフランジ状に突出形成されていて、この止め弁部6が弁座1に押し付けられると、主弁4が全閉状態になるようになっている。
【0016】
上流側の管路2の軸線の延長線位置には、弁座1の径より大きな径のシリンダ状の調圧室8が下流側の管路3から分岐して形成されており、その中にピストン円盤状の受圧部材9が軸線方向に進退自在に嵌挿されている。17は、調圧室8の外面隔壁であり、この実施の形態では蓋状に形成されている。
【0017】
受圧部材9は、一直線にある上流側の管路2の軸線と調圧室8の軸線とを結ぶ位置に配置された連結棒10によって主弁4と一体的に連結されている。したがって、主弁4と受圧部材9とは一体となって移動する。12及び13は、それらがガタつかないように両側から付勢する圧縮コイルスプリングである。
【0018】
主弁4は一方の面で上流側の管路2内の圧力を受圧し、反対側から下流側の管路3内の圧力を受圧する。また受圧部材9は、一方の面で調圧室8内の圧力を受圧し、反対側の面で下流側の管路3内の圧力を受圧する。
【0019】
そして、受圧部材9の受圧面積(=調圧室8の断面積)が主弁4の受圧面積(=弁座1の断面積)より広く(例えば2〜10倍程度広く)形成されている。したがって、調圧室8内の圧力を制御することによって、受圧部材9と連結棒10を介して主弁4の状態が制御される。
【0020】
弁座1と下流側の管路3を通らずに上流側の管路2から調圧室8内に通じるパイロット通路15が設けられており、パイロット通路定差圧弁20と止め弁30がパイロット通路15の途中に直列に介挿接続されている。
【0021】
15Aは、パイロット通路15のうちの定差圧弁座21より上流側の部分、15Bは、定差圧弁座21とパイロット開閉弁座31との間の部分、15Cは、パイロット開閉弁座31より下流側の部分である。また、調圧室8内と下流側の管路3とは細い断面積のリーク路16で連通している。ただし、リーク路16は受圧部材9に形成してもよい。
【0022】
止め弁30は、パイロット通路15の途中に形成されたパイロット開閉弁座31をパイロット開閉弁体32で単純に開閉する電磁開閉弁であり、電磁コイル34への通電がないときは、パイロット開閉弁体32に連結された可動鉄芯33が固定鉄芯35に吸引されないので、閉弁状態になる。36は、可動鉄芯33と固定鉄芯35との間に配置された圧縮コイルスプリングである。以下、この止め弁30が開状態であるとの前提で説明をする。
【0023】
パイロット通路定差圧弁20は、パイロット通路15の内面に形成されたパイロット弁座21に下流側から対向して配置された円錐状のパイロット弁体22が、電磁コイル24で駆動される可動鉄芯23に連結された構造の電磁駆動定差圧弁である。可動鉄芯23は、電磁コイル24から生じる磁界によって固定鉄芯25に吸引されてパイロット弁体22を閉じ方向に付勢する。
【0024】
その結果、電磁コイル24への通電電流値が一定の状態においては、パイロット弁座21の上流側と下流側の差圧(即ち、パイロット通路15の入口と出口の差圧)が一定以上になるとパイロット弁体22が開き、差圧が一定より小さくなるとパイロット弁体22が閉じて、パイロット通路15の入口と出口の差圧が一定に保たれる。
【0025】
したがって、一定に保たれるパイロット通路15の入口と出口の差圧値を、電磁コイル24への通電電流値を選択することによって制御することができ、電磁コイル24への通電がない状態では差圧値が最小になる。
【0026】
調圧室8内の圧力はパイロット通路15の出口圧力なので、このような構成により、上流側の管路2内の圧力と調圧室8内の圧力との差圧が一定に維持され、それによって主弁4の開度が制御されて、上流側の管路2から下流側の管路3へ流れる流体の流量が一定に制御される。したがって、パイロット通路定差圧弁20の電磁コイル24への通電電流値を変えることにより、上流側の管路2から下流側の管路3へ流れる流体の流量を任意に制御することができる。
【0027】
このようなパイロット作動流量調整弁において、止め弁30をオフにして閉じれば、パイロット通路15が閉じられるので、リーク路16を介して下流側の管路3側と連通する調圧室8内が下流側の管路3内と同じ低圧になる。
【0028】
その結果、その圧力と上流側の管路2内の圧力との差圧により主弁4の止め弁部6が弁座1に押し付けられ、主弁4が全閉状態になる。そして、調圧室8内は下流側の管路3内と同じ低圧なので、上流側の管路2側がどんなに高圧でも、調圧室8から下流側の管路3への漏れがなく完全な流量ゼロの状態を安定して得ることができる。
【0029】
図2は、本発明の第2の実施の形態のパイロット作動流量調整弁を示しており、パイロット通路15を、連結棒10中から受圧部材9中にまたがって形成して、パイロット通路定差圧弁20のパイロット弁座21、パイロット弁体22、可動鉄芯23及び固定鉄芯25をその内部に配置したものである。電磁コイル24は、それらを囲む状態で外部に配置されている。
【0030】
この第2の実施の形態において前述の第1の実施の形態と同じ機能の部分には同じ符合を付してある。新しい符号は19だけであり、先が塞がった円筒状に形成された外面隔壁17と固定鉄芯25との嵌合部の隙間により形成されたリーク路16の圧損を減じるために、固定鉄芯25の外周面に形成された三つの円周溝である。
【0031】
この第2の実施の形態においても、弁座1と上流側の管路2と下流側の管路3との位置関係は第1の実施の形態と同じである。ただし、主弁4は弁座1に対して上流側の管路2側の正面から対向配置されている。止め弁部6はゴム製の円盤状である。
【0032】
調圧室8は、先が塞がれた円筒形状の外面隔壁17の奥の空間によって形成されており、その内部に円筒状の受圧部材9と固定鉄芯25とが一体に連結された状態で軸線方向に進退自在に嵌挿配置されている。
【0033】
その結果、受圧部材9の端面で調圧室8内の圧力が受圧され、固定鉄芯25の端面で下流側の管路3内の圧力が受圧される。したがって、固定鉄芯25は受圧部材9を兼用している(或いは、固定鉄芯25が受圧部材9の半部を構成している)。
【0034】
このように受圧部材9の半部を兼用する固定鉄芯25と主弁4とを連結する連結棒10はパイプ状であり、その孔部がパイロット通路15の一部(15A)になり、下流側端部の口元がパイロット通路定差圧弁20のパイロット弁座21になっている。
【0035】
受圧部材9(及び固定鉄芯25)の受圧面積は弁座1の断面積より広く(例えば2〜10倍程度広く)形成されている。そして、固定鉄芯25の軸線位置に形成された孔内にパイロット通路定差圧弁20のパイロット弁体22が配置されていて、電磁コイル24への通電により、受圧部材9内の空間に配置された可動鉄芯23が固定鉄芯25側に吸引されると、それによってパイロット弁体22がパイロット弁座21に押し付けられる。
【0036】
また、受圧部材9と固定鉄芯25の内部空間がパイロット通路15の一部(15B)になっている。そして、受圧部材9と調圧室8とを通じさせる孔(15C)の内側口元が止め弁のパイロット開閉弁座31になっており、それに対向する可動鉄芯23の端部にパイロット開閉弁体32が突設されている。
【0037】
このように構成された第2の実施の形態のパイロット作動流量調整弁において、電磁コイル24への通電電流値が一定の状態においては、パイロット弁座21の上流側と下流側の差圧(即ち、パイロット通路15の入口と出口の差圧)が一定以上になるとパイロット弁体22が開き、差圧が一定より小さくなるとパイロット弁体22が閉じて、パイロット通路15の入口と出口の差圧が一定に保たれる。
【0038】
調圧室8内の圧力はパイロット通路15の出口圧力なので、このような構成により、上流側の管路2内の圧力と調圧室8内の圧力との差圧が一定に維持され、それによって主弁4の開度が制御されて、上流側の管路2から下流側の管路3へ流れる流体の流量が一定制御される。
【0039】
したがって、パイロット通路定差圧弁20の電磁コイル24への通電電流値を変えることにより、上流側の管路2から下流側の管路3へ流れる流体の流量を任意に制御することができる。
【0040】
そして、電磁コイル24をオフにすると、可動鉄芯23が固定鉄芯25側に全く吸引されなくなるので、図3に示されるように、可動鉄芯23と固定鉄芯25との間に配置された圧縮コイルスプリング36によって、パイロット開閉弁体32がパイロット開閉弁座31に押し付けられてパイロット通路15が塞がれた状態になる。
【0041】
このとき調圧室8内は、第1の実施の形態の場合と同様に、下流側の管路3内と同じ低圧なので、上流側の管路2内がどんなに高圧でも、調圧室8から下流側の管路3への漏れがなく完全な流量ゼロの状態を安定して得ることができる。
【0042】
【発明の効果】
本発明によれば、弁座の下流側の流路から分岐して形成された調圧室と下流側の流路との間に設けた受圧部材を主弁と一体的に移動するように連結し、弁座より上流側の流路内と調圧室内とを連通させるパイロット通路を定差圧弁で開閉するようにしたので、定差圧弁を制御することにより弁座部分の流量を制御することができると共に、調圧室内は下流側流路内と同じ低圧なので、上流側流路側がどんなに高圧でも、調圧室から下流側流路への漏れがなく、パイロット通路が閉じられたときには、下流側への流体の流れを確実に止めることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のパイロット作動流量調整弁の縦断面図である。
【図2】本発明の第2の実施の形態のパイロット作動流量調整弁の縦断面図である。
【図3】本発明の第2の実施の形態のパイロット作動流量調整弁の全閉状態の縦断面図である。
【符号の説明】
1 弁座
2 上流側の管路(流路)
3 下流側の管路(流路)
4 主弁
8 調圧室
9 受圧部材
10 連結棒
15 パイロット通路
16 リーク路
20 パイロット通路定差圧弁
21 パイロット弁座
22 パイロット弁体
23 可動鉄芯
25 固定鉄芯
31 パイロット開閉弁座
32 パイロット開閉弁体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pilot-actuated flow rate adjusting valve that adjusts the flow rate of a fluid while keeping the differential pressure across the valve constant.
[0002]
[Prior art]
In general, the flow rate adjusting valve is configured such that the flow rate is controlled in accordance with the set differential pressure by adjusting the differential pressure across the valve with an electromagnetic solenoid.
[0003]
However, if the differential pressure is very large, for example, 50 to 100 atmospheres, a huge solenoid is required compared to the cross-sectional area of the flow path, which is impractical. Used.
[0004]
Such a pilot-operated flow rate adjusting valve is different from a simple pilot-operated on-off valve in that a valve for opening and closing the pilot passage needs to be a constant differential pressure valve. Therefore, conventionally, the pilot passage formed between the downstream flow path of the main valve and the pressure regulation chamber is opened and closed from the downstream side by a constant pressure valve energized by a solenoid, and the upstream flow path and the pressure regulation chamber are regulated. The room communicated with a narrow leak path.
[0005]
[Problems to be solved by the invention]
However, with the above-described configuration, when the pilot passage is closed when the valve is closed, the pressure regulating chamber communicating with the upstream side through the narrow leak passage becomes high pressure. Then, as described above, when the differential pressure from the downstream side is very large, the fluid flows from the pressure regulating chamber to the downstream side through the pilot passage and its surroundings, and there is a disadvantage that a flow rate of a certain level is always generated. is there.
[0006]
Therefore, an object of the present invention is to provide a pilot-actuated flow rate adjusting valve that can reliably stop the flow of fluid downstream even when the pilot passage is closed even when the upstream fluid pressure is high.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the pilot operated flow rate adjusting valve of the present invention is arranged so as to be in a closed state by contacting a valve seat formed in a flow path through which a high-pressure fluid is sent from the upstream side. The main valve, the pressure regulating chamber formed by branching from the flow path on the downstream side of the valve seat, the pressure in the flow path on the downstream side of the valve seat, and the pressure in the pressure regulating chamber on both sides The pressure receiving member connected to the main valve by a connecting member so as to move integrally with the main valve, and a small cross-sectional area between the flow path on the downstream side of the valve seat and the pressure regulating chamber. A leak passage for leaking, a pilot passage communicating between the flow path upstream of the valve seat and the pressure regulating chamber, and opens when the differential pressure between the inlet and outlet of the pilot passage exceeds a certain level. Providing a pilot passage constant differential pressure valve that maintains a constant pressure difference between the inlet and outlet And features.
[0008]
The pilot passage constant differential pressure valve may be an electromagnetically operated valve, and the differential pressure value may be controlled by an energization current to the electromagnetic coil. An on-off valve that opens and closes the pilot passage may be the pilot passage constant pressure valve. It may be connected and arranged in series with the differential pressure valve.
[0009]
Further, the pilot passage may be formed from the connecting member to the pressure receiving member, and the pilot passage constant differential pressure valve may be disposed in that portion.
[0010]
In that case, the pilot passage constant differential pressure valve is an electromagnetically operated valve that urges the pilot valve body by a movable iron core driven by an electromagnetic coil, and the movable iron core disposed in the pilot passage is disposed outside. Alternatively, it may be driven by an electromagnetic coil.
[0011]
And the said movable iron core urges | biases the said pilot valve body toward the upstream of the said pilot channel | path, and the on-off valve for opening and closing the said pilot channel | path is connected with the downstream end part of the said movable iron core. Also good.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
The pilot operating flow rate adjusting valve of the present invention is supplied with a high-pressure fluid such as an expansion valve of a refrigeration cycle using carbon dioxide gas as a refrigerant, a direct injection fuel control valve of an internal combustion engine, or a high water pressure flow control valve. Used for valves that need to be operated under large differential pressures.
[0013]
FIG. 1 shows a pilot operating flow rate adjusting valve according to a first embodiment of the present invention. For example, a valve seat 1 is annularly formed in the middle of a pipe line to which a high-pressure fluid of 50 to 100 atm is sent. Is formed.
[0014]
The pipe line 2 on the upstream side of the valve seat 1 and the pipe line 3 on the downstream side are bent at a right angle, and the valve seat 1 is formed in the pipe line 2 on the upstream side.
The main valve 4 is formed in a cylindrical shape whose end face on the upstream side is closed, and is fitted and placed in the valve seat 1 so as to be movable back and forth in the axial direction. A slit 5 for adjusting the flow rate is formed on the side wall surface of the main valve 4. Is formed.
[0015]
A stop valve portion 6 is formed in a flange shape at the upstream end of the main valve 4 so that when the stop valve portion 6 is pressed against the valve seat 1, the main valve 4 is fully closed. It has become.
[0016]
A cylindrical pressure regulating chamber 8 having a diameter larger than the diameter of the valve seat 1 is formed by branching from the downstream line 3 at the extended line position of the axis of the upstream line 2. A piston disk-shaped pressure receiving member 9 is fitted and inserted in the axial direction so as to be movable back and forth. Reference numeral 17 denotes an outer partition wall of the pressure regulating chamber 8, which is formed in a lid shape in this embodiment.
[0017]
The pressure receiving member 9 is integrally connected to the main valve 4 by a connecting rod 10 arranged at a position connecting the axis of the upstream pipe line 2 and the axis of the pressure regulating chamber 8 in a straight line. Therefore, the main valve 4 and the pressure receiving member 9 move together. Reference numerals 12 and 13 denote compression coil springs that are biased from both sides so that they do not rattle.
[0018]
The main valve 4 receives the pressure in the upstream pipe line 2 on one surface and receives the pressure in the downstream pipe line 3 from the opposite side. Further, the pressure receiving member 9 receives the pressure in the pressure regulating chamber 8 on one surface, and receives the pressure in the downstream pipe 3 on the opposite surface.
[0019]
The pressure receiving area of the pressure receiving member 9 (= the cross-sectional area of the pressure regulating chamber 8) is formed wider (for example, about 2 to 10 times wider) than the pressure receiving area of the main valve 4 (= the cross-sectional area of the valve seat 1). Therefore, the state of the main valve 4 is controlled through the pressure receiving member 9 and the connecting rod 10 by controlling the pressure in the pressure regulating chamber 8.
[0020]
There is provided a pilot passage 15 that does not pass through the valve seat 1 and the downstream pipe 3 but leads from the upstream pipe 2 to the pressure regulating chamber 8. The pilot passage constant differential pressure valve 20 and the stop valve 30 are connected to the pilot passage. In the middle of 15, they are connected in series.
[0021]
15A is a portion of the pilot passage 15 upstream of the constant differential pressure valve seat 21, 15B is a portion between the constant differential pressure valve seat 21 and the pilot open / close valve seat 31, and 15C is downstream of the pilot open / close valve seat 31. The side part. Further, the inside of the pressure regulating chamber 8 and the downstream pipe line 3 communicate with each other through a leak path 16 having a narrow cross-sectional area. However, the leak path 16 may be formed in the pressure receiving member 9.
[0022]
The stop valve 30 is an electromagnetic on-off valve that simply opens and closes a pilot on-off valve seat 31 formed in the middle of the pilot passage 15 with a pilot on-off valve body 32. When the electromagnetic coil 34 is not energized, the pilot on-off valve 30 Since the movable iron core 33 connected to the body 32 is not attracted to the fixed iron core 35, the valve is closed. A compression coil spring 36 is disposed between the movable iron core 33 and the fixed iron core 35. Hereinafter, description will be made on the assumption that the stop valve 30 is in an open state.
[0023]
The pilot passage constant differential pressure valve 20 is a movable iron core in which a conical pilot valve body 22 disposed facing a pilot valve seat 21 formed on the inner surface of the pilot passage 15 from the downstream side is driven by an electromagnetic coil 24. 23 is an electromagnetically driven constant differential pressure valve having a structure connected to the motor 23. The movable iron core 23 is attracted to the fixed iron core 25 by the magnetic field generated from the electromagnetic coil 24 and biases the pilot valve body 22 in the closing direction.
[0024]
As a result, when the value of the energization current to the electromagnetic coil 24 is constant, the differential pressure between the upstream side and the downstream side of the pilot valve seat 21 (that is, the differential pressure between the inlet and the outlet of the pilot passage 15) becomes a certain level or more. When the pilot valve body 22 is opened and the differential pressure becomes smaller than a certain value, the pilot valve body 22 is closed, and the differential pressure between the inlet and the outlet of the pilot passage 15 is kept constant.
[0025]
Therefore, the differential pressure value between the inlet and the outlet of the pilot passage 15 that is kept constant can be controlled by selecting the value of the energization current to the electromagnetic coil 24. Pressure value is minimized.
[0026]
Since the pressure in the pressure regulating chamber 8 is the outlet pressure of the pilot passage 15, the pressure difference between the pressure in the upstream pipe 2 and the pressure in the pressure regulating chamber 8 is maintained constant by such a configuration. Thus, the opening of the main valve 4 is controlled, and the flow rate of the fluid flowing from the upstream pipe line 2 to the downstream pipe line 3 is controlled to be constant. Therefore, the flow rate of the fluid flowing from the upstream side pipe line 2 to the downstream side pipe line 3 can be arbitrarily controlled by changing the energization current value to the electromagnetic coil 24 of the pilot passage constant differential pressure valve 20.
[0027]
In such a pilot operation flow rate adjusting valve, if the stop valve 30 is turned off and closed, the pilot passage 15 is closed, so that the inside of the pressure regulating chamber 8 communicating with the downstream pipe 3 side through the leak passage 16 is formed. The pressure is the same as that in the downstream pipe 3.
[0028]
As a result, the stop valve portion 6 of the main valve 4 is pressed against the valve seat 1 by the differential pressure between the pressure and the pressure in the upstream pipe line 2, and the main valve 4 is fully closed. Since the pressure regulating chamber 8 has the same low pressure as that in the downstream pipeline 3, no matter how high the upstream pipeline 2 is, there is no leakage from the pressure regulating chamber 8 to the downstream pipeline 3 and the complete flow rate. A zero state can be obtained stably.
[0029]
FIG. 2 shows a pilot operating flow rate adjusting valve according to a second embodiment of the present invention, in which a pilot passage 15 is formed so as to extend from the connecting rod 10 to the pressure receiving member 9, and the pilot passage constant differential pressure valve is formed. 20 pilot valve seats 21, pilot valve body 22, movable iron core 23 and fixed iron core 25 are arranged therein. The electromagnetic coil 24 is arranged outside in a state of surrounding them.
[0030]
In the second embodiment, parts having the same functions as those in the first embodiment are given the same reference numerals. The new code is 19 only, and in order to reduce the pressure loss of the leak path 16 formed by the gap of the fitting portion between the outer wall partition wall 17 and the fixed iron core 25 formed in the closed end, the fixed iron core is reduced. These are three circumferential grooves formed on the outer peripheral surface of 25.
[0031]
Also in the second embodiment, the positional relationship among the valve seat 1, the upstream pipe line 2, and the downstream pipe line 3 is the same as that of the first embodiment. However, the main valve 4 is disposed so as to face the valve seat 1 from the front side on the upstream pipe line 2 side. The stop valve portion 6 is a rubber disc.
[0032]
The pressure regulating chamber 8 is formed by a space behind the cylindrical outer partition wall 17 whose tip is closed, and the cylindrical pressure receiving member 9 and the fixed iron core 25 are integrally connected therein. And are inserted and arranged so as to freely advance and retract in the axial direction.
[0033]
As a result, the pressure in the pressure regulating chamber 8 is received by the end face of the pressure receiving member 9, and the pressure in the downstream pipe 3 is received by the end face of the fixed iron core 25. Therefore, the fixed iron core 25 also serves as the pressure receiving member 9 (or the fixed iron core 25 constitutes a half of the pressure receiving member 9).
[0034]
Thus, the connecting rod 10 that connects the fixed iron core 25 that also serves as a half of the pressure receiving member 9 and the main valve 4 has a pipe shape, and the hole portion becomes a part (15A) of the pilot passage 15 and is downstream. The mouth of the side end is a pilot valve seat 21 of the pilot passage constant differential pressure valve 20.
[0035]
The pressure receiving area of the pressure receiving member 9 (and the fixed iron core 25) is wider than the cross-sectional area of the valve seat 1 (for example, about 2 to 10 times wider). The pilot valve body 22 of the pilot passage constant differential pressure valve 20 is disposed in a hole formed at the axial position of the fixed iron core 25, and is disposed in a space within the pressure receiving member 9 by energization of the electromagnetic coil 24. When the movable iron core 23 is sucked to the fixed iron core 25 side, the pilot valve body 22 is pressed against the pilot valve seat 21.
[0036]
The internal space of the pressure receiving member 9 and the fixed iron core 25 is a part (15B) of the pilot passage 15. The inner opening of the hole (15C) through which the pressure receiving member 9 and the pressure regulating chamber 8 are passed is a pilot opening / closing valve seat 31 of a stop valve, and a pilot opening / closing valve body 32 is provided at the end of the movable iron core 23 facing it. Is protruding.
[0037]
In the pilot operating flow rate adjusting valve of the second embodiment configured as described above, the differential pressure between the upstream side and the downstream side of the pilot valve seat 21 (i.e., when the energization current value to the electromagnetic coil 24 is constant) When the differential pressure between the inlet and the outlet of the pilot passage 15) exceeds a certain value, the pilot valve body 22 opens. When the differential pressure becomes smaller than the certain pressure, the pilot valve body 22 closes, and the differential pressure between the inlet and the outlet of the pilot passage 15 Kept constant.
[0038]
Since the pressure in the pressure regulating chamber 8 is the outlet pressure of the pilot passage 15, the pressure difference between the pressure in the upstream pipe 2 and the pressure in the pressure regulating chamber 8 is maintained constant by such a configuration. Thus, the opening degree of the main valve 4 is controlled, and the flow rate of the fluid flowing from the upstream pipe line 2 to the downstream pipe line 3 is controlled to be constant.
[0039]
Therefore, the flow rate of the fluid flowing from the upstream side pipe line 2 to the downstream side pipe line 3 can be arbitrarily controlled by changing the energization current value to the electromagnetic coil 24 of the pilot passage constant differential pressure valve 20.
[0040]
When the electromagnetic coil 24 is turned off, the movable iron core 23 is not attracted at all to the fixed iron core 25 side, so that it is disposed between the movable iron core 23 and the fixed iron core 25 as shown in FIG. The pilot open / close valve body 32 is pressed against the pilot open / close valve seat 31 by the compression coil spring 36 and the pilot passage 15 is closed.
[0041]
At this time, as in the case of the first embodiment, the pressure regulating chamber 8 has the same low pressure as that in the downstream pipe 3, so no matter how high the upstream pipe 2 is, the pressure regulating chamber 8 There is no leakage to the downstream pipe 3 and a completely zero flow rate can be stably obtained.
[0042]
【The invention's effect】
According to the present invention, the pressure receiving member provided between the pressure regulating chamber formed by branching from the downstream flow path of the valve seat and the downstream flow path is connected so as to move integrally with the main valve. Since the pilot passage that connects the flow path upstream of the valve seat and the pressure regulating chamber is opened and closed by the constant differential pressure valve, the flow rate of the valve seat portion can be controlled by controlling the constant differential pressure valve. Since the pressure adjustment chamber has the same low pressure as the downstream flow path, no matter how high the upstream flow path side is, there is no leakage from the pressure adjustment chamber to the downstream flow path, and when the pilot passage is closed, The flow of fluid to the side can be stopped reliably.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a pilot operated flow rate adjusting valve according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a pilot operated flow rate adjusting valve according to a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a fully closed state of a pilot operated flow rate adjusting valve according to a second embodiment of the present invention.
[Explanation of symbols]
1 Valve seat 2 Upstream pipe (flow path)
3 Downstream pipe (flow path)
4 Main valve 8 Pressure regulating chamber 9 Pressure receiving member 10 Connecting rod 15 Pilot passage 16 Leak passage 20 Pilot passage constant differential pressure valve 21 Pilot valve seat 22 Pilot valve body 23 Movable iron core 25 Fixed iron core 31 Pilot on / off valve seat 32 Pilot on / off valve body

Claims (4)

高圧の流体が送られてくる流路内に形成された弁座に上流側から当接して閉状態になるように配置された主弁と、
上記弁座の下流側の流路から分岐して形成された調圧室と、
上記弁座の下流側の流路内の圧力と上記調圧室内の圧力とを表裏両面に受けて上記主弁と一体的に移動するように上記主弁と連結部材によって連結された受圧部材と、
上記弁座の下流側の流路内と上記調圧室内との間を細い断面積でリークさせるリーク路と、
上記弁座より上流側の流路内と上記調圧室内とを連通させるパイロット通路と、
上記パイロット通路の入口と出口の差圧が一定以上になると開いて上記パイロット通路の入口と出口の差圧を一定に保つパイロット通路定差圧弁と
が設けられたパイロット作動流量調整弁であって、
上記パイロット通路が上記連結部材中から上記受圧部材中にわたって形成されて、その部分に上記パイロット通路定差圧弁が配置され、
上記パイロット通路定差圧弁が、電磁コイルによって駆動される可動鉄芯によりパイロット弁体を付勢する電磁作動弁であり、上記パイロット通路中に配置された可動鉄芯が外部に配置された電磁コイルによって駆動される
ことを特徴とするパイロット作動流量調整弁。
A main valve arranged so as to be in contact with the valve seat formed in the flow path through which the high-pressure fluid is sent from the upstream side and closed;
A pressure regulating chamber formed by branching from the flow path on the downstream side of the valve seat;
A pressure receiving member connected by the connecting member to the main valve so as to receive the pressure in the flow path downstream of the valve seat and the pressure in the pressure regulating chamber on both the front and back surfaces and move integrally with the main valve; ,
A leak path that leaks between the flow path on the downstream side of the valve seat and the pressure regulation chamber with a thin cross-sectional area;
A pilot passage for communicating between the flow path upstream of the valve seat and the pressure regulating chamber;
A pilot passage constant differential pressure valve that opens when the differential pressure between the inlet and outlet of the pilot passage exceeds a certain level, and maintains a constant differential pressure between the inlet and outlet of the pilot passage;
A pilot-actuated flow control valve provided with
The pilot passage is formed from the connecting member to the pressure receiving member, and the pilot passage constant differential pressure valve is disposed in that portion.
The pilot passage constant differential pressure valve is an electromagnetically actuated valve that urges the pilot valve body by a movable iron core driven by an electromagnetic coil, and an electromagnetic coil in which the movable iron core arranged in the pilot passage is arranged outside It is driven by the pilot-actuated flow control valve.
上記パイロット通路定差圧弁が電磁作動弁であり、電磁コイルへの通電電流によって差圧値を制御することができる請求項1記載のパイロット作動流量調整弁。The pilot operating flow rate adjusting valve according to claim 1, wherein the pilot passage constant differential pressure valve is an electromagnetically operated valve, and a differential pressure value can be controlled by an energization current to the electromagnetic coil. 上記パイロット通路を開閉する開閉弁が上記パイロット通路定差圧弁と直列に接続配置されている請求項1又は2記載のパイロット作動流量調整弁。The pilot operating flow rate adjusting valve according to claim 1 or 2, wherein an on-off valve for opening and closing the pilot passage is connected in series with the pilot passage constant differential pressure valve. 上記可動鉄芯が上記パイロット通路の上流側に向けて上記パイロット弁体を付勢し、上記可動鉄芯の下流側端部に上記パイロット通路を開閉するための開閉弁が連結されている請求項1、2又は3記載のパイロット作動流量調整弁。The movable iron core urges the pilot valve body toward the upstream side of the pilot passage, and an open / close valve for opening and closing the pilot passage is connected to a downstream end portion of the movable iron core. The pilot operated flow rate adjusting valve according to 1, 2 or 3 .
JP31576398A 1998-11-06 1998-11-06 Pilot operated flow adjustment valve Expired - Fee Related JP4049909B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31576398A JP4049909B2 (en) 1998-11-06 1998-11-06 Pilot operated flow adjustment valve
US09/428,189 US6457696B1 (en) 1998-11-06 1999-10-27 Pilot operated flow regulating valve
DE69915001T DE69915001T2 (en) 1998-11-06 1999-11-02 Pilot operated flow control valve
EP99121678A EP0999486B1 (en) 1998-11-06 1999-11-02 Pilot operated flow regulating valve
ES99121678T ES2216411T3 (en) 1998-11-06 1999-11-02 FLOW REGULATION VALVE ACTUATED BY PILOT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31576398A JP4049909B2 (en) 1998-11-06 1998-11-06 Pilot operated flow adjustment valve

Publications (2)

Publication Number Publication Date
JP2000146012A JP2000146012A (en) 2000-05-26
JP4049909B2 true JP4049909B2 (en) 2008-02-20

Family

ID=18069258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31576398A Expired - Fee Related JP4049909B2 (en) 1998-11-06 1998-11-06 Pilot operated flow adjustment valve

Country Status (1)

Country Link
JP (1) JP4049909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537484B (en) * 2012-01-20 2013-12-04 浙江恒森实业集团有限公司 Electromagnetic valve with differential pressure resistance valve core
CN109899587A (en) * 2019-03-27 2019-06-18 湖南农业大学 Low pressure difference pressure-reducing valve and its intelligence control system

Also Published As

Publication number Publication date
JP2000146012A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
KR101955038B1 (en) Control valve
US7290564B2 (en) Solenoid valve
EP0999486B1 (en) Pilot operated flow regulating valve
CA2619394C (en) Solenoid isolation valve
JP3870177B2 (en) Electric fluid pressure control valve
JP2004100722A (en) Proportional valve
JP2006514732A (en) Expansion mechanism for air conditioner
WO2004079468A1 (en) Flow rate control valve
JP2004076920A (en) Differential pressure control valve
JP3844321B2 (en) Pilot operated three-way switching solenoid valve
JP4049909B2 (en) Pilot operated flow adjustment valve
JP2003314736A (en) Valve device with electromagnetic actuation
JP3786518B2 (en) Expansion valve with solenoid valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP3880280B2 (en) Pilot variable pressure control valve
JP4052881B2 (en) 3-way selector valve
JP2002372164A (en) Solenoid valve
JP3352147B2 (en) Pilot type solenoid valve
JP2004019718A (en) Three-way switching valve
JP4101444B2 (en) Hot water pipe control valve for hot water heater
JP3768709B2 (en) Pilot operated flow control valve
JP4375046B2 (en) Servo piston mechanism and flow control valve
JP2004053192A (en) Expansion valve of constant flow rate
JPH10299934A (en) Solenoid proportional control valve
JP3796373B2 (en) Pilot operated flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141207

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees