JPS63259976A - Electrically chargeable electrochemical device - Google Patents
Electrically chargeable electrochemical deviceInfo
- Publication number
- JPS63259976A JPS63259976A JP62095606A JP9560687A JPS63259976A JP S63259976 A JPS63259976 A JP S63259976A JP 62095606 A JP62095606 A JP 62095606A JP 9560687 A JP9560687 A JP 9560687A JP S63259976 A JPS63259976 A JP S63259976A
- Authority
- JP
- Japan
- Prior art keywords
- electrochemical device
- solvent
- electrolyte
- electrolytic solution
- eme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000002904 solvent Substances 0.000 claims abstract description 9
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 claims abstract description 7
- VKSWWACDZPRJAP-UHFFFAOYSA-N 1,3-dioxepan-2-one Chemical compound O=C1OCCCCO1 VKSWWACDZPRJAP-UHFFFAOYSA-N 0.000 claims abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 229910000733 Li alloy Inorganic materials 0.000 claims description 4
- -1 ethoxy, methoxy Chemical group 0.000 claims description 4
- 239000001989 lithium alloy Substances 0.000 claims description 4
- 239000012046 mixed solvent Substances 0.000 claims description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052744 lithium Inorganic materials 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 3
- 229910001290 LiPF6 Inorganic materials 0.000 abstract description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 abstract description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 abstract description 2
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 abstract 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 abstract 1
- 238000007599 discharging Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910000714 At alloy Inorganic materials 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910015013 LiAsF Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、移動用直流電源、バックアップ電源などに用
いる充電可能な電気化学装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rechargeable electrochemical device used as a mobile DC power source, a backup power source, or the like.
従来の技術
充電可能な電気化学装置として、正極に主に電気二重層
を利用した活性炭、負極にリチウム合金。Conventional technology As a rechargeable electrochemical device, activated carbon mainly uses an electric double layer for the positive electrode, and lithium alloy for the negative electrode.
電解液に非水系の有機溶媒を用いた装置が知られている
。そしてこの装置での電解液には、プロピレンカーボネ
ート(以下PCと呼ぶ)やT−ブチロラクトン(以下γ
−BLと呼ぶ)さらには、1゜2ジメトキシエタン(以
下DMEと呼ぶ)、などの混合溶媒に、ホウフッ化リチ
ウム(LiBF4)あるいは過塩素酸リチウム(LiC
1O4)などの溶質を溶解したものが用いられていた。Devices using a non-aqueous organic solvent as an electrolyte are known. The electrolyte in this device includes propylene carbonate (hereinafter referred to as PC) and T-butyrolactone (hereinafter referred to as γ
Furthermore, lithium borofluoride (LiBF4) or lithium perchlorate (LiC
A solution containing a solute such as 1O4) was used.
発明が解決しようとする問題点
この従来構成において、PCは充放電サイクル特性に比
較的すぐれ、γ−BLは耐過放電特性にすぐれ、DME
は粘度が低く、電解液の流動性をよくしたり負荷特性を
向上させるなどの効果を有していることが判り、目的に
応じてPC又はγ−BLとの混合溶媒や、pcとγ−B
L、DMEの三成分混合溶媒が用いられていた。しかし
、このような電解液を用いていても必ずしも十分とは言
えず、たとえば、長期に亘る充放電特性及び温度特性な
どまだまだ改善すべき点がある。その原因の一つとして
、DMEが必ずしも安定でなく、60℃以上での高温充
放電では沸点が85.2℃と低いためか、分解し易く、
寿命に悪影響を及ぼしていた。Problems to be Solved by the Invention In this conventional configuration, PC has relatively excellent charge/discharge cycle characteristics, γ-BL has excellent overdischarge resistance characteristics, and DME
has low viscosity and has the effect of improving the fluidity of the electrolyte and improving the load characteristics. B
A three-component mixed solvent of L and DME was used. However, even if such an electrolytic solution is used, it is not necessarily sufficient, and there are still points to be improved, such as long-term charging/discharging characteristics and temperature characteristics. One of the reasons for this is that DME is not necessarily stable and is easily decomposed, perhaps because its boiling point is as low as 85.2°C during high-temperature charging and discharging at temperatures above 60°C.
It had a negative impact on lifespan.
間層点を解決するための手段
前記のリチウム負極を用いた装置等、とくに、正極に活
性炭を用いた装置系の充放電特性を改良するため、本発
明は電解液として、これまでのDMEにかわシ、エトキ
シ・メトキシ・エタン(以下EMEと呼ぶ)を含有した
非水溶媒を用いるものヤある。Means for Solving the Interstitial Point In order to improve the charging and discharging characteristics of devices using the above-mentioned lithium negative electrode, especially devices using activated carbon as the positive electrode, the present invention uses an electrolyte instead of conventional DME. There is also one that uses a nonaqueous solvent containing ethoxy methoxy ethane (hereinafter referred to as EME).
作 用
第1表に各溶媒の物性を示した。DMEは粘度が低いの
が特徴であり、セパレータなどへの電解液含浸作業の容
易性あるいは、強負荷放電などに効果を発揮したが、前
述したように沸点がPCやγ−BLなどに較べ低いとい
う欠点があった。Effect Table 1 shows the physical properties of each solvent. DME is characterized by its low viscosity, and is effective in facilitating the work of impregnating separators with electrolyte and in heavy-load discharge, but as mentioned above, its boiling point is lower than that of PC, γ-BL, etc. There was a drawback.
ところが、本発明のEMEは、沸点が104℃とDME
よシ2o℃近くも高く、且つ、粘度も0.47/CPS
(3o℃) でDMEよりむしろ低い。However, the EME of the present invention has a boiling point of 104°C, which is higher than that of DME.
The temperature is nearly 2oC high, and the viscosity is 0.47/CPS.
(3o℃), which is rather lower than DME.
したがって、上記のような作業性や強負荷放電に支障を
きたすことなく高温特性を改善することが期待される。Therefore, it is expected that the high-temperature characteristics will be improved without causing problems in workability or heavy-load discharge as described above.
このことから、電解液用溶媒として、γ−BL。From this, γ-BL is suitable as a solvent for electrolyte solution.
EME系、γ−BL 、PC,EME系、r−BI、、
BC。EME system, γ-BL, PC, EME system, r-BI,
B.C.
EME系などを検討したところ、高温充放電特性が著し
く改善されることが判った。After examining EME systems, it was found that high-temperature charge/discharge characteristics were significantly improved.
第1表
実施例
第1図は正極に活性炭、負極にリチウム合金、及び非水
溶媒からなる電解液を用いた充電可能な電気化学装置を
示す。図中1は正極端子を兼ねたケース、2はケースと
同じ材料を打抜き加工した負極端子をなす封口板、3は
ケースと封口板とを絶縁するポリプロピレン製ガスケッ
ト、4は正極であり、これは活性炭粉末70重量部、導
電材であるアセチレンブラック10重量部、及びバイン
ダーであるフッ素樹脂の水性ディスパージョン(固形分
比的60チ)を固形分で20重量部混練し、シート状に
成形した後、工種集電体6をなす厚さ0.2mのチタン
ラス板に転写したものである。Table 1 Examples FIG. 1 shows a rechargeable electrochemical device using activated carbon as a positive electrode, a lithium alloy as a negative electrode, and an electrolytic solution consisting of a non-aqueous solvent. In the figure, 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that is punched from the same material as the case and serves as a negative terminal, 3 is a polypropylene gasket that insulates the case and the sealing plate, and 4 is a positive electrode. After kneading 70 parts by weight of activated carbon powder, 10 parts by weight of acetylene black as a conductive material, and 20 parts by weight of an aqueous dispersion (relative solid content) of fluororesin as a binder (solid content: 60 parts by weight) and forming into a sheet. , which was transferred onto a titanium lath plate with a thickness of 0.2 m, which forms the current collector 6.
その後高温真空乾燥した後、厚さ0.7+III+にそ
ろえ、直径14.0mのペレットに打ち抜き、合剤の一
部を剥離してチタンラス板を露出させ、これをケース2
に溶接した。6はリチウム吸蔵負極合金であり、ビスマ
ス20重量部鉛60重量部、カドミウム27重量部、リ
チウム3重量部からなり、厚さ0、1 m 、直径15
mで封口板3の裏面に圧着し九7は負極集電体であり、
線径0.1咽で60メツシユのステンレス鋼ネットを用
いた。8はポリプロピレン製不織布からなるセパレータ
である。After that, after drying in a high temperature vacuum, the thickness was adjusted to 0.7+III+, punched into pellets with a diameter of 14.0 m, a part of the mixture was peeled off to expose the titanium lath plate, and this was made into case 2.
Welded to. 6 is a lithium storage negative electrode alloy, which consists of 20 parts by weight of bismuth, 60 parts by weight of lead, 27 parts by weight of cadmium, and 3 parts by weight of lithium, and has a thickness of 0.1 m and a diameter of 15.
97 is a negative electrode current collector;
A stainless steel net with a wire diameter of 0.1 mm and 60 meshes was used. 8 is a separator made of polypropylene nonwoven fabric.
電解液はその溶媒を第2表の如く調整し、これらに溶質
としてホウフッ化リチウムを1モル/l溶解したものを
用いた。The electrolytic solution used was one in which the solvent was adjusted as shown in Table 2, and 1 mol/l of lithium fluoroborate was dissolved therein as a solute.
第2表
これらの装置を用い、以下に示す充放電条件で、常温及
び、60℃の各温度で充放電テストを行なった。Table 2 Using these devices, charging and discharging tests were conducted at room temperature and 60° C. under the charging and discharging conditions shown below.
初期サイクルにおいて、電圧が3vから2vに到るまで
の時間を100としたとき、各サイクルにおいで2vに
到るまでの時間が何チかを算出し、充放電サイクル寿命
を比較した。この結果を第2図及び第3図に示した。In the initial cycle, when the time taken for the voltage to reach 2v from 3v is set as 100, the time taken for the voltage to reach 2v in each cycle was calculated, and the charge/discharge cycle life was compared. The results are shown in FIGS. 2 and 3.
第2図から明らかなように、A−4のγ−BL。As is clear from FIG. 2, γ-BL of A-4.
PC,DMEを用いた従来品では、2000サイクルか
ら3000サイクルの間で劣化しているが、EMEを用
いた系列のA−1〜A−3は、いづれも従来よりすぐれ
、とくに、P C+B Cの入ったものがすぐれている
。Conventional products using PC and DME deteriorate between 2000 and 3000 cycles, but series A-1 to A-3 using EME are all superior to the conventional products, especially P C + B C The one with the in it is better.
また、第3図の60℃雰囲気では、やけりA−4の従来
品が早く落ち、A−1〜A−3は200oサイクル経過
しても比較的安定である。これらのことから、EXEは
DMEよりすぐれ、とくに高温領域で有効であることが
判る。そして、充放電サイクル寿命に対し、PCやBC
が有効であることも、第2図のA−1〜A−3の比較で
判る。Furthermore, in the 60° C. atmosphere shown in FIG. 3, the conventional product A-4 deteriorates quickly, while A-1 to A-3 are relatively stable even after 200 o cycles. From these facts, it can be seen that EXE is superior to DME, and is particularly effective in high temperature regions. And, regarding the charge/discharge cycle life, PC and BC
It can also be seen from the comparison of A-1 to A-3 in FIG. 2 that this is effective.
さらに、これらの装置を用い、3vに充電した後、5〜
Aの強負荷放電を行ない、各装置の瞬間的な電圧降下度
を調べたが、いづれも約200 mV程度でほとんど差
がなかった。このことから、EMEは、強負荷放電特性
においても、DMEと較べなんら劣ることはない。Furthermore, after charging to 3V using these devices, 5~
A heavy load discharge was carried out and the instantaneous voltage drop of each device was investigated, but all were about 200 mV, with almost no difference. From this, EME is not inferior to DME in any way even in heavy load discharge characteristics.
なお、実施例として、リチウム負極に、ビスマス、鉛、
カドミウム合金を用いたが、At合金を始め、リチウム
の充放電可能な合金はすべて用いることができる。In addition, as an example, bismuth, lead,
Although a cadmium alloy was used, any alloy capable of charging and discharging lithium, including an At alloy, can be used.
また、電解液の溶質として、L I B F 4の他、
LiCl0 LiAsF LiPF6などリチウム
電池4ν 6ツ
に適要可能な溶質はすべて用いることができる。In addition, as a solute of the electrolyte, in addition to L I B F 4,
All possible solutes suitable for lithium batteries can be used, such as LiCl0 LiAsF LiPF6.
発明の効果
以上のことから明らかなように、本発明は活性炭を正極
とし、リチウム合金を負極とする有機電解液系充放電可
能な電気化学装置において、常温およびとくに高温雰囲
気中での充放電特性にすぐれた効果を発揮する。Effects of the Invention As is clear from the above, the present invention provides an organic electrolyte-based chargeable/dischargeable electrochemical device that uses activated carbon as a positive electrode and a lithium alloy as a negative electrode, and improves charging/discharging characteristics at room temperature and especially in a high-temperature atmosphere. Demonstrates excellent effects.
第1図は本発明の実施例における充放電可能な電気化学
装置の縦断面図、第2図、第3図は本発明の実施例にお
ける装置の特性比較図である。
1・・・・・・ケース、2・・・・・・封口板、3・・
・・・・ガススケット、4・・・・・・正極、6・・・
・・・正極集電体、e・・・・・・負極、7・・・・・
・負極集電体、8・・・・・・セパレータ。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名f−
−−ケース
2−打I]猥
3−−一力°スヶッ1
C−@地
7−−− # 某/Itj本
第2図FIG. 1 is a longitudinal sectional view of a chargeable/dischargeable electrochemical device according to an embodiment of the present invention, and FIGS. 2 and 3 are characteristic comparison diagrams of the devices according to an embodiment of the present invention. 1... Case, 2... Sealing plate, 3...
...Gasket, 4...Positive electrode, 6...
...Positive electrode current collector, e...Negative electrode, 7...
- Negative electrode current collector, 8...Separator. Name of agent: Patent attorney Toshio Nakao and 1 other person f-
--Case 2-Strike I] Obscene 3--Ichiriki°Sugat 1 C-@Earth 7--- # Certain/Itj Book Figure 2
Claims (1)
極と、非水溶媒からなる電解液とから構成される電気化
学装置であって、電解液がエトキシ・メトキシ・エタン
を含有することを特徴とする充電可能な電気化学装置。 (2)電解液が、γ−ブチロラクトンとエトキシ・メト
キシ・エタンの混合溶媒からなることを特徴とした特許
請求の範囲第1項記載の充電可能な電気化学装置。 (2)電解液が、γ−ブチロラクトンとプロピレンカー
ボネートとエトキシ・メトキシ・エタンの混合溶媒から
なることを特徴とした特許請求の範囲第1項記載の充電
可能な電気化学装置。 (4)電解液がγ−ブチロラクトンと1ブチレンカーボ
ネートとエトキシ・メトキシ、エタンの混合溶媒からな
ることを特徴とした特許請求の範囲第1項記載の充電可
能な電気化学装置。[Scope of Claims] (1) An electrochemical device comprising a positive electrode made of activated carbon, a negative electrode made of a lithium alloy, and an electrolytic solution made of a nonaqueous solvent, the electrolytic solution containing ethoxy, methoxy, and ethane. A rechargeable electrochemical device comprising: (2) The rechargeable electrochemical device according to claim 1, wherein the electrolytic solution consists of a mixed solvent of γ-butyrolactone and ethoxy-methoxy-ethane. (2) The rechargeable electrochemical device according to claim 1, wherein the electrolytic solution consists of a mixed solvent of γ-butyrolactone, propylene carbonate, and ethoxy-methoxy-ethane. (4) The rechargeable electrochemical device according to claim 1, wherein the electrolytic solution consists of a mixed solvent of γ-butyrolactone, 1-butylene carbonate, ethoxy/methoxy, and ethane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62095606A JPS63259976A (en) | 1987-04-17 | 1987-04-17 | Electrically chargeable electrochemical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62095606A JPS63259976A (en) | 1987-04-17 | 1987-04-17 | Electrically chargeable electrochemical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63259976A true JPS63259976A (en) | 1988-10-27 |
Family
ID=14142212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62095606A Pending JPS63259976A (en) | 1987-04-17 | 1987-04-17 | Electrically chargeable electrochemical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63259976A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414880A (en) * | 1987-07-08 | 1989-01-19 | Fuji Electrochemical Co Ltd | Nonaqueous electrolyte battery |
-
1987
- 1987-04-17 JP JP62095606A patent/JPS63259976A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6414880A (en) * | 1987-07-08 | 1989-01-19 | Fuji Electrochemical Co Ltd | Nonaqueous electrolyte battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3187929B2 (en) | Lithium secondary battery | |
RU2156523C2 (en) | Lithium cell improvement technique | |
JPS63102173A (en) | Lithium secondary battery | |
JP3059820B2 (en) | Lithium secondary battery | |
JPH11204148A (en) | Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor | |
JPH05144472A (en) | Secondary battery with nonaqueous electrolyte | |
JP3223523B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3082117B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0745304A (en) | Organic electrolyte secondary battery | |
JPS63121272A (en) | Chargeable electrochemical device | |
JP2940015B2 (en) | Organic electrolyte secondary battery | |
JPH0495363A (en) | Nonaqueous secondary-battery | |
JP2000149996A (en) | Manufacture of nonaqueous electrolyte secondary battery | |
JP4649696B2 (en) | Method for producing electrode for non-aqueous electrolyte secondary battery | |
JP3268924B2 (en) | Non-aqueous electrolyte battery | |
JPH07220756A (en) | Nonaqueous electrolyte lithium secondary battery | |
JPS63259976A (en) | Electrically chargeable electrochemical device | |
JP3404929B2 (en) | Non-aqueous electrolyte battery | |
JP3163444B2 (en) | Lithium secondary battery | |
JPS63259975A (en) | Electrically chargeable electrochemical device | |
JP3182277B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2801684B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH04363862A (en) | Lithium secondary battery | |
JPS62143371A (en) | Chargeable electrochemical apparatus | |
JPS62290069A (en) | Organic electrolyte secondary battery |