JPS63259976A - Electrically chargeable electrochemical device - Google Patents

Electrically chargeable electrochemical device

Info

Publication number
JPS63259976A
JPS63259976A JP62095606A JP9560687A JPS63259976A JP S63259976 A JPS63259976 A JP S63259976A JP 62095606 A JP62095606 A JP 62095606A JP 9560687 A JP9560687 A JP 9560687A JP S63259976 A JPS63259976 A JP S63259976A
Authority
JP
Japan
Prior art keywords
electrochemical device
solvent
electrolyte
electrolytic solution
eme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62095606A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Tadashi Sawai
沢井 忠
Keigo Momose
百瀬 敬吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62095606A priority Critical patent/JPS63259976A/en
Publication of JPS63259976A publication Critical patent/JPS63259976A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To extremely enhance the high temperature charge/discharge characteristics of the device in the caption by employing a nonaqueous solvent containing ethoxymethoxyethane as an electrolyte. CONSTITUTION:gamma-butyrolactone (gamma-BL), ethoxymethoxyethane (EME) and gamma-BL, 1-butylene carbonate (BC) EME etc. can be used as a solvent for electrolyte. Further, all of the solvent materials applicable to a lithium cell such as LiClO4, LiAsF6, LiPF6 etc., besides LiBF4 can be employed as a solvent material for electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、移動用直流電源、バックアップ電源などに用
いる充電可能な電気化学装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rechargeable electrochemical device used as a mobile DC power source, a backup power source, or the like.

従来の技術 充電可能な電気化学装置として、正極に主に電気二重層
を利用した活性炭、負極にリチウム合金。
Conventional technology As a rechargeable electrochemical device, activated carbon mainly uses an electric double layer for the positive electrode, and lithium alloy for the negative electrode.

電解液に非水系の有機溶媒を用いた装置が知られている
。そしてこの装置での電解液には、プロピレンカーボネ
ート(以下PCと呼ぶ)やT−ブチロラクトン(以下γ
−BLと呼ぶ)さらには、1゜2ジメトキシエタン(以
下DMEと呼ぶ)、などの混合溶媒に、ホウフッ化リチ
ウム(LiBF4)あるいは過塩素酸リチウム(LiC
1O4)などの溶質を溶解したものが用いられていた。
Devices using a non-aqueous organic solvent as an electrolyte are known. The electrolyte in this device includes propylene carbonate (hereinafter referred to as PC) and T-butyrolactone (hereinafter referred to as γ
Furthermore, lithium borofluoride (LiBF4) or lithium perchlorate (LiC
A solution containing a solute such as 1O4) was used.

発明が解決しようとする問題点 この従来構成において、PCは充放電サイクル特性に比
較的すぐれ、γ−BLは耐過放電特性にすぐれ、DME
は粘度が低く、電解液の流動性をよくしたり負荷特性を
向上させるなどの効果を有していることが判り、目的に
応じてPC又はγ−BLとの混合溶媒や、pcとγ−B
L、DMEの三成分混合溶媒が用いられていた。しかし
、このような電解液を用いていても必ずしも十分とは言
えず、たとえば、長期に亘る充放電特性及び温度特性な
どまだまだ改善すべき点がある。その原因の一つとして
、DMEが必ずしも安定でなく、60℃以上での高温充
放電では沸点が85.2℃と低いためか、分解し易く、
寿命に悪影響を及ぼしていた。
Problems to be Solved by the Invention In this conventional configuration, PC has relatively excellent charge/discharge cycle characteristics, γ-BL has excellent overdischarge resistance characteristics, and DME
has low viscosity and has the effect of improving the fluidity of the electrolyte and improving the load characteristics. B
A three-component mixed solvent of L and DME was used. However, even if such an electrolytic solution is used, it is not necessarily sufficient, and there are still points to be improved, such as long-term charging/discharging characteristics and temperature characteristics. One of the reasons for this is that DME is not necessarily stable and is easily decomposed, perhaps because its boiling point is as low as 85.2°C during high-temperature charging and discharging at temperatures above 60°C.
It had a negative impact on lifespan.

間層点を解決するための手段 前記のリチウム負極を用いた装置等、とくに、正極に活
性炭を用いた装置系の充放電特性を改良するため、本発
明は電解液として、これまでのDMEにかわシ、エトキ
シ・メトキシ・エタン(以下EMEと呼ぶ)を含有した
非水溶媒を用いるものヤある。
Means for Solving the Interstitial Point In order to improve the charging and discharging characteristics of devices using the above-mentioned lithium negative electrode, especially devices using activated carbon as the positive electrode, the present invention uses an electrolyte instead of conventional DME. There is also one that uses a nonaqueous solvent containing ethoxy methoxy ethane (hereinafter referred to as EME).

作  用 第1表に各溶媒の物性を示した。DMEは粘度が低いの
が特徴であり、セパレータなどへの電解液含浸作業の容
易性あるいは、強負荷放電などに効果を発揮したが、前
述したように沸点がPCやγ−BLなどに較べ低いとい
う欠点があった。
Effect Table 1 shows the physical properties of each solvent. DME is characterized by its low viscosity, and is effective in facilitating the work of impregnating separators with electrolyte and in heavy-load discharge, but as mentioned above, its boiling point is lower than that of PC, γ-BL, etc. There was a drawback.

ところが、本発明のEMEは、沸点が104℃とDME
よシ2o℃近くも高く、且つ、粘度も0.47/CPS
(3o℃) でDMEよりむしろ低い。
However, the EME of the present invention has a boiling point of 104°C, which is higher than that of DME.
The temperature is nearly 2oC high, and the viscosity is 0.47/CPS.
(3o℃), which is rather lower than DME.

したがって、上記のような作業性や強負荷放電に支障を
きたすことなく高温特性を改善することが期待される。
Therefore, it is expected that the high-temperature characteristics will be improved without causing problems in workability or heavy-load discharge as described above.

このことから、電解液用溶媒として、γ−BL。From this, γ-BL is suitable as a solvent for electrolyte solution.

EME系、γ−BL 、PC,EME系、r−BI、、
BC。
EME system, γ-BL, PC, EME system, r-BI,
B.C.

EME系などを検討したところ、高温充放電特性が著し
く改善されることが判った。
After examining EME systems, it was found that high-temperature charge/discharge characteristics were significantly improved.

第1表 実施例 第1図は正極に活性炭、負極にリチウム合金、及び非水
溶媒からなる電解液を用いた充電可能な電気化学装置を
示す。図中1は正極端子を兼ねたケース、2はケースと
同じ材料を打抜き加工した負極端子をなす封口板、3は
ケースと封口板とを絶縁するポリプロピレン製ガスケッ
ト、4は正極であり、これは活性炭粉末70重量部、導
電材であるアセチレンブラック10重量部、及びバイン
ダーであるフッ素樹脂の水性ディスパージョン(固形分
比的60チ)を固形分で20重量部混練し、シート状に
成形した後、工種集電体6をなす厚さ0.2mのチタン
ラス板に転写したものである。
Table 1 Examples FIG. 1 shows a rechargeable electrochemical device using activated carbon as a positive electrode, a lithium alloy as a negative electrode, and an electrolytic solution consisting of a non-aqueous solvent. In the figure, 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that is punched from the same material as the case and serves as a negative terminal, 3 is a polypropylene gasket that insulates the case and the sealing plate, and 4 is a positive electrode. After kneading 70 parts by weight of activated carbon powder, 10 parts by weight of acetylene black as a conductive material, and 20 parts by weight of an aqueous dispersion (relative solid content) of fluororesin as a binder (solid content: 60 parts by weight) and forming into a sheet. , which was transferred onto a titanium lath plate with a thickness of 0.2 m, which forms the current collector 6.

その後高温真空乾燥した後、厚さ0.7+III+にそ
ろえ、直径14.0mのペレットに打ち抜き、合剤の一
部を剥離してチタンラス板を露出させ、これをケース2
に溶接した。6はリチウム吸蔵負極合金であり、ビスマ
ス20重量部鉛60重量部、カドミウム27重量部、リ
チウム3重量部からなり、厚さ0、1 m 、直径15
mで封口板3の裏面に圧着し九7は負極集電体であり、
線径0.1咽で60メツシユのステンレス鋼ネットを用
いた。8はポリプロピレン製不織布からなるセパレータ
である。
After that, after drying in a high temperature vacuum, the thickness was adjusted to 0.7+III+, punched into pellets with a diameter of 14.0 m, a part of the mixture was peeled off to expose the titanium lath plate, and this was made into case 2.
Welded to. 6 is a lithium storage negative electrode alloy, which consists of 20 parts by weight of bismuth, 60 parts by weight of lead, 27 parts by weight of cadmium, and 3 parts by weight of lithium, and has a thickness of 0.1 m and a diameter of 15.
97 is a negative electrode current collector;
A stainless steel net with a wire diameter of 0.1 mm and 60 meshes was used. 8 is a separator made of polypropylene nonwoven fabric.

電解液はその溶媒を第2表の如く調整し、これらに溶質
としてホウフッ化リチウムを1モル/l溶解したものを
用いた。
The electrolytic solution used was one in which the solvent was adjusted as shown in Table 2, and 1 mol/l of lithium fluoroborate was dissolved therein as a solute.

第2表 これらの装置を用い、以下に示す充放電条件で、常温及
び、60℃の各温度で充放電テストを行なった。
Table 2 Using these devices, charging and discharging tests were conducted at room temperature and 60° C. under the charging and discharging conditions shown below.

初期サイクルにおいて、電圧が3vから2vに到るまで
の時間を100としたとき、各サイクルにおいで2vに
到るまでの時間が何チかを算出し、充放電サイクル寿命
を比較した。この結果を第2図及び第3図に示した。
In the initial cycle, when the time taken for the voltage to reach 2v from 3v is set as 100, the time taken for the voltage to reach 2v in each cycle was calculated, and the charge/discharge cycle life was compared. The results are shown in FIGS. 2 and 3.

第2図から明らかなように、A−4のγ−BL。As is clear from FIG. 2, γ-BL of A-4.

PC,DMEを用いた従来品では、2000サイクルか
ら3000サイクルの間で劣化しているが、EMEを用
いた系列のA−1〜A−3は、いづれも従来よりすぐれ
、とくに、P C+B Cの入ったものがすぐれている
Conventional products using PC and DME deteriorate between 2000 and 3000 cycles, but series A-1 to A-3 using EME are all superior to the conventional products, especially P C + B C The one with the in it is better.

また、第3図の60℃雰囲気では、やけりA−4の従来
品が早く落ち、A−1〜A−3は200oサイクル経過
しても比較的安定である。これらのことから、EXEは
DMEよりすぐれ、とくに高温領域で有効であることが
判る。そして、充放電サイクル寿命に対し、PCやBC
が有効であることも、第2図のA−1〜A−3の比較で
判る。
Furthermore, in the 60° C. atmosphere shown in FIG. 3, the conventional product A-4 deteriorates quickly, while A-1 to A-3 are relatively stable even after 200 o cycles. From these facts, it can be seen that EXE is superior to DME, and is particularly effective in high temperature regions. And, regarding the charge/discharge cycle life, PC and BC
It can also be seen from the comparison of A-1 to A-3 in FIG. 2 that this is effective.

さらに、これらの装置を用い、3vに充電した後、5〜
Aの強負荷放電を行ない、各装置の瞬間的な電圧降下度
を調べたが、いづれも約200 mV程度でほとんど差
がなかった。このことから、EMEは、強負荷放電特性
においても、DMEと較べなんら劣ることはない。
Furthermore, after charging to 3V using these devices, 5~
A heavy load discharge was carried out and the instantaneous voltage drop of each device was investigated, but all were about 200 mV, with almost no difference. From this, EME is not inferior to DME in any way even in heavy load discharge characteristics.

なお、実施例として、リチウム負極に、ビスマス、鉛、
カドミウム合金を用いたが、At合金を始め、リチウム
の充放電可能な合金はすべて用いることができる。
In addition, as an example, bismuth, lead,
Although a cadmium alloy was used, any alloy capable of charging and discharging lithium, including an At alloy, can be used.

また、電解液の溶質として、L I B F 4の他、
LiCl0  LiAsF  LiPF6などリチウム
電池4ν       6ツ に適要可能な溶質はすべて用いることができる。
In addition, as a solute of the electrolyte, in addition to L I B F 4,
All possible solutes suitable for lithium batteries can be used, such as LiCl0 LiAsF LiPF6.

発明の効果 以上のことから明らかなように、本発明は活性炭を正極
とし、リチウム合金を負極とする有機電解液系充放電可
能な電気化学装置において、常温およびとくに高温雰囲
気中での充放電特性にすぐれた効果を発揮する。
Effects of the Invention As is clear from the above, the present invention provides an organic electrolyte-based chargeable/dischargeable electrochemical device that uses activated carbon as a positive electrode and a lithium alloy as a negative electrode, and improves charging/discharging characteristics at room temperature and especially in a high-temperature atmosphere. Demonstrates excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における充放電可能な電気化学
装置の縦断面図、第2図、第3図は本発明の実施例にお
ける装置の特性比較図である。 1・・・・・・ケース、2・・・・・・封口板、3・・
・・・・ガススケット、4・・・・・・正極、6・・・
・・・正極集電体、e・・・・・・負極、7・・・・・
・負極集電体、8・・・・・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名f−
−−ケース 2−打I]猥 3−−一力°スヶッ1 C−@地 7−−− #  某/Itj本 第2図
FIG. 1 is a longitudinal sectional view of a chargeable/dischargeable electrochemical device according to an embodiment of the present invention, and FIGS. 2 and 3 are characteristic comparison diagrams of the devices according to an embodiment of the present invention. 1... Case, 2... Sealing plate, 3...
...Gasket, 4...Positive electrode, 6...
...Positive electrode current collector, e...Negative electrode, 7...
- Negative electrode current collector, 8...Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person f-
--Case 2-Strike I] Obscene 3--Ichiriki°Sugat 1 C-@Earth 7--- # Certain/Itj Book Figure 2

Claims (1)

【特許請求の範囲】 (1)活性炭からなる正極と、リチウム合金からなる負
極と、非水溶媒からなる電解液とから構成される電気化
学装置であって、電解液がエトキシ・メトキシ・エタン
を含有することを特徴とする充電可能な電気化学装置。 (2)電解液が、γ−ブチロラクトンとエトキシ・メト
キシ・エタンの混合溶媒からなることを特徴とした特許
請求の範囲第1項記載の充電可能な電気化学装置。 (2)電解液が、γ−ブチロラクトンとプロピレンカー
ボネートとエトキシ・メトキシ・エタンの混合溶媒から
なることを特徴とした特許請求の範囲第1項記載の充電
可能な電気化学装置。 (4)電解液がγ−ブチロラクトンと1ブチレンカーボ
ネートとエトキシ・メトキシ、エタンの混合溶媒からな
ることを特徴とした特許請求の範囲第1項記載の充電可
能な電気化学装置。
[Scope of Claims] (1) An electrochemical device comprising a positive electrode made of activated carbon, a negative electrode made of a lithium alloy, and an electrolytic solution made of a nonaqueous solvent, the electrolytic solution containing ethoxy, methoxy, and ethane. A rechargeable electrochemical device comprising: (2) The rechargeable electrochemical device according to claim 1, wherein the electrolytic solution consists of a mixed solvent of γ-butyrolactone and ethoxy-methoxy-ethane. (2) The rechargeable electrochemical device according to claim 1, wherein the electrolytic solution consists of a mixed solvent of γ-butyrolactone, propylene carbonate, and ethoxy-methoxy-ethane. (4) The rechargeable electrochemical device according to claim 1, wherein the electrolytic solution consists of a mixed solvent of γ-butyrolactone, 1-butylene carbonate, ethoxy/methoxy, and ethane.
JP62095606A 1987-04-17 1987-04-17 Electrically chargeable electrochemical device Pending JPS63259976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095606A JPS63259976A (en) 1987-04-17 1987-04-17 Electrically chargeable electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095606A JPS63259976A (en) 1987-04-17 1987-04-17 Electrically chargeable electrochemical device

Publications (1)

Publication Number Publication Date
JPS63259976A true JPS63259976A (en) 1988-10-27

Family

ID=14142212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095606A Pending JPS63259976A (en) 1987-04-17 1987-04-17 Electrically chargeable electrochemical device

Country Status (1)

Country Link
JP (1) JPS63259976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414880A (en) * 1987-07-08 1989-01-19 Fuji Electrochemical Co Ltd Nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414880A (en) * 1987-07-08 1989-01-19 Fuji Electrochemical Co Ltd Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
JP3187929B2 (en) Lithium secondary battery
RU2156523C2 (en) Lithium cell improvement technique
JPS63102173A (en) Lithium secondary battery
JP3059820B2 (en) Lithium secondary battery
JPH11204148A (en) Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPS63121272A (en) Chargeable electrochemical device
JP2940015B2 (en) Organic electrolyte secondary battery
JPH0495363A (en) Nonaqueous secondary-battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JPS63259976A (en) Electrically chargeable electrochemical device
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3163444B2 (en) Lithium secondary battery
JPS63259975A (en) Electrically chargeable electrochemical device
JP3182277B2 (en) Non-aqueous electrolyte secondary battery
JP2801684B2 (en) Non-aqueous electrolyte secondary battery
JPH04363862A (en) Lithium secondary battery
JPS62143371A (en) Chargeable electrochemical apparatus
JPS62290069A (en) Organic electrolyte secondary battery