JP4576076B2 - Expansion valve with integrated solenoid valve - Google Patents

Expansion valve with integrated solenoid valve Download PDF

Info

Publication number
JP4576076B2
JP4576076B2 JP2001251440A JP2001251440A JP4576076B2 JP 4576076 B2 JP4576076 B2 JP 4576076B2 JP 2001251440 A JP2001251440 A JP 2001251440A JP 2001251440 A JP2001251440 A JP 2001251440A JP 4576076 B2 JP4576076 B2 JP 4576076B2
Authority
JP
Japan
Prior art keywords
valve
valve body
refrigerant
orifice member
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001251440A
Other languages
Japanese (ja)
Other versions
JP2003065633A (en
Inventor
亮 松田
公道 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2001251440A priority Critical patent/JP4576076B2/en
Publication of JP2003065633A publication Critical patent/JP2003065633A/en
Application granted granted Critical
Publication of JP4576076B2 publication Critical patent/JP4576076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Description

【0001】
【発明の属する技術分野】
本発明は、電磁弁一体型膨張弁に関し、例えば車室内のフロント側とリア側に冷凍サイクルを設けた車両用空調装置に用いて好適なものである。
【0002】
【従来の技術】
従来、この種電磁弁一体型膨張弁として、例えば特開平10−73345号公報及び特開平11−182983号公報に記載されているものが知られている。
これらの電磁弁一体型膨張弁は、高圧側冷媒を減圧膨張させる絞り流路とこの絞り流路の開度調整する弁体と、この弁体を変位させる弁体作動機構と、絞り流路にて減圧膨張した冷媒を蒸発器に供給する出口冷媒流路とを備え、電磁弁の弁体により出口冷媒流路を開閉するようにするとともに、電磁弁の弁体の閉弁時には、電磁弁の弁体と絞り流路との間の冷媒圧力に基づいて、弁体を作動させるダイアフラム作動機構により、絞り流路の弁体を閉弁させるようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の電磁弁一体型膨張弁においては、電磁弁の閉弁時には、ダイアフラム作動機構を構成するダイアフラム下側に高圧側冷媒を導入するので、冷凍サイクルの高圧側圧力が作用することになり、ダイアフラム作動機構に高強度が要求される。このためダイアフラムを高耐圧のステンレス材としたり、ダイアフラム作動機構のハウジングの肉厚を厚くすることが行なわれている。
したがって、従来の電磁弁一体型膨張弁においてはコスト高となり、大型化するという問題点があった。
【0004】
本発明は、このような問題点に鑑みなされたもので、その目的とするところは、電磁弁の閉弁時にダイアフラム作動機構に高圧側冷媒を導入することのない電磁弁一体型膨張弁を提供することである。
【0005】
【課題を解決するための手段】
上記目的を達成すべく、本発明に係る電磁弁一体型膨張弁は、弁本体と、この弁本体内に形成され、高圧側冷媒が導入される入口冷媒流路と、上記弁本体内に形成され、上記入口冷媒流路より導入された冷媒が流入する弁室と、上記弁室内に摺動自在に設けられ、上記弁室内に流入した冷媒を減圧膨張させる絞り流路を形成するオリフィス部材と、上記オリフィス部材の下流側に配設され上記オリフィス部材を上流側に付勢するスプリングと、上記オリフィス部材の上流側に配設され、上記絞り流路の開度を調整する弁体と、上記弁本体に具備され、上記弁体を変位させる弁体作動機構と、上記弁本体内に形成され、上記絞り流路にて減圧膨張した冷媒を蒸発器に供給する出口冷媒流路と、上記弁本体に一体に組付けられ、上記出口冷媒流路を開閉する電磁弁とを備え上記電磁弁を開弁すると、上記オリフィス部材が高圧側冷媒の圧力により上記スプリングのバネ力に抗して下流側に移動して上記絞り流路を形成し、上記電磁弁を閉弁すると、上記オリフィス部材が上記スプリングのバネ力により上記弁体に接するように移動して上記絞り流路を閉じるようにしたことを特徴とする。
【0006】
さらに本発明に係る電磁弁一体型膨張弁は、上記オリフィス部材は、上記オリフィス部材と上記弁室の内壁との間をシールするOリングを具備することを特徴とする。
【0007】
さらにまた本発明に係る電磁弁一体型膨張弁は、上記オリフィス部材は、上記オリフィス部材の上流側と下流側とを連通する微小通路を有することを特徴とする。
【0008】
【発明の実施の形態】
図1は本発明に係る電磁弁一体型膨張弁の一実施の形態を示す冷媒の通路を含む面で裁断した断面図、図2は図1の右側面に相当する断面図、図3(A)及び図3(B)は、図2の要部拡大図である。
全体を符号1で示す電磁弁一体型膨張弁は、ほぼ角柱形状の弁本体10を有する。弁本体10の下部の内部には、冷凍サイクルの圧縮機側からの高圧冷媒が供給される入口冷媒通路12を有し、入口冷媒通路12は弁本体10内部に形成された弁室14に連通される。弁室14内にはボール状の弁体40が、支持部材34を介してスプリング32で支えられる。
【0009】
さらに、弁体40に対して弁座15’が対向配置するように形成された別体の所定の厚みを有する円盤形状のオリフィス部材15が設けられる。オリフィス部材15は、例えばステンレス材を用いて所定の厚みを有する略円盤形状に形成され、弁体40とで絞り流路19を構成すると共に中心穴17を有する。さらに、オリフィス部材15には、その厚み方向にシール用のOリング16が取り付けられ、弁室14の内壁14’に接して摺動可能に設けられている。18はオリフィス部材15の下流側に配置されているスプリングである。即ち、スプリング18は、中心穴17を貫通しその下端が弁体40に当接する感温棒80が摺動可能に嵌合する内孔11と同軸に形成された大径部13に配置され、この大径部13の半径方向に拡がる段部13’とオリフィス部材15との間に在って、オリフィス部材15を支持し、オリフィス部材15の弁座15’が弁体40に当接するよう閉弁バネ力として作用する。
【0010】
弁室14の開口部にはナット部材30が螺合されて、封止される。ナット部材30をねじ込むことで、スプリング32は予圧され、所定のスプリング力で支持部材34を介して弁体40を支持する。ナット部材30にシール部材36を取り付けて弁室14のシールを図る。
弁室14の冷媒は、弁体40と弁座15’の間の絞り流路19を通って減圧膨張され、出口冷媒流路20に流出する。出口冷媒流路20からの冷媒は、出口穴22を介して図示しない蒸発器へ送り出される。
【0011】
蒸発器から戻される冷媒は、弁本体10の上部内に設けらた通路50を通り、図示しない圧縮機へ還流される。通路50内の冷媒は、間隙52を介して弁本体10の上部に取り付けられる弁体を駆動させる弁体作動機構となるダイアフラム作動機構であるパワーエレメント60に向けて送られる。
パワーエレメント60は、弁本体10に対してねじ部64で取り付けられるハウジング62を有する。さらに、ハウジング62を構成するケーシング部材621及び622間に挟み込まれて溶接されているダイアフラム70を有し、ダイアフラム70により上部室72aと下部室72bが区画される。上部室72aには作動流体が封入され、栓体66が封止される。
【0012】
ダイアフラム70はストッパ74で支持される。ストッパ74は弁体40を駆動する感温棒80と一体又は別体に形成される。図1及び図2では別体に形成され、その先端がストッパ74に嵌合している。感温棒80は、通路50内を流れる冷媒の温度をパワーエレメント60に伝達する機能を有する。
【0013】
而して、感温棒80は、弁本体10内に形成された段付内孔11に摺動可能に嵌合し、その下端はオリフィス部材15の中心穴17を貫通して弁体40に当接し、弁体40を弁座15’から離す方向に付勢する。さらに、感温棒80はその下部に細径部82が形成されていると共に、内孔11と同軸に形成された有底の小径部81に出口冷媒通路20と通路50の間の連通を防止するシール部材としてOリング86を具備する。
【0014】
この膨張弁1は以上のように構成してあるので、蒸発器から流出されて、通路50を通る冷媒の圧力と温度に応じて設定されるダイアフラム70の作動位置により、感温棒80が駆動され、弁体40と弁座15’の間の絞り流路19の間隙が調整される。
【0015】
そこで、蒸発器の熱負荷が大きいときには、弁体40と弁座15の間の間隙は大きくなり、大量の冷媒が蒸発器に供給され、反対に熱負荷が小さいときには、冷媒の流量は少なくなる。
【0016】
図2に示すように、弁本体10の側面部には電磁弁100が取り付けられる。
電磁弁100は、ケーシング110と、ケーシング110に連結される取付部材140を有し、取付部材140は、ねじ部を介して弁本体10に形成した有底の開口部26に取り付けられる。この有底の開口部26は、大径部13を介して弁室14に連通される。
【0017】
したがって、弁室14に供給される冷媒は、大径部13を介して有底の開口部26にも導入され、電磁弁100の開弁時に出口冷媒流路20へ流入される通路が形成される。
【0018】
電磁弁100は、ケーシング110内にコイル120を有し、コード122を介して給電される。ケーシング110の中心部には、シリンダ124が配設され、プランジャ130が摺動自在に挿入される。シリンダ124の外側には、ストッパ132がビス136で固定される。ストッパ132はスプリング134を介してプランジャ130を常時ストッパ132から離れる方向に付勢する。
プランジャ130の先端には、パイロット弁体150が摺動自在に配設される。このパイロット弁体150は中心部に弁穴152を有する。
【0019】
有底開口部26の中心には、パイプ状の導管28が設けてある。この導管28の内径の通路27は、有底開口部26と弁本体10の出口冷媒流路20とを連通している。
パイロット弁体150は、常時はプランジャ130に押圧されて、パイロット弁体150の弁穴152がプランジャ130の先端部で塞がれる。パイロット弁体150の外側の背圧室160には、有底開口部26の冷媒が導入されていて、その背圧によりパイロット弁体150は、導管28の開口部に押圧されて、その通路27を閉じる。
【0020】
かくの如く構成された電磁弁100においては、電磁弁100のコイル120に通電されると、コイル120の磁力により、プランジャ130がストッパ132側に引き戻される。プランジャ130の先端部がパイロット弁体150の弁穴152から離れると、弁穴152が開口し、背圧室160の冷媒が弁穴152を通過して導管28の通路27に導入され、圧力差が減じられる。これによりパイロット弁体150は、導管28の先端から離れ、電磁弁100は開弁時となり、有底開口部26内の冷媒は、出口冷媒流路20側へ流れる。
【0021】
即ち、弁室14へ入口冷媒流路12から高圧冷媒が供給され、高圧冷媒により、図3(A)に示すようにオリフィス部材15は高圧冷媒の下流側つまり上方に押されて摺動し、スプリング18を上方に押し上げ、弁体40と弁座15’の間に絞り流路19が形成され、高圧冷媒が断熱膨張される。この結果、冷媒は大径部13を経て、有底開口部26に流入し、通路27を通って出口冷媒流路20側に流れる。
【0022】
逆に、コイル120への通電を遮断し、スプリング134のバネ力によりプランジャ130の先端が弁体150の弁穴152に着座して、この弁穴152を閉じる。すると、背圧室160内に、有底開口部26を介して大径部13内の冷媒が導入される。そのため、プランジャ130の先端部が弁穴152に着座して弁穴152を閉じるとともに、弁体150が導管28の端面に着座し、通路27を閉じる。これにより、電磁弁20が閉弁状態に復帰する。
【0023】
この結果、図3(B)に示すように、弁室14へ供給される高圧冷媒の流入がなくなり、弁室14内の圧力と大径部13内の圧力は均圧状態となって、大径部13に配置されているスプリング18のバネ力が閉弁バネ力となってオリフィス部材15を下方に押して摺動させ、オリフィス部材15の弁座15’がボール状の弁体40に当接し、ボール状の弁体40が弁座15’に着座することとなり、弁体40は閉弁状態となって、絞り流路19は閉じられる。
【0024】
したがって、弁体40を閉弁状態とするのに、弁体を駆動させるダイアフラム作動機構であるパワーエレメント60に高圧冷媒を導入することなく、オリフィス部材15を支持するスプリング18の閉弁バネ力を用いるので、パワーエレメント60を高強度に構成する必要がなくなる。
【0025】
図4(A)及び図4(B)は、本発明に係る電磁弁一体型膨張弁の他の実施の形態の要部を示す断面図であり、それぞれ図3(A)及び図3(B)に示す実施の形態において、オリフィス部材15にその軸方向にブリードポート15’’が設けられている。
【0026】
図4(A)及び図4(B)に示すブリードポート15’’は、図4(B)に示す電磁弁100が閉弁し、弁室14内の圧力と大径部13内の圧力が均圧する際、その均圧を迅速に行うために設けられており、弁室14からブリードポート15’’を経て高圧冷媒が大径部13内に流入し、均圧が迅速に行なわれる。これにより、図4(B)の実施の形態におけるオリフィス部材15の下方への摺動が、図3(B)の実施の形態の場合に比較して迅速に行なわれ、ボール状の弁体40の閉弁状態への移行が迅速に行なわれることとなる。さらに、ブリードポート15’’は、図4(A)に示す電磁弁100の開弁時に冷媒流量の調整に悪影響を及ぼさない程度に微小な貫通穴である。
【0027】
なお、以上の実施の形態においては、オリフィス部材15にOリング16を具備する場合について述べたが、本発明においては、Oリング16を省略し、弁室14の内壁14’とオリフィス部材15とを直接当接させてもよいのは勿論である。
【0028】
【発明の効果】
本発明の電磁弁一体型膨張弁によると、弁体を駆動するダイアフラム作動機構に高圧冷媒を導入することがないので、ダイアフラム作動機構を高強度にする必要がなくなり、低コストの小型化された電磁弁一体型膨張弁が得られる。
【図面の簡単な説明】
【図1】本発明の電磁弁一体型膨張弁の一実施の形態を示す断面図。
【図2】図1の右断面図。
【図3】図1の要部を拡大した図。
【図4】本発明の他の実施の形態を示す要部を拡大した図。
【符号の説明】
1 膨張弁
2 弁本体
12 入口冷媒通路
14 弁室
15 オリフィス部材
15’ 弁座
15’’ ブリードポート
18 スプリング
20 出口冷媒通路
40 ボール状弁体
60 パワーエレメント
62 ハウジング
70 ダイアフラム
74 ストッパ
80 感温棒
100 電磁弁
110 ケーシング
120 コイル
130 プランジャ
150 パイロット弁体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic valve-integrated expansion valve, and is suitable for use in, for example, a vehicle air conditioner in which a refrigeration cycle is provided on the front side and rear side of a vehicle interior.
[0002]
[Prior art]
Conventionally, as this kind of solenoid valve-integrated expansion valve, for example, those described in JP-A-10-73345 and JP-A-11-182983 are known.
These solenoid valve-integrated expansion valves include a throttle channel that decompresses and expands the high-pressure side refrigerant, a valve body that adjusts the opening of the throttle channel, a valve body operating mechanism that displaces the valve body, and a throttle channel. And an outlet refrigerant flow path for supplying the decompressed and expanded refrigerant to the evaporator, the outlet refrigerant flow path is opened and closed by the valve body of the solenoid valve, and when the valve body of the solenoid valve is closed, the solenoid valve Based on the refrigerant pressure between the valve element and the throttle channel, the diaphragm element that operates the valve element closes the valve element in the throttle channel.
[0003]
[Problems to be solved by the invention]
However, in the conventional solenoid valve-integrated expansion valve, when the solenoid valve is closed, the high-pressure side refrigerant is introduced to the lower side of the diaphragm constituting the diaphragm operating mechanism, so that the high-pressure side pressure of the refrigeration cycle acts. The diaphragm operating mechanism requires high strength. For this reason, the diaphragm is made of a high pressure resistant stainless steel, or the thickness of the housing of the diaphragm operating mechanism is increased.
Therefore, the conventional solenoid valve-integrated expansion valve has a problem of high cost and large size.
[0004]
The present invention has been made in view of such problems, and an object of the present invention is to provide an electromagnetic valve integrated expansion valve that does not introduce high-pressure refrigerant into the diaphragm operating mechanism when the electromagnetic valve is closed. It is to be.
[0005]
[Means for Solving the Problems]
To achieve the above object, the solenoid valve integral expansion valve according to the present invention includes a valve body, is formed in the valve body, an inlet refrigerant flow path that the high-pressure side refrigerant is introduced, formed in the valve body A valve chamber into which the refrigerant introduced from the inlet refrigerant channel flows, and an orifice member that is slidably provided in the valve chamber and forms a throttle channel that decompresses and expands the refrigerant that has flowed into the valve chamber ; , disposed on the downstream side of the orifice member, a spring for biasing said orifice member on the upstream side, is disposed on the upstream side of the orifice member, a valve body for adjusting the opening degree of the throttle channel, A valve body actuating mechanism that is provided in the valve body and displaces the valve body; an outlet refrigerant flow path that is formed in the valve body and that supplies the refrigerant decompressed and expanded in the throttle flow path to the evaporator; and The outlet refrigerant flow is integrated with the valve body. And an electromagnetic valve for opening and closing the, when opening the solenoid valve, the orifice member by the pressure of the high-pressure side refrigerant moves to the downstream side against the spring force of the spring forming the throttle channel, When the electromagnetic valve is closed , the orifice member is moved so as to contact the valve body by the spring force of the spring to close the throttle passage.
[0006]
The solenoid valve-integrated expansion valve according to the present invention is characterized in that the orifice member includes an O-ring that seals between the orifice member and the inner wall of the valve chamber .
[0007]
Furthermore, the solenoid valve-integrated expansion valve according to the present invention is characterized in that the orifice member has a minute passage communicating the upstream side and the downstream side of the orifice member .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of a solenoid valve-integrated expansion valve according to an embodiment of the present invention cut along a plane including a refrigerant passage, FIG. 2 is a cross-sectional view corresponding to the right side of FIG. ) And FIG. 3B are enlarged views of the main part of FIG.
An expansion valve integrated with an electromagnetic valve denoted as a whole by reference numeral 1 has a substantially prismatic valve body 10. The lower part of the valve body 10 has an inlet refrigerant passage 12 to which high-pressure refrigerant from the compressor side of the refrigeration cycle is supplied. The inlet refrigerant passage 12 communicates with a valve chamber 14 formed inside the valve body 10. Is done. A ball-shaped valve body 40 is supported in the valve chamber 14 by a spring 32 via a support member 34.
[0009]
Furthermore, a disc-shaped orifice member 15 having a predetermined thickness, which is formed so that the valve seat 15 ′ is disposed to face the valve body 40, is provided. The orifice member 15 is formed in a substantially disk shape having a predetermined thickness using, for example, a stainless material, and forms a throttle channel 19 with the valve body 40 and has a center hole 17. Furthermore, an O-ring 16 for sealing is attached to the orifice member 15 in the thickness direction, and is provided so as to be slidable in contact with the inner wall 14 ′ of the valve chamber 14. Reference numeral 18 denotes a spring disposed on the downstream side of the orifice member 15. That is, the spring 18 is disposed in the large-diameter portion 13 formed coaxially with the inner hole 11 through which the temperature sensing rod 80 penetrating the center hole 17 and having the lower end abutting the valve body 40 is slidably fitted. Between the step portion 13 ′ extending in the radial direction of the large diameter portion 13 and the orifice member 15, the orifice member 15 is supported, and the valve seat 15 ′ of the orifice member 15 is closed so as to contact the valve body 40. Acts as a valve spring force.
[0010]
A nut member 30 is screwed into the opening of the valve chamber 14 and sealed. By screwing the nut member 30, the spring 32 is preloaded and supports the valve body 40 via the support member 34 with a predetermined spring force. A seal member 36 is attached to the nut member 30 to seal the valve chamber 14.
The refrigerant in the valve chamber 14 is decompressed and expanded through the throttle passage 19 between the valve body 40 and the valve seat 15 ′ and flows out to the outlet refrigerant passage 20. The refrigerant from the outlet refrigerant flow path 20 is sent out to an evaporator (not shown) through the outlet hole 22.
[0011]
The refrigerant returned from the evaporator passes through a passage 50 provided in the upper part of the valve body 10 and is returned to a compressor (not shown). The refrigerant in the passage 50 is sent through the gap 52 toward the power element 60 that is a diaphragm operating mechanism that serves as a valve operating mechanism that drives a valve attached to the upper portion of the valve body 10.
The power element 60 has a housing 62 that is attached to the valve body 10 with a screw portion 64. Further, the diaphragm 70 is sandwiched and welded between the casing members 621 and 622 constituting the housing 62, and the upper chamber 72 a and the lower chamber 72 b are partitioned by the diaphragm 70. A working fluid is sealed in the upper chamber 72a, and the plug 66 is sealed.
[0012]
The diaphragm 70 is supported by a stopper 74. The stopper 74 is formed integrally with or separately from the temperature sensing rod 80 that drives the valve body 40. In FIG. 1 and FIG. 2, it is formed as a separate body, and its tip is fitted to the stopper 74. The temperature sensing rod 80 has a function of transmitting the temperature of the refrigerant flowing in the passage 50 to the power element 60.
[0013]
Thus, the temperature sensing rod 80 is slidably fitted into a stepped inner hole 11 formed in the valve body 10, and the lower end of the temperature sensing rod 80 passes through the center hole 17 of the orifice member 15 to the valve body 40. It abuts and urges the valve body 40 in a direction away from the valve seat 15 ′. Further, the temperature sensing rod 80 has a small diameter portion 82 formed in the lower portion thereof, and prevents communication between the outlet refrigerant passage 20 and the passage 50 in the bottomed small diameter portion 81 formed coaxially with the inner hole 11. An O-ring 86 is provided as a sealing member.
[0014]
Since the expansion valve 1 is configured as described above, the temperature sensing rod 80 is driven by the operating position of the diaphragm 70 set in accordance with the pressure and temperature of the refrigerant that flows out of the evaporator and passes through the passage 50. Thus, the gap of the throttle channel 19 between the valve body 40 and the valve seat 15 ′ is adjusted.
[0015]
Therefore, when the heat load of the evaporator is large, the gap between the valve body 40 and the valve seat 15 is large, and a large amount of refrigerant is supplied to the evaporator. Conversely, when the heat load is small, the flow rate of the refrigerant is small. .
[0016]
As shown in FIG. 2, the electromagnetic valve 100 is attached to the side surface of the valve body 10.
The electromagnetic valve 100 includes a casing 110 and an attachment member 140 connected to the casing 110, and the attachment member 140 is attached to a bottomed opening 26 formed in the valve body 10 via a screw portion. The bottomed opening 26 communicates with the valve chamber 14 via the large diameter portion 13.
[0017]
Therefore, the refrigerant supplied to the valve chamber 14 is also introduced into the bottomed opening 26 via the large diameter portion 13, and a passage is formed that flows into the outlet refrigerant flow path 20 when the solenoid valve 100 is opened. The
[0018]
The solenoid valve 100 has a coil 120 in a casing 110 and is supplied with power via a cord 122. A cylinder 124 is disposed at the center of the casing 110, and a plunger 130 is slidably inserted. A stopper 132 is fixed to the outside of the cylinder 124 with screws 136. The stopper 132 always urges the plunger 130 in a direction away from the stopper 132 via the spring 134.
A pilot valve body 150 is slidably disposed at the tip of the plunger 130. The pilot valve body 150 has a valve hole 152 at the center.
[0019]
A pipe-like conduit 28 is provided at the center of the bottomed opening 26. A passage 27 having an inner diameter of the conduit 28 communicates the bottomed opening 26 and the outlet refrigerant flow path 20 of the valve body 10.
The pilot valve body 150 is normally pressed by the plunger 130, and the valve hole 152 of the pilot valve body 150 is closed by the tip of the plunger 130. The refrigerant of the bottomed opening 26 is introduced into the back pressure chamber 160 outside the pilot valve body 150, and the pilot valve body 150 is pressed against the opening of the conduit 28 by the back pressure, so that the passage 27. Close.
[0020]
In the solenoid valve 100 configured as described above, when the coil 120 of the solenoid valve 100 is energized, the plunger 130 is pulled back to the stopper 132 side by the magnetic force of the coil 120. When the tip of the plunger 130 is separated from the valve hole 152 of the pilot valve body 150, the valve hole 152 is opened, and the refrigerant in the back pressure chamber 160 passes through the valve hole 152 and is introduced into the passage 27 of the conduit 28. Is reduced. As a result, the pilot valve body 150 is separated from the tip of the conduit 28, the electromagnetic valve 100 is opened, and the refrigerant in the bottomed opening 26 flows toward the outlet refrigerant flow path 20 side.
[0021]
That is, high-pressure refrigerant is supplied from the inlet refrigerant flow path 12 to the valve chamber 14, and the orifice member 15 is slid by being pushed downstream of the high-pressure refrigerant, that is, upward, as shown in FIG. The spring 18 is pushed upward, a throttle channel 19 is formed between the valve body 40 and the valve seat 15 ', and the high-pressure refrigerant is adiabatically expanded. As a result, the refrigerant flows into the bottomed opening 26 through the large-diameter portion 13 and flows to the outlet refrigerant flow path 20 side through the passage 27.
[0022]
On the contrary, the power supply to the coil 120 is cut off, the tip of the plunger 130 is seated in the valve hole 152 of the valve body 150 by the spring force of the spring 134, and the valve hole 152 is closed. Then, the refrigerant in the large-diameter portion 13 is introduced into the back pressure chamber 160 through the bottomed opening 26. Therefore, the tip of the plunger 130 is seated on the valve hole 152 to close the valve hole 152, and the valve body 150 is seated on the end face of the conduit 28 to close the passage 27. Thereby, the solenoid valve 20 returns to the closed state.
[0023]
As a result, as shown in FIG. 3B, the flow of the high-pressure refrigerant supplied to the valve chamber 14 disappears, and the pressure in the valve chamber 14 and the pressure in the large-diameter portion 13 are equalized, resulting in a large pressure. The spring force of the spring 18 disposed in the diameter portion 13 becomes a valve closing spring force, and the orifice member 15 is pushed and slid downward, so that the valve seat 15 ′ of the orifice member 15 contacts the ball-shaped valve body 40. Then, the ball-shaped valve body 40 is seated on the valve seat 15 ′, the valve body 40 is closed, and the throttle channel 19 is closed.
[0024]
Therefore, in order to bring the valve body 40 into a closed state, the valve closing spring force of the spring 18 that supports the orifice member 15 is obtained without introducing high-pressure refrigerant into the power element 60 that is a diaphragm operating mechanism that drives the valve body. Therefore, it is not necessary to configure the power element 60 with high strength.
[0025]
4 (A) and 4 (B) are cross-sectional views showing the main parts of another embodiment of the solenoid valve-integrated expansion valve according to the present invention, and FIG. 3 (A) and FIG. 3 (B), respectively. ), The orifice member 15 is provided with a bleed port 15 ″ in the axial direction thereof.
[0026]
4A and 4B, the solenoid valve 100 shown in FIG. 4B is closed, and the pressure in the valve chamber 14 and the pressure in the large-diameter portion 13 are reduced. When the pressure is equalized, it is provided in order to quickly perform the pressure equalization, and the high-pressure refrigerant flows into the large-diameter portion 13 from the valve chamber 14 through the bleed port 15 ″, and the pressure equalization is performed quickly. Accordingly, the downward sliding of the orifice member 15 in the embodiment of FIG. 4B is performed more quickly than in the embodiment of FIG. Thus, the transition to the valve closing state is performed quickly. Furthermore, the bleed port 15 '' is a minute through hole that does not adversely affect the adjustment of the refrigerant flow rate when the electromagnetic valve 100 shown in FIG. 4A is opened.
[0027]
In the above embodiment, the case where the orifice member 15 includes the O-ring 16 has been described. However, in the present invention, the O-ring 16 is omitted, and the inner wall 14 ′ of the valve chamber 14, the orifice member 15, and the like. Of course, they may be brought into direct contact with each other.
[0028]
【The invention's effect】
According to the solenoid valve-integrated expansion valve of the present invention, since the high-pressure refrigerant is not introduced into the diaphragm operating mechanism that drives the valve body, it is not necessary to increase the strength of the diaphragm operating mechanism, and the cost is reduced. An expansion valve integrated with a solenoid valve is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an expansion valve integrated with a solenoid valve of the present invention.
FIG. 2 is a right sectional view of FIG.
FIG. 3 is an enlarged view of a main part of FIG.
FIG. 4 is an enlarged view of a main part showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Expansion valve 2 Valve body 12 Inlet refrigerant path 14 Valve chamber 15 Orifice member 15 'Valve seat 15''Bleed port 18 Spring 20 Outlet refrigerant path 40 Ball-shaped valve body 60 Power element 62 Housing 70 Diaphragm 74 Stopper 80 Temperature sensing rod 100 Solenoid valve 110 Casing 120 Coil 130 Plunger 150 Pilot valve body

Claims (3)

弁本体と、この弁本体内に形成され、高圧側冷媒が導入される入口冷媒流路と、上記弁本体内に形成され、上記入口冷媒流路より導入された冷媒が流入する弁室と、上記弁室内に摺動自在に設けられ、上記弁室内に流入した冷媒を減圧膨張させる絞り流路を形成するオリフィス部材と、上記オリフィス部材の下流側に配設され上記オリフィス部材を上流側に付勢するスプリングと、上記オリフィス部材の上流側に配設され、上記絞り流路の開度を調整する弁体と、上記弁本体に具備され、上記弁体を変位させる弁体作動機構と、上記弁本体内に形成され、上記絞り流路にて減圧膨張した冷媒を蒸発器に供給する出口冷媒流路と、上記弁本体に一体に組付けられ、上記出口冷媒流路を開閉する電磁弁とを備え
上記電磁弁を開弁すると、上記オリフィス部材が高圧側冷媒の圧力により上記スプリングのバネ力に抗して下流側に移動して上記絞り流路を形成し、上記電磁弁を閉弁すると、上記オリフィス部材が上記スプリングのバネ力により上記弁体に接するように移動して上記絞り流路を閉じるようにしたことを特徴とする電磁弁一体型膨張弁。
A valve body, an inlet refrigerant passage formed in the valve body and into which the high-pressure refrigerant is introduced, a valve chamber formed in the valve body and into which the refrigerant introduced from the inlet refrigerant passage flows; slidably mounted to the valve chamber, and an orifice member that forms a throttle channel for decompressing and expanding the refrigerant flowing into the valve chamber, is disposed on the downstream side of the orifice member, the orifice member on the upstream side a spring for biasing is arranged on the upstream side of the orifice member, a valve body for adjusting the opening degree of the throttle channel is provided in the valve body, a valve element operating mechanism for displacing the valve body, An outlet refrigerant channel that is formed in the valve body and supplies the refrigerant decompressed and expanded in the throttle channel to the evaporator, and an electromagnetic valve that is integrated with the valve body and opens and closes the outlet refrigerant channel It equipped with a door,
When the solenoid valve is opened, the orifice member moves downstream against the spring force of the spring due to the pressure of the high-pressure side refrigerant to form the throttle channel, and when the solenoid valve is closed , An expansion valve integrated with a solenoid valve, wherein an orifice member is moved so as to contact the valve body by a spring force of the spring to close the throttle passage.
上記オリフィス部材は、上記オリフィス部材と上記弁室の内壁との間をシールするOリングを具備することを特徴とする請求項1記載の電磁弁一体型膨張弁。2. The solenoid valve-integrated expansion valve according to claim 1, wherein the orifice member includes an O-ring that seals between the orifice member and an inner wall of the valve chamber . 上記オリフィス部材は、上記オリフィス部材の上流側と下流側とを連通する微小通路を有することを特徴とする請求項1又は2記載の電磁弁一体型膨張弁。The solenoid valve-integrated expansion valve according to claim 1 or 2, wherein the orifice member has a minute passage communicating the upstream side and the downstream side of the orifice member .
JP2001251440A 2001-08-22 2001-08-22 Expansion valve with integrated solenoid valve Expired - Fee Related JP4576076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251440A JP4576076B2 (en) 2001-08-22 2001-08-22 Expansion valve with integrated solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251440A JP4576076B2 (en) 2001-08-22 2001-08-22 Expansion valve with integrated solenoid valve

Publications (2)

Publication Number Publication Date
JP2003065633A JP2003065633A (en) 2003-03-05
JP4576076B2 true JP4576076B2 (en) 2010-11-04

Family

ID=19080086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251440A Expired - Fee Related JP4576076B2 (en) 2001-08-22 2001-08-22 Expansion valve with integrated solenoid valve

Country Status (1)

Country Link
JP (1) JP4576076B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4067936B2 (en) * 2002-10-29 2008-03-26 株式会社不二工機 Expansion valve with integrated solenoid valve
JP4255807B2 (en) * 2003-11-06 2009-04-15 株式会社不二工機 Expansion valve with electromagnetic relief valve
JP2007183082A (en) * 2005-03-04 2007-07-19 Tgk Co Ltd Expansion valve
JP5619520B2 (en) * 2010-08-17 2014-11-05 株式会社不二工機 Expansion valve with integrated solenoid valve
JP5588397B2 (en) * 2011-05-23 2014-09-10 ダイキン工業株式会社 Flow path switching valve and air conditioner equipped with the same
WO2020213420A1 (en) * 2019-04-17 2020-10-22 株式会社不二工機 Electromagnetic-valve-integrated expansion valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073345A (en) * 1996-07-01 1998-03-17 Denso Corp Solenoid valve integrated expansion valve
JPH11351440A (en) * 1998-05-20 1999-12-24 Eaton Corp Thermal expansion valve and manufacture of the same
JP2000028235A (en) * 1998-07-08 2000-01-28 Sanden Corp Temperature type automatic expansion valve
JP2001153496A (en) * 1999-12-01 2001-06-08 Zexel Valeo Climate Control Corp Expansion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073345A (en) * 1996-07-01 1998-03-17 Denso Corp Solenoid valve integrated expansion valve
JPH11351440A (en) * 1998-05-20 1999-12-24 Eaton Corp Thermal expansion valve and manufacture of the same
JP2000028235A (en) * 1998-07-08 2000-01-28 Sanden Corp Temperature type automatic expansion valve
JP2001153496A (en) * 1999-12-01 2001-06-08 Zexel Valeo Climate Control Corp Expansion device

Also Published As

Publication number Publication date
JP2003065633A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
US6390782B1 (en) Control valve for a variable displacement compressor
US7210502B2 (en) Microvalve device suitable for controlling a variable displacement compressor
JP4153133B2 (en) Expansion valve
US20090123300A1 (en) System and method for controlling a variable displacement compressor
US6315266B1 (en) Pilot-operated flow regulating valve
KR20060096895A (en) Constant flow rate expansion valve
KR101020808B1 (en) Expansion valve integrated with solenoid valve
JP4576076B2 (en) Expansion valve with integrated solenoid valve
JP2004101163A (en) Constant flow rate expansion valve
JP2004076920A (en) Differential pressure control valve
JP2006300508A (en) Solenoid valve-integrated expansion valve
JP4235515B2 (en) Constant differential pressure valve
JPH08152232A (en) Expansion valve
JP4503471B2 (en) Expansion valve with integrated solenoid valve
JP3882573B2 (en) Expansion valve with integrated solenoid valve
JP4566150B2 (en) Expansion valve with integrated solenoid valve
JP3786518B2 (en) Expansion valve with solenoid valve
JP2001153495A (en) Electrically controlled expansion valve
JP4053846B2 (en) Electric expansion valve
JP4503472B2 (en) Expansion valve with integrated solenoid valve
JP2002115937A (en) Composite valve
JP2005249273A (en) Thermal expansion valve
KR101303694B1 (en) Valve body, and capacity control valve for variable displacement compressor having the same
JP2005331166A (en) Expansion valve
JP4049909B2 (en) Pilot operated flow adjustment valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4576076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees