JPS5811109B2 - semiconductor photodetector - Google Patents
semiconductor photodetectorInfo
- Publication number
- JPS5811109B2 JPS5811109B2 JP54043284A JP4328479A JPS5811109B2 JP S5811109 B2 JPS5811109 B2 JP S5811109B2 JP 54043284 A JP54043284 A JP 54043284A JP 4328479 A JP4328479 A JP 4328479A JP S5811109 B2 JPS5811109 B2 JP S5811109B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- guard ring
- impurity
- semiconductor photodetector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 8
- 239000012535 impurity Substances 0.000 claims description 19
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/107—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Light Receiving Elements (AREA)
Description
【発明の詳細な説明】
本発明は、均一な増倍感度を有するアバランシェフォト
ダイオード(APD)が得られる半導体光検波器に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor photodetector that provides an avalanche photodiode (APD) with uniform multiplication sensitivity.
従来、この種の■−■族化合物半導体より構成されるプ
レーナ型の光検波器を、InGaAsを例にして、第1
図に示す。Conventionally, a planar photodetector made of this type of ■-■ group compound semiconductor has been developed using InGaAs as an example.
As shown in the figure.
以下、図面こついて説明する。The drawings will be explained below.
1はn”−InP基板、2はn−InGaAs層、3は
P+−InGaAs層、4は5t02等の反射防止膜、
5は電極、6は光入射方向である。1 is an n''-InP substrate, 2 is an n-InGaAs layer, 3 is a P+-InGaAs layer, 4 is an antireflection film such as 5t02,
5 is an electrode, and 6 is a light incident direction.
この種の素子では、直接遷移型半導体であるために、光
は表面から1μm以内で大部分が吸収される。Since this type of device is a direct transition type semiconductor, most of the light is absorbed within 1 μm from the surface.
従ってP+層3は厚さ1μm程度と薄くする必要があっ
た。Therefore, it was necessary to make the P+ layer 3 as thin as about 1 μm.
P+層3を作製するにはSiO2膜を用いたZn等のp
型不純物の選択拡散によって、厚さ0.5〜10μm程
度の薄い拡散層を作製していた。To prepare the P+ layer 3, a p layer such as Zn using a SiO2 film is used.
A thin diffusion layer with a thickness of about 0.5 to 10 μm was fabricated by selective diffusion of type impurities.
このように薄いP+層では、エツジ部分の曲率半径が小
さくなるため、よく知られているように、電界集中によ
るエツジブレークダウンが起こり、均一な倍増が得られ
ないという欠点を有する。In such a thin P+ layer, the radius of curvature of the edge portion becomes small, and as is well known, edge breakdown occurs due to electric field concentration, resulting in a disadvantage that uniform doubling cannot be obtained.
本発明は、これらの欠点を解決するために、■=■族化
合物半導体より構成されるpn接合を用いた光検波器に
おいて、P+層の添加不純物としてZnを用い、ガード
リング部の添加不純物としてCdを用いることによって
、エツジブレークダウンを防止したもので、以下図面に
ついて詳細に説明する。In order to solve these drawbacks, the present invention uses Zn as the doped impurity of the P+ layer and Zn as the doped impurity of the guard ring part in a photodetector using a pn junction made of ■=■ group compound semiconductor. By using Cd, edge breakdown is prevented, and the drawings will be described in detail below.
第2図は本発明の一実施例であって、1はn十−InP
基板、2はn−InGaAs層、3はZnを添加したP
+−InGaAs層、4は5IO2等の反射防止膜、5
は電極、6は光入射方向、7はCdを添加したガードリ
ングである。FIG. 2 shows an embodiment of the present invention, where 1 is n+InP
Substrate, 2 is n-InGaAs layer, 3 is P doped with Zn
+-InGaAs layer, 4 is an antireflection film such as 5IO2, 5
is an electrode, 6 is a light incident direction, and 7 is a guard ring doped with Cd.
また、第3図aはZnを添加したP+層3とn−InG
aAs層2の不純物分布で、第3図すはCdを添加した
ガードリング7とn−InGaAs層2の不純物分布で
ある。Moreover, FIG. 3a shows the P+ layer 3 doped with Zn and n-InG.
FIG. 3 shows the impurity distribution of the aAs layer 2 and the Cd-doped guard ring 7 and the n-InGaAs layer 2.
なお、実際の素子ではZnの濃度は1020Cr−3、
0層の不純物濃度は約1016cr−3である。In addition, in the actual device, the concentration of Zn is 1020Cr-3,
The impurity concentration of the 0 layer is about 1016 cr-3.
ガードリングの必要条件は、よく知られているように、
p+層3より耐圧が高いことである。The requirements for guard rings are, as is well known,
It has a higher breakdown voltage than the p+ layer 3.
Znを拡散させた場合、第3図aに示すように、はぼZ
nは階段状の分布になるために、1層2とp+層3のp
+n接合は階段接合になる。When Zn is diffused, as shown in Figure 3a,
Since n has a step-like distribution, p of layer 1 2 and p+ layer 3
The +n junction becomes a step junction.
一方、Cdを拡散させた場合、第3図すのように、補誤
差関数になる。On the other hand, when Cd is diffused, it becomes a complementary error function as shown in FIG.
従って、逆方向に電圧を加えた場合、Zoを拡散させた
a図では、空乏層は主に、1層2の側に伸びるのに対し
て、b図のガードリング部では、pn接合付近で、cd
の分布が勾配を持つために、ガードリング7にも空乏層
が伸びるため、a図の場合より空乏層幅が広くなる。Therefore, when a voltage is applied in the opposite direction, the depletion layer mainly extends to the layer 1 and layer 2 side in figure a, where Zo is diffused, whereas in the guard ring part of figure b, the depletion layer extends near the p-n junction. , cd
Since the distribution has a gradient, the depletion layer also extends to the guard ring 7, so the width of the depletion layer becomes wider than in the case of Fig. a.
従って、ガードリング7と1層2のpn接合の耐圧は、
p+層3と1層2の耐圧より高くなる。Therefore, the breakdown voltage of the pn junction between the guard ring 7 and the first layer 2 is:
This is higher than the breakdown voltage of p+ layer 3 and 1 layer 2.
従って、ガードリングの役割を果すことになる。Therefore, it plays the role of a guard ring.
なお、ガードリング7の曲率半径は、エツジブレークダ
ウンが生じないように、大きくしであることは言うまで
もない。It goes without saying that the radius of curvature of the guard ring 7 should be large to prevent edge breakdown.
さらに、cdをプレデポジションさせて(短時間拡散さ
せて、さらに、ドライブインさせる(拡散源を取り除い
て、長時間、cdを再拡散させる)ことによって、ガー
ドリング7の不純物濃度を下げることも可能である。Furthermore, it is also possible to reduce the impurity concentration in the guard ring 7 by pre-depositing CDs (diffusing them for a short period of time and then driving them in (removing the diffusion source and re-diffusing CDs for a long period of time). It is.
以上説明したように本発明によれば、m−v族化合物半
導体より構成されるpm接合を用いた光検波器において
、p+層のp型不純物として、Znを添加し、ガードリ
ング部のp型不純物としてCdを添加することにより、
エツジブレークダウンが防止できるために、均一な増倍
分布を有するAPDが得られる利点がある。As explained above, according to the present invention, in a photodetector using a pm junction made of an m-v group compound semiconductor, Zn is added as a p-type impurity in the p+ layer, and the p-type impurity in the guard ring portion is By adding Cd as an impurity,
Since edge breakdown can be prevented, there is an advantage that an APD having a uniform multiplication distribution can be obtained.
第1図は従来の光検波器の断面図、第2図は本発明光検
波器の一実施例の断面図、第3図は、pn接合の不純物
分布を示す図で、aはp型不純物としてZnを添加した
場合の図、bはp型不純物としてCdを添加した場合の
図である。
1・・・・n+−InP基板、2−n−InGaAs層
、3・・・・・・p+−InGaAs層、4・・・・・
・反射防止膜、5・・・・・・電極、6・・・・・・光
入射方向、7・・・・・・ガードリング。Fig. 1 is a cross-sectional view of a conventional photodetector, Fig. 2 is a cross-sectional view of an embodiment of the photodetector of the present invention, and Fig. 3 is a diagram showing the impurity distribution of a pn junction, where a is a p-type impurity. Figure b is a diagram when Zn is added as a p-type impurity, and b is a diagram when Cd is added as a p-type impurity. 1...n+-InP substrate, 2-n-InGaAs layer, 3...p+-InGaAs layer, 4...
-Anti-reflection film, 5... Electrode, 6... Light incident direction, 7... Guard ring.
Claims (1)
を拡散してp型不純物領域が形成されて、上記n型In
GaAs層中にpn接合が形成されたプレーナ型アバラ
ンシフォトダイオード構造の半導体光検波器において、
上記p型不純物領域の不純物がZnであり、上記p型不
純物領域のエツジ部にp型不純物領域の不純物であるZ
nの濃度よりも低濃度にCdを拡散して形成されたガー
ドリング部が設けられたプレーナ型アバランシフォトダ
イオード構造であることを特徴とする半導体光検波器。1 A p-type impurity region is formed by diffusing p-type impurities from a part of the main surface of the n-type InGaAs layer, and the n-type InGaAs layer is
In a semiconductor photodetector with a planar avalanche photodiode structure in which a pn junction is formed in a GaAs layer,
The impurity of the p-type impurity region is Zn, and the impurity of the p-type impurity region is Zn.
A semiconductor photodetector characterized by having a planar avalanche photodiode structure provided with a guard ring portion formed by diffusing Cd at a concentration lower than that of n.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54043284A JPS5811109B2 (en) | 1979-04-10 | 1979-04-10 | semiconductor photodetector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54043284A JPS5811109B2 (en) | 1979-04-10 | 1979-04-10 | semiconductor photodetector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55134986A JPS55134986A (en) | 1980-10-21 |
JPS5811109B2 true JPS5811109B2 (en) | 1983-03-01 |
Family
ID=12659498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54043284A Expired JPS5811109B2 (en) | 1979-04-10 | 1979-04-10 | semiconductor photodetector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5811109B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5272351A (en) * | 1992-01-13 | 1993-12-21 | Hercules Incorporated | Differential polarization LADAR |
-
1979
- 1979-04-10 JP JP54043284A patent/JPS5811109B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55134986A (en) | 1980-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0156156A1 (en) | Avalanche photodiodes | |
JPH04111479A (en) | Light-receiving element | |
US5107319A (en) | Monolithically integrated photodiode-fet combination | |
JPS6244709B2 (en) | ||
JP2793238B2 (en) | Semiconductor light receiving device and method of manufacturing the same | |
JPS5811109B2 (en) | semiconductor photodetector | |
JPS60198786A (en) | Semiconductor photo receiving element | |
JPS5996781A (en) | Photo diode | |
JPS6262564A (en) | Semiconductor photodetector | |
JPS61101084A (en) | Manufacture of compound semiconductor light-receiving element | |
JPS5938748B2 (en) | semiconductor photodetector | |
JPS61191082A (en) | Semiconductor light receiving element | |
JP3224192B2 (en) | Semiconductor waveguide receiver | |
JP2763352B2 (en) | Semiconductor light receiving element | |
JPS6214112B2 (en) | ||
JPH0157509B2 (en) | ||
JP2995751B2 (en) | Semiconductor light receiving element | |
JPS63160283A (en) | Semiconductor photodetector | |
JPS62186574A (en) | Semiconductor light receiving device | |
KR890004430B1 (en) | Constructure of photo diode | |
JPS63124475A (en) | Semiconductor photodetector | |
JPH0215680A (en) | Semiconductor photodetecting device | |
JPS6325985A (en) | Semiconductor photodetector | |
JPH057014A (en) | Avalanche photodiode | |
JPH01125989A (en) | Semiconductor photodetector |