JPS6325985A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS6325985A
JPS6325985A JP61167825A JP16782586A JPS6325985A JP S6325985 A JPS6325985 A JP S6325985A JP 61167825 A JP61167825 A JP 61167825A JP 16782586 A JP16782586 A JP 16782586A JP S6325985 A JPS6325985 A JP S6325985A
Authority
JP
Japan
Prior art keywords
layer
inp
gainas
electrode
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61167825A
Other languages
Japanese (ja)
Inventor
Masahiro Kobayashi
正宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61167825A priority Critical patent/JPS6325985A/en
Publication of JPS6325985A publication Critical patent/JPS6325985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes

Abstract

PURPOSE:To improve forward direction characteristics and to form a p-side electrode having a low contact resistance, in an InP/GaInAs P-I-N type photodiode, by removing a part of an InP window layer, partially exposing a GaInAs layer, and forming p-side contact from an Au/Pt/Ti electrode. CONSTITUTION:On an n<+> InP substrate 11, an N<-> InP layer 12 (buffer layer), an n<-> GaInAs layer 13 and an n InP layer 14 are sequentially formed by epitaxial growth. Then, an SiNx film 16 is formed on the surface. A window is provided in the SiNx film 16. Zn or Cd is diffused from the surface and a p<+> layer 15 is formed. In this diffusion of ptype impurities, a p-n junction plane is formed in the GaInAs layer 13. Then, a groove 23 is formed in the electrode forming part of the nInP layer 14 until the GaInAs layer is exposed by chemical etching. An Au/Pt/Ti electrode 20 is formed at the part of the groove 23. Then, the SiNx film 16 is attached. Thereafter, the p<+> layer 15 is formed by the diffusion of Zn. In this method, since the diffusion is carried out directly in the surface of the GaInAs, the surface concentration becomes high further-more, and excellent contact can be obtained.

Description

【発明の詳細な説明】 〔半既要〕 本発明は、 InP/ GaInAs PIN型ホトダ
イオードにおいて、P側コンタクト抵抗を低減するため
、InP窓層を一部除去し、GaInAs光吸収層上に
直接P側コンタクトを形成することにより、コンタクト
抵抗の低減、従って順方向立ち上り電圧の低減による素
子の直列抵抗低減を行うものである。
Detailed Description of the Invention [Semi-required] The present invention provides an InP/GaInAs PIN photodiode in which a part of the InP window layer is removed and a P layer is formed directly on the GaInAs light absorption layer in order to reduce the P-side contact resistance. By forming the side contacts, the series resistance of the element is reduced by reducing the contact resistance and therefore the forward rising voltage.

〔産業上の利用分野〕[Industrial application field]

GaInAsを光吸収層とする InP/ GaInA
s PIN型ホトダイオードは、光通信に用いられる1
、3μmおよび1.55μ葎波長の光に対して高い量子
効率を有し、また素子の構造が簡単であるため製造歩留
りが高く、低コストであり、高い信頼性をもつため、数
百メガビットの中容量光通信システムにおいて重要なデ
バイスとなっている。本発明はかかる半導体受光素子に
関するものである。
InP/GaInA with GaInAs as the light absorption layer
s PIN type photodiode is used for optical communication.
, has high quantum efficiency for light with wavelengths of 3 μm and 1.55 μm, and the simple structure of the device allows high manufacturing yield, low cost, and high reliability. It has become an important device in medium-capacity optical communication systems. The present invention relates to such a semiconductor light receiving element.

〔従来の技術〕[Conventional technology]

従来の InP/ GaInAs PIN型ホトダイオ
ードは、第4図に示すように、選択的にP形不純物が拡
散されたInPの表面層にP側コンタクトを形成する構
造となっており、電極としては、信頼性の面からAu/
 P t/ T i 3層構造電極が用いられている。
As shown in Figure 4, the conventional InP/GaInAs PIN type photodiode has a structure in which a P-side contact is formed on an InP surface layer in which P-type impurities are selectively diffused, and it is not reliable as an electrode. Au from a sexual perspective/
A Pt/Ti three-layer structure electrode is used.

なお、第4図において、11はn”−InP基板、12
はn−−InP層(バッファ層)、13はn −−Ga
lnAs層(光吸収層)、14はn −InP窓層、1
5はp+層、16はS i N XPQ、20はTi1
lQ17.  pt膜1B、  Au1lQ19の3層
構造からなるP III電掻、21はAuGeN側電極
である。
In addition, in FIG. 4, 11 is an n''-InP substrate, 12
is n--InP layer (buffer layer), 13 is n--Ga
lnAs layer (light absorption layer), 14 is n-InP window layer, 1
5 is p+ layer, 16 is S i N XPQ, 20 is Ti1
lQ17. A P III electrode has a three-layer structure of a PT film 1B and Au11Q19, and 21 is an AuGeN side electrode.

光22はInP窓層14の表面から入射される。Light 22 is incident on the surface of InP window layer 14 .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図に示す従来構造においてp+領域15上にA u
/ P t/ T i電極20によりP(IIJコンタ
クトを形成する場合、 ■p+領域15の表面濃度が拡散法またはイオン注入法
によりp+ドーピングを行った場合、1〜2X10cm
−’程度と低く、 ■InPの禁制帯幅が1.35 eVと大きい、ことに
より順方向立ち上り電圧が太き(なり、従ってコンタク
ト抵抗が大きくなるという問題を住した。
In the conventional structure shown in FIG. 4, A u
/ P t / Ti When forming a P (IIJ contact) with the i electrode 20, ■ When the surface concentration of the p + region 15 is p + doped by a diffusion method or an ion implantation method, it is 1 to 2 x 10 cm.
(1) The forbidden band width of InP is as large as 1.35 eV, resulting in a large forward rise voltage (and therefore a large contact resistance).

電極20はアロイ型の電極ではなく、表面が単に接触し
ているだけであるので、バイアスがかからない太陽電池
のようなOバイアスの場合、コンタクト抵抗が直列抵抗
に影響を及ぼし、出力のリニアリティが低入射パワーか
ら高入射パワーにわたって悪く、表面濃度を前記の値よ
りもより高くしなければならない。
Since the electrode 20 is not an alloy type electrode and the surfaces are simply in contact, in the case of an O bias such as a solar cell where no bias is applied, the contact resistance will affect the series resistance and the output linearity will be low. It is poor from incident power to high incident power, and the surface concentration must be made higher than the above values.

本発明はこのような点に鑑みて創作されたもので、PI
N型ホトダイオードにおけるP (JIIJ電極のコン
タクト抵抗が従来例よりも小になったデバイスを提供す
ることを目的とする。
The present invention was created in view of these points, and the PI
The present invention aims to provide a device in which the contact resistance of the P (JIIJ) electrode in an N-type photodiode is smaller than that of the conventional example.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例断面図である。 FIG. 1 is a sectional view of an embodiment of the present invention.

本発明においては、InP窓層14を一部除去して、G
alnAs層13を部分的に露出させ、A u/ P 
t/ T i電極20によりP側コンタクトを形成する
構造となっている。
In the present invention, the InP window layer 14 is partially removed and the G
The alnAs layer 13 is partially exposed and A u/P
The structure is such that a P-side contact is formed by a t/Ti electrode 20.

〔作用〕[Effect]

本発明では、GalnAs層にAu/ P t/ T 
i電極によりP側コンタクトを形成する。GaInAs
層は後述するようにバンドギャップがInP層に比べて
約半分であるため、InP層上に形成する場合に比して
順方向立ち上り電圧およびコンタクト抵抗を小さくでき
る。
In the present invention, the GalnAs layer has Au/Pt/T
A P-side contact is formed by the i-electrode. GaInAs
As will be described later, the bandgap of the layer is approximately half that of the InP layer, so the forward rising voltage and contact resistance can be reduced compared to when the layer is formed on the InP layer.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

再び第1図を参照すると、本発明実施例は、Au/Pt
/Ti電極20のコンタクトのとり方が従来例と異なる
だけで、第4図のPINホトダイオードと同じ構成のも
のである。第1図のPINホトダイオードにおいて、電
極20は露出されたGaInAs層に接触しているが、
GaInAsのバンドギャップはInPのバンドギャッ
プの半分程度と小であり、それだけでもコンタクトがと
り易い。
Referring again to FIG. 1, embodiments of the present invention include Au/Pt
The structure is the same as that of the PIN photodiode shown in FIG. 4, except that the way the /Ti electrode 20 is contacted is different from the conventional example. In the PIN photodiode of FIG. 1, the electrode 20 is in contact with the exposed GaInAs layer;
The bandgap of GaInAs is small, about half that of InP, and that alone makes it easy to make contact.

そこで、表面をすべてGaInAsで形成することも考
えられるが、そうするとSiNx膜16を付けることが
InPの場合よりも難しくなり、また図示のデバイスで
光22は表面から入るので、光はGaInAsfflの
表面の近くで吸収され、光電流として流れないキャリア
がかなり多(発生する問題がある。かくして、表面層は
従来例どおりInPで構成するのである。
Therefore, it is conceivable to form the entire surface with GaInAs, but in that case it would be more difficult to attach the SiNx film 16 than in the case of InP, and since the light 22 enters from the surface in the device shown in the figure, the light will not reach the surface of the GaInAsffl. There is a problem that a considerable number of carriers are absorbed nearby and do not flow as photocurrent.Therefore, the surface layer is made of InP as in the conventional case.

次に第2図を参照して第1図の実施例を形成する工程を
説明する。
Next, the process of forming the embodiment of FIG. 1 will be described with reference to FIG.

先ず第2図fatに示される如く、n” −InP基板
11上にエピタキシャル成長によって2μmの膜厚のn
−−InP層12(バッファ層)、膜厚2μmのn −
−GalnAs層13、約0.5μmの膜厚のn −T
nP層14を順次形成する。
First, as shown in FIG.
--InP layer 12 (buffer layer), 2 μm thick n −
-GalnAs layer 13, about 0.5 μm thick n-T
The nP layer 14 is sequentially formed.

次に、第2図(b)に示される如(表面に5iNxll
QIGを形成し、SiNx膜16に窓開けをなし、表面
からZnまたはCdを拡散して91層15を形成する。
Next, as shown in Fig. 2(b),
A QIG is formed, a window is made in the SiNx film 16, and Zn or Cd is diffused from the surface to form a 91 layer 15.

このp型不純物拡散は、PN接合面がGalnAs層1
3中にに形成されるようになす。
This p-type impurity diffusion occurs when the PN junction surface is in the GalnAs layer 1.
3. Let it form until it forms.

次いで第2図fc)に示される如く、化学エツチングで
n −InP層14の電極形成部分に溝23をGaIn
As層が露出するまで形成し、溝23の部分に第1図に
示したAu/ P t/Ti電極20を形成する。
Next, as shown in FIG. 2fc), grooves 23 are formed in the electrode forming portion of the n-InP layer 14 by chemical etching.
The As layer is formed until it is exposed, and the Au/Pt/Ti electrode 20 shown in FIG. 1 is formed in the groove 23.

コンタクトを形成するGaInAs層の表面濃度は、本
発明者の実験によると、500℃でのZn拡散によると
2X10cm−3となり、濃度の面からの問題はなく、
順方向立ち上り電圧が0.5 V以下の特性を示すコン
タクトが形成された。
According to experiments by the present inventor, the surface concentration of the GaInAs layer forming the contact is 2X10cm-3 due to Zn diffusion at 500°C, and there is no problem from the concentration point of view.
A contact exhibiting a forward rising voltage of 0.5 V or less was formed.

上記の方法に代えて、第2図(a)の工程が終った後に
第3図fa)に示す如< InP層14に溝23を形成
する。
Instead of the above method, after the process shown in FIG. 2(a) is completed, grooves 23 are formed in the InP layer 14 as shown in FIG. 3fa).

次いで第3図(blに示す如(SiNx膜16を付け、
しかる後にZn拡散でp+層15を形成する。
Next, as shown in FIG.
Thereafter, a p+ layer 15 is formed by Zn diffusion.

かかる方法によると、直接GaInAsの表面に拡散を
なすので、表面濃度が更に高くなり、より良好なコンタ
クトがとれるようになる。溝23のところで拡散が深く
ならないかの懸念があったが、本発明者の実験によると
、Cd+ Znの拡散常数はGaInAsではInPの
1/3程度であるので、図にはやや誇張して溝の下の拡
散部分に段差を付けて示すが、拡散の底はさほど深くな
(、見かけ上はぼ平坦な底が作られた。なお、溝のとこ
ろで拡散が僅かばかり深くなっていても、光吸収につい
てはほとんど問題のないことが実験で確認された。
According to this method, since diffusion is performed directly on the surface of GaInAs, the surface concentration becomes higher and better contact can be made. There was a concern that the diffusion would become deep at the groove 23, but according to the inventor's experiments, the diffusion constant of Cd+Zn is about 1/3 of that of InP in GaInAs, so the groove is slightly exaggerated in the figure. Although the diffusion part at the bottom is shown with a step, the bottom of the diffusion is not very deep (an apparently flat bottom was created. Note that even if the diffusion is slightly deeper at the groove, the light Experiments have confirmed that there is almost no problem with absorption.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、従来技術を変更
することなく、ただInP窓層を工;・チングするだけ
の容易な工程で順方向特性の改良が出来、低コンタクト
抵抗なP側電極が形成できる効果がある。
As described above, according to the present invention, the forward characteristics can be improved through a simple step of simply etching the InP window layer without changing the conventional technology, and the P side with low contact resistance can be improved. This has the effect of forming electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例断面図、 第2図(a) 、 (b) 、 (C)は本発明の工程
の断面図、第3図(a)、(blは第2図の工程の変形
例の断面図、第4図は従来例断面図である。 第1図ないし第4図において、 11はn” −InP基板、 12はn−−InP層、 13はn−−GalnAs層、 14はn −InP層、 15はp+層、 16はSiNx膜、 17はTt膜、 18はpt膜、 19はAu膜、 20はP側電極、 21はAuGeN側電極、 22は光、 23は溝である。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 茅2LT−nJす4りj清に
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 (a), (b), and (C) are cross-sectional views of the process of the present invention, and Fig. 3 (a) and (bl are cross-sectional views of the process in Fig. 2). 4 is a sectional view of a conventional example. In FIGS. 1 to 4, 11 is an n''-InP substrate, 12 is an n--InP layer, 13 is an n--GalnAs layer, 14 is n-InP layer, 15 is p+ layer, 16 is SiNx film, 17 is Tt film, 18 is PT film, 19 is Au film, 20 is P side electrode, 21 is AuGeN side electrode, 22 is light, 23 is It's a ditch. Agent: Patent attorney Akifuku Kuki Agent: Patent attorney Yoshio Osuga

Claims (1)

【特許請求の範囲】  n^+−InP基板(11)上に、n^−−Inバッ
ファ層(12)、n^−−GaInAs光吸収層(13
)、n^−InP窓層(14)が積層され、n−InP
窓層(14)表面より選択的にP形不純物がドープされ
、pn接合が光吸収層(13)中に形成されてなるPI
N型ホトダイオードにおいて、 前記ドーピングが行われたInP窓層(14)の一部が
選択的に除去されて溝(23)が形成され、光吸収層(
13)の表面に直接接触するP側電極(20)が形成さ
れてなることを特徴とする半導体受光素子。
[Claims] On the n^+-InP substrate (11), an n^--In buffer layer (12), an n^--GaInAs light absorption layer (13)
), n^-InP window layer (14) is laminated, and n-InP
PI in which P-type impurities are selectively doped from the surface of the window layer (14) and a pn junction is formed in the light absorption layer (13).
In the N-type photodiode, a portion of the doped InP window layer (14) is selectively removed to form a groove (23), and a light absorption layer (23) is formed.
13) A semiconductor light-receiving element characterized in that a P-side electrode (20) is formed in direct contact with the surface of the semiconductor light-receiving element.
JP61167825A 1986-07-18 1986-07-18 Semiconductor photodetector Pending JPS6325985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167825A JPS6325985A (en) 1986-07-18 1986-07-18 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167825A JPS6325985A (en) 1986-07-18 1986-07-18 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS6325985A true JPS6325985A (en) 1988-02-03

Family

ID=15856792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167825A Pending JPS6325985A (en) 1986-07-18 1986-07-18 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS6325985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258878A (en) * 1988-08-25 1990-02-28 Nec Corp Semiconductor photo detector array
EP0399361A2 (en) * 1989-05-24 1990-11-28 Siemens Aktiengesellschaft Opto-electronic device with optical absorber surface in a III-V material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258878A (en) * 1988-08-25 1990-02-28 Nec Corp Semiconductor photo detector array
EP0399361A2 (en) * 1989-05-24 1990-11-28 Siemens Aktiengesellschaft Opto-electronic device with optical absorber surface in a III-V material

Similar Documents

Publication Publication Date Title
JPS6244709B2 (en)
JPS6325985A (en) Semiconductor photodetector
JP2633234B2 (en) Optical semiconductor device
JPH02262379A (en) Semiconductor photodetector and manufacture thereof
JPS60198786A (en) Semiconductor photo receiving element
JP3224192B2 (en) Semiconductor waveguide receiver
JPS59149070A (en) Photodetector
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPH01196182A (en) Photodiode
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS63124475A (en) Semiconductor photodetector
JPS63160283A (en) Semiconductor photodetector
JP2995751B2 (en) Semiconductor light receiving element
KR950009629B1 (en) Compound semiconductor light receiving device
JPH041740Y2 (en)
JPS62186574A (en) Semiconductor light receiving device
JPS6259905B2 (en)
JPH0722641A (en) Photodetector
JPH01125989A (en) Semiconductor photodetector
JPS639986A (en) Semiconductor photodetector
JPS62169376A (en) Photodiode
JPS58161383A (en) Photo-semiconductor device
JPS5811109B2 (en) semiconductor photodetector
JPS60198785A (en) Manufacture of semiconductor photo receiving element
JPS61283178A (en) Photoconductive type semiconductor photodetector